
Debugging & Profiling Techniques

Gian Franco Marras - g.marras@cineca.it

Giusy Muscianisi - g.muscianisi@cineca.it

Vittorio Ruggiero - v.ruggiero@cineca.it

Cristiano Padrin - c.padrin@cineca.it

SuperComputing Applications and Innovation Department

1 / 154

Outline

1 Compiler Flags
Usefull links
Debugging Flags
Profiling Flags

2 Profiling

3 Valgrind

4 Debugging

2 / 154

Outline

1 Compiler Flags
Usefull links
Debugging Flags
Profiling Flags

2 Profiling

3 Valgrind

4 Debugging

3 / 154

Compilers documentation

• IBM:
• http://publib.boulder.ibm.com/infocenter/macxhelp/v6v81/index.jsp

• Intel:
• Fortran: http://software.intel.com/sites/default/files/m/5/0/2/8/5/6335-copts_for.pdf
• C: http://www2.units.it/divisioneisi/ci/tartaglia/intel/cce/bldaps_cls.pdf

http://marcbug.scc-dc.com/svn/repository/trunk/Compilers/c_ug_lnx_8.1.pdf

• PGI:
• http://www.pgroup.com/doc/pgiug.pdf

• GNU:
• http://gcc.gnu.org/

4 / 154

Outline

1 Compiler Flags
Usefull links
Debugging Flags
Profiling Flags

2 Profiling

3 Valgrind

4 Debugging

5 / 154

Warnings

Turns on a set of warnings for common programming problems

IBM Intel PGI GNU
-qinfo=all -warn all (Fortran) -Minform=warn -Wall

-Wall (C/C++) -Wextra -Werror

• -Wall detects:

• uninitialized variables (-Wuninitialized)
• unused parameters (-Wunused, -Wunused-{variables|function|value|label})
• implicit declaration function, for C and C++ (-Wimplicit-function-declaration)

• -Wextra: enables some extra warning flags that are not enabled by -Wall. For
example, if it is used with -Wall, unused but set variables (-Wunused-but-set-variables)
are detected

• -Werror: consider warnings to be errors, so that compilation stops.

6 / 154

Floating-point exceptions

• If you know that somewhere in your program, there lurks a catastrophic
numerical bug that puts NaNs or Infs into your results and you want to know
where it first happens, the search can be a little frustrating.

• The IEEE standard can help you; these illegal events (divide by zero,
underflow or overflow, or invalid operations which cause NaNs) can be made
to trigger exceptions, which will stop your code right at the point where it
happens; then if you run your code through a debugger, you can find the
very line where it happens.

• Add the following flags to obtain a signalling massages (SIGFPE) from the
application if a fpe is detected at run time (i.e. If after some calculation, a
NaN or an inf is generated).

7 / 154

Floating-point exceptions

• divide-by-zero: an operation on finite numbers produces infinity as exact
answer.

• overflow: a result has to be represented as a floating-point number, but has
(much) larger absolute value than the largest (finite) floating-point number
that is representable.

• underflow: a result has to be represented as a floating-point number, but
has smaller absolute value than the smallest positive normalized
floating-point number (and would lose much accuracy when represented as
a denormalized number).

• inexact: the rounded result of an operation is not equal to the infinite
precision result. It may occur whenever overflow or underflow occurs.

• invalid: there is no well-defined result for an operation, as for 0/0 or infinity -
infinity or sqrt(-1).

8 / 154

Floating-point exceptions, cont...

IBM Intel PGI GNU
-qflttrap=enable -fpe0 (enable) -Ktrap=fp -ffpe-trap=
-qflttrap=overflow: -fpe3 (disable) -Ktrap=divz,inv, invalid,zero,
underflow:zerodivide: ovf,inexact,unf overflow
invalid:inexact (Fortran only)

• Intel - Fortran:
• -fpe0: underflow gives 0.0; abort on other IEEE exceptions.
• -fpe3: produce NaN, signed infinities, and denormal results .

• Intel - C: For C code, you have to actually insert a call to feenableexcept(), which
enables floating point exceptions, and is defined in fenv.h

• GNU: the flag is for FORTRAN, because in C is default

9 / 154

Simbolic debug

IBM Intel PGI GNU
-g -qfullpath -g -gopt (-g) -g (-ggdb)

• -g: Produces symbolic debug information in object file. Prompts the compiler to
generate debug information for the source code. You must specify this option if you
intend to debug your code.

• -qfullpath: Causes the full name of all source files to be added to the debug
information. This can make it easier for the debugger to find source files.

• -gopt: Instructs the compiler to include symbolic debugging information in the object
file, and to generate optimized code identical to that generated when -g is not
specified.

• -ggdb: Produce debugging information for use by GDB. This means to use the most
expressive format available (DWARF 2, stabs, or the native format if neither of those
are supported), including GDB extensions if at all possible.

10 / 154

Check Bounds

IBM Intel PGI GNU
-C (-qcheck) -check bounds -WB -Mbounds -fbounds-check

• -C (-qcheck is the long form): Checks each reference to an array element, array
section, or character substring to ensure the reference stays within the defined bounds
of the entity

• -check bounds (-CB) : Enables compile-time and run-time checking for array
subscript and character sub-string expressions. An error is reported if the expression
is outside the dimension of the array or the length of the string.

• -WB Turns a compile-time bounds check into a warning.

• -fbounds-check: generate additional code to check that indices used to access arrays
are within the declared range.

11 / 154

Uninitialized Variables

IBM Intel PGI GNU
-qinfo=uni -check uninit (Fortran) -Wuninitialized

-check-uninit (CC++)

• -qinfo=uni: Produces informational messages on uninitialized variables.

• -check-uninit , -check unint: Enables runtime checking for uninitialized variables. If a
variable is read before it is written, a runtime error routine will be called. Runtime
checking of undefined variables is only implemented on local, scalar variables. It is not
implemented on dynamically allocated variables, extern variables or static variables. It
is not implemented on structs, classes, unions or arrays. Note for FORTRAN: Checks
for uninitialized scalar variables without the SAVE attribute.

• -Wuninitialized: Warn at compiling time if an automatic variable is used without first
being initialized.

12 / 154

Strict ISO C & ISO C++

IBM Intel PGI GNU
-qlanglvl=stdc89 -strict-ansi -ansi -pedantic

• -qlanglvl=stdc89: Determines which language standard (or superset, or subset of a
standard) to consult for nonconformance. It identifies nonconforming source code and
also options that allow such nonconformances. In this case, the compilation conforms
to the ANSI C89 standard.

• -ansi -pedantic: Use ANSI C, and reject any non-ANSI extensions. These flags help
in writing portable programs that will compile on other systems.

13 / 154

Outline

1 Compiler Flags
Usefull links
Debugging Flags
Profiling Flags

2 Profiling

3 Valgrind

4 Debugging

14 / 154

Optimization – IBM

IBM Intel PGI GNU
-O0 -O2 -O3 -O0 -01 -O2 -O3 -O0 -O2 -O3 -O0 -O1 -O2 -O3
-O4 -O5

• -O0 : all optimizations are disabled. Usefull for debbugging, togheter with -g.

• -O2 : optimizations that offer improved performance without an unreasonable increase
in time or storage that is required for compilation.

• -O3 : memory-intensive optimizations, the semantics of the program can be altered.
Use -qstrict to avoid incorrect results.

• -O4 : aggressive optimizations (-qarch=auto, -qhot, -qipa, -qtune=auto,
-qcache=auto, -qsimd=auto).

• -O5 : as -O4 with -qipa=level=2 also.

15 / 154

Optimization – Intel

IBM Intel PGI GNU
-O0 -O2 -O3 -O0 -01 -O2 -O3 -O0 -O2 -O3 -O0 -O1 -O2 -O3
-O4 -O5

• -O0 : all optimizations are disabled. Usefull for debbugging, togheter with -g.

• -O1 : enables optimizations for speed and disables some optimizations that increase
code size and affect speed.

• -O2 : enables optimizations for speed. This is generally recommended optimization
level

• -O3 : enables -O2 plus more aggressive optimizations.

16 / 154

Optimization – Intel -O3

IBM Intel PGI GNU
-O0 -O2 -O3 -O0 -01 -O2 -O3 -O0 -O2 -O3 -O0 -O1 -O2 -O3
-O4 -O5

• Automatic vectorization (use of packed SIMD instructions)
• Loop interchange (for more efficient memory access)
• Loop unrolling (more instruction level parallelism)
• Prefetching (for patterns not recognized by h/w prefetcher)
• Cache blocking (for more reuse of data in cache)
• Loop peeling (allow for misalignment)
• Loop versioning (for loop count; data alignment; runtime dependency tests)
• Memcpy recognition (call Intel’s fast memcpy, memset)
• Loop splitting (facilitate vectorization)
• Loop fusion (more efficient vectorization)
• Scalar replacement (reduce array accesses by scalar temps)
• Loop rerolling (enable vectorization)
• Loop reversal (handle dependencies)

17 / 154

Optimization – PGI

IBM Intel PGI GNU
-O0 -O2 -O3 -O0 -01 -O2 -O3 -O0 -O2 -O3 -O0 -O1 -O2 -O3
-O4 -O5

• -O0 : no optimization. A basic block is generated for each language statement.

• -O1 : local optimization. Scheduling of basic blocks is performed. Register allocation
is performed.

• -O2 : global optimization. This level performs all -O1 local optimization as well as -O2
global optimization. If optimization is specified on the command line without a level,
-O2 is the default.

• -O3 : specifies aggressive global optimization. This level performs -O1 and -O2
optimizations and enables more aggressive hoisting and scalar replacement
optimizations that may or may not be profitable.

• -O4 : performs all -O1, -O2 and -O3 optimizations and enables hoisting of guarded
invariant floating point expressions.

18 / 154

Optimization – GNU

IBM Intel PGI GNU
-O0 -O2 -O3 -O0 -01 -O2 -O3 -O0 -O2 -O3 -O0 -O1 -O2 -O3
-O4 -O5

• -O0 : no optimization. A basic block is generated for each language statement. If
optimization is specified on the command line without a level, -O0 is the default.

• -O1 : Optimizing compilation takes somewhat more time, and a lot more memory for a
large function.

• -O2 : Optimize even more. GCC performs nearly all supported optimizations that do
not involve a space-speed tradeoff. As compared to -O0, this option increases both
compilation time and the performance of the generated code.

• -O3 : Optimize yet more. All optimizations specified by -O2 are turned on togheter with
-finline-functions, -funswitch-loops, -fpredictive-commoning, -fgcse-after-reload,
-ftree-vectorize and -fipa-cp-clone.

19 / 154

Architecture
Use these flags to target your program to instruct the compiler to generate code
specific to a particular architecture.
This allows the compiler to take advantage of machine-specific instructions that can
improve performance.

IBM Intel PGI GNU
-qarch=<arch> -mtune=<arch> -tp<arch> -march=<arch>
-qtune=<arch> -mtune=<arch>
-qcache=<subop-list> -mcpu=<cpu>

• IBM: By default, the -qarch setting produces code using only instructions common to
all supported architectures, with resultant settings of -qtune and -qcache that are
relatively general.

• -qarch={auto|pwr6|qp|...}
• -qtune={auto|pwr6|qp|...}
• -qcache={auto|level=...|line=...|size=...|...}

• Intel: -mtune={generic|itanium2-p9000|...}

20 / 154

Architecture

IBM Intel PGI GNU
-qarch=<arch> -mtune=<arch> -tp<arch> -march=<arch>
-qtune=<arch> -mtune=<arch>
-qcache=<subop-list> -mcpu=<cpu>

• PGI : -tp{athlon|k8-64|nehalem|p7-64|x84}
• GNU

• -march=<architecture-type> : This specifies the name of the target ARM (Adv.
RISC) architecture.

• -mtune=<architecture-type> : Tune to architecture-type everything applicable
about the generated code, except for the ABI and the set of available instructions.

• -mcpu=<cpu-type> : You can specify either the EV style name or the
corresponding chip number.

21 / 154

Loop optimization 1/3

The performance of certain classes of loops may be improved through
vectorization or unrolling options.

• Vectorization transforms loops to improve memory access performance and
make use of packed SSE instructions which perform the same operation on
multiple data items concurrently.

• Unrolling replicates the body of loops to reduce loop branching overhead
and provide better opportunities for local optimization, vectorization and
scheduling of instructions.

22 / 154

Loop optimization 2/3

IBM Intel PGI GNU
-qcache=[=suboptions] -ax{SSE4.2|AVX} -Mvect=sse -msse4.2
-qhot=[=suboptions] -x{SSE4.2|AVX} -Munroll=c:n -mavx
-qunroll -unroll=n

• -qcache{auto|assoc=n|cost=cycles|level=level|line=bytes|...} : Specifies the cache
configuration for a specific execution machine. The compiler uses this information to
tune program performance, especially for loop operations that can be structured (or
blocked) to process only the amount of data that can fit into the data cache.

• -qhot{auto|assoc=n|line=n(byte)|size=n(Kbyte)} : Determines whether to perform
high-order transformations on loops and array language during optimization and
whether to pad array dimensions and data objects to avoid cache misses.

• -qunroll: Specifies whether unrolling DO loops is allowed in a program. Unrolling is
allowed on outer and inner DO loops.

23 / 154

Loop optimization 3/3

• -ax{SSE4.2|AVX} : directs the compiler to generate processor specific code
if there is a performance benefit.

• -x{SSE4.2|AVX} : directs the compiler to generate specialized and optimized
code for the processor that execute your program.

• -unroll=n : Tells the compiler the maximum number of times to unroll loops.
• -Mvect=sse : Generates SSE instructions
• -Munroll=c:n : Unrolls loops, executing multiple instances of the loop every

"n" iteration (if n=1, it is done during each iteration.)

24 / 154

Interprocedural Analisys (IPA) 1/2

• Allows use of information across function call boundaries to perform
optimizations that would otherwise be unavailable.

• For example, if the actual argument to a function is in fact a constant in the
caller, it may be possible to propagate that constant into the call and perform
optimizations that are not valid if the dummy argument is treated as a
variable.

• A wide range of optimizations are enabled or improved by using IPA,
including but not limited to data alignment optimizations, argument removal,
constant propagation, pointer disambiguation, pure function detection,
F90/F95 array shape propagation, data placement, vestigial function
removal, automatic function inlining, inlining of functions from pre-compiled
libraries, and interprocedural optimization of functions from pre-compiled
libraries.

25 / 154

Interprocedural Analisys (IPA) 2/2

IBM Intel PGI GNU
-qipa=level={0|1|2} -ip -ipo -Mipa -fipa-[<sub-opt>]

• -qipa : Determines the amount of IPA analysis and optimization performed,
where <level> can be equal to:

• 0 : Performs only minimal interprocedural analysis and optimization.
• 1 : Turns on inlining, limited alias analysis, and limited call-site tailoring.
• 2 : Full interprocedural data flow and alias analysis. To generate data

reorganization information, specify the optimization level -qipa=level=2 or -O5
together with -qreport.

• -ip : enables additional interprocedural optimizations for single file
compilation.

• -ipo: enables interprocedural optimizations between files.

26 / 154

Complex numbers

IBM Intel PGI GNU
-complex-limited-range

• -complex-limited-range: use the highest performance formulations of
complex arithmetic operations

27 / 154

Fuctions – ESSL

• IBM Engineering and Scientific Subroutine Library (ESSL) is a state-of-the-art
collection of high-performance subroutines providing a wide range of mathematical
functions for many different scientific and engineering applications.

• Its primary characteristics are performance, functional capability, and usability.

• ESSL is provided as run-time libraries that run on the servers and processors.

• ESSL can be used with Fortran, C, and C++ programs operating under the AIX and
Linux operating systems.

• The mathematical subroutines, in nine computational areas, are tuned for
performance. The computational areas are:

• Linear Algebra Subprograms
• Matrix Operations
• Linear Algebraic Equations
• Eigensystem Analysis
• Fourier Transforms, Convolutions and Correlations, and Related Computations
• Sorting and Searching
• Interpolation
• Numerical Quadrature
• Random Number Generation

28 / 154

Fuctions – Parallel ESSL

• Parallel ESSL is a scalable mathematical subroutine library that supports parallel
processing applications on clusters of processor nodes optionally connected by a
high-performance switch.

• PESSL supports the Single Program Multiple Data (SPMD) programming model using
the Message Passing Interface (MPI) library.

• PESSL provides subroutines in the following computational areas:

• Parallel Basic Linear Algebra Subprograms (PBLAS)
• Linear Algebraic Equations
• Eigensystem Analysis and Singular Value Analysis
• Fourier Transforms
• Random Number Generation

• For communication, PESSL includes the Basic Linear Algebra Communications
Subprograms (BLACS), which use MPI.

• For computations, PESSL uses the ESSL subroutines.

• The PESSL subroutines can be called from 32-bit and 64-bit environment application
programs written in Fortran, C, and C++.

29 / 154

Fuctions – MKL
• Intel Math Kernel Library (Intel MKL) is a computing math library of highly optimized,

extensively threaded routines for applications that require maximum performance.

• Intel MKL provides comprehensive functionality support in these major areas of
computation, for example:

• BLAS and LAPACK linear algebra routines, offering vector, vector-matrix, and
matrixmatrix operations.

• ScaLAPACK distributed processing linear algebra routines for Linux* and
Windows* operating systems, as well as the Basic Linear Algebra
Communications Subprograms (BLACS) and the Parallel Basic Linear Algebra
Subprograms (PBLAS).

• Fast Fourier transform (FFT) functions in one, two, or three dimensions with
support for mixed radices (not limited to sizes that are powers of 2), as well as
distributed versions of these functions provided for use on clusters of the Linux*
and Windows* operating systems.

• Vector Math Library (VML) routines for optimized mathematical operations on
vectors.

• Vector Statistical Library (VSL) routines, which offer high-performance vectorized
random number generators (RNG) for several probability distributions,
convolution and correlation routines, and summary statistics functions.

• Intel MKL is optimized for the latest Intel processors, including processors with multiple
cores. Intel MKL also performs well on non-Intel processors.

30 / 154

Fuctions

IBM Intel PGI GNU
-lessl, -lesslbg -lm (MKL) VML (MKL) MKL

• -lesslbg : Engineering and Scientific Subroutine Library (essl) optimized for
BG/Q architecture

• -lm : for using Math Kernel Library (MKL)
• VML (MKL): MKL and VML can be linked using a pgi compiler
• MKL : MKL can be linked using a gnu compiler

31 / 154

Report

IBM Intel PGI GNU
-qlistopt, -qreport, -qsource -vec_report{0|1|2|3|4|5} -Minfo

• -vec_report : directs the compiler to generate the vectorization reports with
different level of information as follows:

• -vec_report0 : no diagnostic information is displayed
• -vec_report1 : display diagnostics indicating which loops have been successfully

vectorized (default) .
• -vec_report2 : same as -vec_report1, plus diagnostics indicating why some

loops have not successfully vectorized .
• -vec_report3 : same as -vec_report2, plus additional information about any

proven or assumed dependences
• -vec_report4 : indicate non-vectorized loops
• -vec_report5 : indicate non-vectorized loops and the reason why they were not

vectorized.

32 / 154

Report

IBM Intel PGI GNU
-qlistopt, -qreport, -qsource -vec_report{0|1|2|3|4|5} -Minfo

• -qlistopt, -qreport, -qsource : generate a file.lst containing informations on
the optimization performed by the compiler, tougheter with the source code.

• -Minfo : display compile-time optimization listings. When this option is used,
the PGI compilers issue informational messages to stderr as compilation
proceeds. From these messages, you can determine which loops are
optimized using unrolling, SSE instructions, vectorization, parallelization,
interprocedural optimizations and various miscellaneous optimizations. You
can also see where and whether functions are inlined.

33 / 154

Outline

1 Compiler Flags

2 Profiling
Timing
GNU Profiler – Gprof
Scalasca

3 Valgrind

4 Debugging

34 / 154

Outline

1 Compiler Flags

2 Profiling
Timing
GNU Profiler – Gprof
Scalasca

3 Valgrind

4 Debugging

35 / 154

Timing

time:
The time command runs the specified program command with the given
arguments;

Time writes a message to standard error giving timing statistics about this
program run; These statistics consist of:
• the elapsed real time between invocation and termination;
• the user CPU time;
• the system CPU time.

bash-3.2$ time program.x
real 0m0.701s
user 0m0.000s
sys 0m0.002s

36 / 154

Timing

ETIME function (Fortran):

The RESULT = ETIME(TARRAY) function returns the number of seconds of
runtime since the start of the process’s execution as the function value.

• TARRAY(1) returns the user time;
• TARRAY(2) returns the system time;
• RESULT is equal to TARRAY(1) + TARRAY(2).

Example:

real, dimension(2) :: tarray1, tarray2
real :: t1,t2
t1=ETIME(tarray1)
KERNEL CODE!!!
t2=ETIME(tarray2)
write(6,*) "time =",t2-t1
write(6,*) "USER TIME",tarray2(1)-tarray1(1)
write(6,*) "SYSTEM TIME",tarray2(2)-tarray1(2)

37 / 154

Timing

SYSTEM_CLOCK routine (Fortran):

SYSTEM_CLOCK([COUNT, COUNT_RATE, COUNT_MAX])

• COUNT is a processor clock since an unspecified time in the past;
• COUNT_RATE determines the number of clock ticks per second;
• COUNT_MAX is the max value of the processor clock.

Example:

PROGRAM test_system_clock
integer t1, t2, count_rate, count_max
CALL SYSTEM_CLOCK(t1, count_rate, count_max)
KERNEL CODE!!!
CALL SYSTEM_CLOCK(t2, count_rate, count_max)
write(*,*) "real time", real(t2-t1)/real(count_rate)

END PROGRAM

38 / 154

Timing

gettimeofday routine (C):

int gettimeofday(timeval *tp, NULL)) gets the time of day.

Example:

double mycclock()
{

struct timeval tmp;
double sec;
gettimeofday(&tmp, (struct timezone *)0);
sec = tmp.tv_sec + ((double)tmp.tv_usec)/1000000.0;
return sec;

}
...
start = mycclock();
KERNEL CODE!!!
finish = cclock();
printf("TOT = %lf",finish-start);

39 / 154

Outline

1 Compiler Flags

2 Profiling
Timing
GNU Profiler – Gprof
Scalasca

3 Valgrind

4 Debugging

40 / 154

GNU Profiler – Gprof

GNU Profiler – Gprof

The GNU profiler gprof can be used to determine which parts of a program
are taking most of the execution time.

gprof can produce several different output styles:
• Flat Profile: The flat profile shows how much time was spent executing

directly in each function.
• Call Graph: The call graph shows which functions called which others, and

how much time each function used when its subroutine calls are included.

41 / 154

Gprof – Flat profile

The flat profile shows the total amount of time your program spent executing
each function.
Note that if a function was not compiled for profiling, and didn’t run long
enough to show up on the program counter histogram, it will be
indistinguishable from a function that was never called.

42 / 154

Gprof – Call Graph

The call graph shows how much time was spent in each function and its
children. From this information, you can find functions that, while they
themselves may not have used much time, called other functions that did use
unusual amounts of time.

43 / 154

Gprof – Listing by line
The -l option enables line-by-line profiling, which causes histogram hits to be
charged to individual source code lines, instead of functions.
This feature only works with programs compiled by older versions of the "gcc"
compiler. Newer versions of "gcc" are designed to work with the "gcov" tool
instead.

44 / 154

Compiling, Running, Output files

• Compile and link the program with options: -g -pg -qfullpath
• Profiling files in execution directory

• gmon.out.<MPI Rank> = binary files, not readable
• The number of files depends on environment variable

• 1 Profiling File / Process: The default setting is to generate gmon.out files only for
profiling data collected on ranks 0 - 31.

• BG_GMON_RANK_SUBSET=N – Only generate the gmon.out file for rank N.
• BG_GMON_RANK_SUBSET=N:M – Generate gmon.out files for all ranks from N to

M.
• BG_GMON_RANK_SUBSET=N:M:S – Generate gmon.out files for all ranks from N to

M. Skip S; 0:16:8 generates gmon.out.0, gmon.out.8, gmon.out.16

• Output files interpretation
• gprof <Binary> gmon.out.<MPI Rank> > gprof.out.<MPI Rank>
• Graphical utility, part of HPC Toolkit: Xprof

45 / 154

Using GNU profiling – Threads

• The base GNU toolchain does not provide support for profiling on threads
• Profiling threads

• BG_GMON_START_THREAD_TIMERS
• Set this environment variable to "all" to enable the SIGPROF timer on all threads

created with the pthread_create() function.
• "nocomm" to enable the SIGPROF timer on all threads except the extra threads that

are created to support MPI.

• Add a call to the gmon_start_all_thread_timers() function to the program, from
the main thread

• Add a call to the gmon_thread_timer(int start) function from the thread to be
profiled: 1 to start, 0 to stop

46 / 154

Outline

1 Compiler Flags

2 Profiling
Timing
GNU Profiler – Gprof
Scalasca

3 Valgrind

4 Debugging

47 / 154

Scalasca

• SCalable performance Analysis of LArge SCale Applications
• Developed by Juelich Supercomputer Center
• Toolset for performance analysis of parallel applications on a large scale
• Manage programs MPI, OpenMP, MPI+OpenMP
• Latest releast 1.4.2, available on FERMI
• www.scalasca.org
• http://www2.fz-juelich.de/jsc/datapool/scalasca/UserGuide.pdf

48 / 154

Scalasca

• Event tracing
• During the measurement, there is a

buffer for each thread/process
• Final collection of the results

49 / 154

Scalasca – How to use

• prepare application objects and executable for measurement
(automatic instrumentation)

scalasca -instrument <compile-or-link-command>
• run application under control of measurement system

scalasca -analyze <application-launch-command>
• post-process and explore measurement analysis report

scalasca -examine (-s) <experiment-archive|report>

50 / 154

Examination by GUI

51 / 154

How to use SCALASCA on FERMI: SCALASCA on FERMI

52 / 154

Display of results

Results are displayed using three coupled tree browser showing:
• Metrics (i.e. Performance properties/problems)
• Call-tree or flat region profile
• System location

53 / 154

Metrics 1/2

Time Total CPU allocation time

Visits Number of times a routine/region was executed

Synchronizations Total number of MPI synchronization operations
that were executed

Communications The total number of MPI communication
operations, excluding calls transferring no data
(which are considered Synchronizations)

Bytes transferred The total number of bytes that were sent and received
in MPI communication operations. It depends on the
MPI internal implementation.

http://www2.fz-juelich.de/jsc/datapool/scalasca/scalasca_patterns-1.4.html

54 / 154

Metrics 2/2

MPI file operations Number of MPI file operations of any type.

MPI file bytes transferred Number of bytes read or written in MPI file
operations of any type.

Computational imbalance This simple heuristic allows to identify
computational load imbalances and is
calculated for each (call-path,
process/thread) pair.

http://www2.fz-juelich.de/jsc/datapool/scalasca/scalasca_patterns-1.4.html

55 / 154

Metrics – Time, pure MPI code 1/2

56 / 154

Metrics – Time, pure MPI code 2/2

57 / 154

Pure MPI code – Communications

58 / 154

Pure MPI code – Synchronizations

59 / 154

Pure MPI code – Bytes transferred

60 / 154

Metrics – Time, MPI-OpenMP code

61 / 154

Time, OpenMP part of the code

62 / 154

Hardware counters measurement

• Hardware counter measurement is disabled by default

• Can be enabled using:
• the environment variable EPK_METRICS in the jobscript (scalasca -analyze)
• scalasca -analyze -m <metric_name> <application-launch-command>

• Set EPK_METRICS to a colon-separated list of counter names, or a
predefined platform-specific group

• Metric names can be chosen from the list contained in file
$SCALASCA_HOME/doc/METRICS.SPEC

63 / 154

Manual source-code instrumentation

• Region or phase annotations manually inserted in source file can augmented
or substiture automatic instrumentation, and can improve the structure of
analysis reports to make them more readly comprehensible

• These annotations can be used to mark any sequence or block of
statements, such as functions, phases, loop nests, etc., and can be nested,
provided that every enter has matching exit

• If automatic compiler instrumentation is not used, it is typically desiderable to
manually instrument at least the main function/program and perhaps its
major phases (e.g. Initialization, core/body, finalization).

64 / 154

User instrumentation API – C/C++

#include "epik_user.h"
...
void foo(){

... ...
EPIK_FUNC_START();
... ... // executable statements
if(...){
EPIK_FUNC_END();
return;

} else {
EPIK_USER_REG (r_name, "region");
EPIK_USER_START (r_name);
... ...
... ...
EPIK_USER_END (r_name);

}
... ... // executable statements;
EPIK_FUNC_END();
return;

}

65 / 154

User instrumentation API – Fortran

#include "epik_user.inc"
...
subroutine bar()

EPIK_FUNC_REG("bar")
EPIK_USER_REG (r_name, "region")
... ... ! local declarations
EPIK_FUNC_START();
... ... ! executable statements
if(...) then
EPIK_FUNC_END()
return

else
EPIK_USER_START (r_name)
... ...
EPIK_USER_END (r_name)

endif
... ... ! executable statements
EPIK_FUNC_END()
return

end subroutine bar

66 / 154

Outline

1 Compiler Flags

2 Profiling

3 Valgrind

4 Debugging

67 / 154

Valgrind

• Open Source Software, available on Linux for x86 and PowerPc processors.
• Interprets the object code, not needed to modify object files or executable,

non require special compiler flags, recompiling, or relinking the program.
• Command is simply added at the shell command line.
• No program source is required (black-box analysis).

www.valgrind.org

68 / 154

Valgrind:tools

• Memcheck: a memory checker.
• Callgrind: a runtime profiler.
• Cachegrind: a cache profiler.
• Helgrind: find race conditions.
• Massif: a memory profiler.

69 / 154

Why should use I use Valgrind?

• Valgrind will tell you about tough to find bugs.
• Valgrind is very through.
• You may be tempted to think that Valgrind is too picky, since your program

may seem to work even when valgrind complains. It is users’ experience that
fixing ALL Valgrind complaints will save you time in the long run.

But...
Valgrind is kind-of like a virtual x86 interpeter. So your program will run 10 to
30 times slower than normal.
Valgrind won’t check static arrays.

70 / 154

Why should use I use Valgrind?

• Valgrind will tell you about tough to find bugs.
• Valgrind is very through.
• You may be tempted to think that Valgrind is too picky, since your program

may seem to work even when valgrind complains. It is users’ experience that
fixing ALL Valgrind complaints will save you time in the long run.

But...
Valgrind is kind-of like a virtual x86 interpeter. So your program will run 10 to
30 times slower than normal.
Valgrind won’t check static arrays.

70 / 154

Use of uninitialized memory:test1.c

• Local Variables that have not been initialized.
• The contents of malloc’s blocks, before writing there.

1 #include <stdlib.h>
2 i n t main()
3 {
4 i n t p,t,b[10];
5 i f (p==5) ERROR
6 t=p+1;
7 b[p]=100; ERROR
8 return 0;
9 }

71 / 154

Use of uninitialized memory:test1.c

• Local Variables that have not been initialized.
• The contents of malloc’s blocks, before writing there.

1 #include <stdlib.h>
2 i n t main()
3 {
4 i n t p,t,b[10];
5 i f (p==5) ERROR
6 t=p+1;
7 b[p]=100; ERROR
8 return 0;
9 }

71 / 154

Use of uninitialized memory:test1.c

• Local Variables that have not been initialized.
• The contents of malloc’s blocks, before writing there.

1 #include <stdlib.h>
2 i n t main()
3 {
4 i n t p,t,b[10];
5 i f (p==5) ERROR
6 t=p+1;
7 b[p]=100; ERROR
8 return 0;
9 }

71 / 154

Valgrind output

ruggiero@shiva:> valgrind --tool=memcheck --leak-check=full ./t1

==7879== Memcheck, a memory error detector.
....

==7879== Conditional jump or move depends on uninitialised value(s)
==7879== at 0x8048399: main (test1.c:5)
==7879==
==7879== Use of uninitialised value of size 4
==7879== at 0x80483A7: main (test1.c:7)
==7879==
==7879== Invalid write of size 4
==7879== at 0x80483A7: main (test1.c:7)
==7879== Address 0xCEF8FE44 is not stack’d, malloc’d or (recently) free’d
==7879==
==7879== Process terminating with default action of signal 11 (SIGSEGV)
==7879== Access not within mapped region at address 0xCEF8FE44
==7879== at 0x80483A7: main (test1.c:7)
==7879==
==7879== ERROR SUMMARY: 3 errors from 3 contexts (suppressed: 3 from 1)
==7879== malloc/free: in use at exit: 0 bytes in 0 blocks.
==7879== malloc/free: 0 allocs, 0 frees, 0 bytes allocated.
==7879== For counts of detected errors, rerun with: -v
==7879== All heap blocks were freed -- no leaks are possible.
Segmentation fault

72 / 154

Valgrind output

ruggiero@shiva:> valgrind --tool=memcheck --leak-check=full ./t1

==7879== Memcheck, a memory error detector.
....

==7879== Conditional jump or move depends on uninitialised value(s)
==7879== at 0x8048399: main (test1.c:5)
==7879==
==7879== Use of uninitialised value of size 4
==7879== at 0x80483A7: main (test1.c:7)
==7879==
==7879== Invalid write of size 4
==7879== at 0x80483A7: main (test1.c:7)
==7879== Address 0xCEF8FE44 is not stack’d, malloc’d or (recently) free’d
==7879==
==7879== Process terminating with default action of signal 11 (SIGSEGV)
==7879== Access not within mapped region at address 0xCEF8FE44
==7879== at 0x80483A7: main (test1.c:7)
==7879==
==7879== ERROR SUMMARY: 3 errors from 3 contexts (suppressed: 3 from 1)
==7879== malloc/free: in use at exit: 0 bytes in 0 blocks.
==7879== malloc/free: 0 allocs, 0 frees, 0 bytes allocated.
==7879== For counts of detected errors, rerun with: -v
==7879== All heap blocks were freed -- no leaks are possible.
Segmentation fault

72 / 154

Illegal read/write test2.c

1 #include <stdlib.h>
2 i n t main()
3 {
4 i n t *p,i,a;
5 p=malloc(10*sizeof(i n t));
6 p[11]=1; ERROR
7 a=p[11]; ERROR
8 free(p);
9 return 0;

10 }

73 / 154

Illegal read/write test2.c

1 #include <stdlib.h>
2 i n t main()
3 {
4 i n t *p,i,a;
5 p=malloc(10*sizeof(i n t));
6 p[11]=1; ERROR
7 a=p[11]; ERROR
8 free(p);
9 return 0;

10 }

73 / 154

Illegal read/write: Valgrind output

ruggiero@shiva:> valgrind --tool=memcheck --leak-check=full ./t2

.....
==8081== Invalid write of size 4
==8081== at 0x804840A: main (test2.c:6)
==8081== Address 0x417B054 is 4 bytes after a block of size 40 alloc’d
==8081== at 0x40235B5: malloc (in /usr/lib/valgrind/x86-linux/vgpreload_memcheck.so)
==8081== by 0x8048400: main (test2.c:5)
==8081==
==8081== Invalid read of size 4
==8081== at 0x8048416: main (test2.c:7)
==8081== Address 0x417B054 is 4 bytes after a block of size 40 alloc’d
==8081== at 0x40235B5: malloc (in /usr/lib/valgrind/x86-linux/vgpreload_memcheck.so)
==8081== by 0x8048400: main (test2.c:5)
==8081==
==8081== ERROR SUMMARY: 2 errors from 2 contexts (suppressed: 3 from 1)
==8081== malloc/free: in use at exit: 0 bytes in 0 blocks.
==8081== malloc/free: 1 allocs, 1 frees, 40 bytes allocated.
==8081== For counts of detected errors, rerun with: -v
==8081== All heap blocks were freed -- no leaks are possible.

74 / 154

Invalid free:test3.c

1 #include <stdlib.h>
2 i n t main()
3 {
4 i n t *p,i;
5 p=malloc(10*sizeof(i n t));
6 for(i=0;i<10;i++)
7 p[i]=i;
8 free(p);
9 free(p); ERROR

10 return 0;
11 }

75 / 154

Invalid free:test3.c

1 #include <stdlib.h>
2 i n t main()
3 {
4 i n t *p,i;
5 p=malloc(10*sizeof(i n t));
6 for(i=0;i<10;i++)
7 p[i]=i;
8 free(p);
9 free(p); ERROR

10 return 0;
11 }

75 / 154

Invalid free: Valgrind output

ruggiero@shiva:> valgrind --tool=memcheck --leak-check=full ./t3

.....
==8208== Invalid free() / delete / delete[]
==8208== at 0x40231CF: free (in /usr/lib/valgrind/x86-linux/vgpreload_memcheck.so)
==8208== by 0x804843C: main (test3.c:9)
==8208== Address 0x417B028 is 0 bytes inside a block of size 40 free’d
==8208== at 0x40231CF: free (in /usr/lib/valgrind/x86-linux/vgpreload_memcheck.so)
==8208== by 0x8048431: main (test3.c:8)
==8208==
==8208== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 3 from 1)
==8208== malloc/free: in use at exit: 0 bytes in 0 blocks.
==8208== malloc/free: 1 allocs, 2 frees, 40 bytes allocated.
==8208== For counts of detected errors, rerun with: -v
==8208== All heap blocks were freed -- no leaks are possible.

76 / 154

Mismatched use of functions:test4.cpp

• If allocated with malloc,calloc,realloc,valloc or memalign, you must
deallocate with free.

• If allocated with new[], you must dealloacate with delete[].
• If allocated with new, you must deallocate with delete.

1 #include <stdlib.h>
2 i n t main()
3 {
4 i n t *p,i;
5 p=(i n t*)malloc(10*sizeof(i n t));
6 for(i=0;i<10;i++)
7 p[i]=i;
8 delete(p); ERROR
9 return 0;

10 }

77 / 154

Mismatched use of functions:test4.cpp

• If allocated with malloc,calloc,realloc,valloc or memalign, you must
deallocate with free.

• If allocated with new[], you must dealloacate with delete[].
• If allocated with new, you must deallocate with delete.

1 #include <stdlib.h>
2 i n t main()
3 {
4 i n t *p,i;
5 p=(i n t*)malloc(10*sizeof(i n t));
6 for(i=0;i<10;i++)
7 p[i]=i;
8 delete(p); ERROR
9 return 0;

10 }

77 / 154

Mismatched use of functions:test4.cpp

• If allocated with malloc,calloc,realloc,valloc or memalign, you must
deallocate with free.

• If allocated with new[], you must dealloacate with delete[].
• If allocated with new, you must deallocate with delete.

1 #include <stdlib.h>
2 i n t main()
3 {
4 i n t *p,i;
5 p=(i n t*)malloc(10*sizeof(i n t));
6 for(i=0;i<10;i++)
7 p[i]=i;
8 delete(p); ERROR
9 return 0;

10 }

77 / 154

Mismatched use of functions: Valgrind output

ruggiero@shiva:> valgrind --tool=memcheck --leak-check=full ./t4

.....
==8330== Mismatched free() / delete / delete []
==8330== at 0x4022EE6: operator delete(void*) (in /usr/lib/valgrind/x86-linux/vgpreload_memcheck.so)
==8330==by 0x80484F1: main (test4.c:8)
==8330==Address 0x4292028 is 0 bytes inside a block of size 40 alloc’d
==8330==at 0x40235B5: malloc (in /usr/lib/valgrind/x86-linux/vgpreload_memcheck.so)
==8330==by 0x80484C0: main (test4.c:5)
==8330==
==8330==ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 3 from 1)
==8330==malloc/free: in use at exit: 0 bytes in 0 blocks.
==8330==malloc/free: 1 allocs, 1 frees, 40 bytes allocated.
==8330==For counts of detected errors, rerun with: -v
==8330==All heap blocks were freed -- no leaks are possible.

78 / 154

Invalid system call parameter:test5.c

1 #include <stdlib.h>
2 #include <unistd.h>
3 i n t main()
4 {
5 i n t *p;
6 p=malloc(10);
7 read(0,p,100); ERROR
8 free(p);
9 return 0;

10 }

79 / 154

Invalid system call parameter:test5.c

1 #include <stdlib.h>
2 #include <unistd.h>
3 i n t main()
4 {
5 i n t *p;
6 p=malloc(10);
7 read(0,p,100); ERROR
8 free(p);
9 return 0;

10 }

79 / 154

Invalid system call parameter: Valgrind output

ruggiero@shiva:> valgrind --tool=memcheck --leak-check=full ./t5

...
==18007== Syscall param read(buf) points to unaddressable byte(s)
==18007== at 0x4EEC240: __read_nocancel (in /lib64/libc-2.5.so)
==18007== by 0x40056F: main (test5.c:7)
==18007== Address 0x517d04a is 0 bytes after a block of size 10 alloc’d
==18007== at 0x4C21168: malloc (vg_replace_malloc.c:236)
==18007== by 0x400555: main (test5.c:6)
...

80 / 154

Memory leak detection:test6.c

1 #include <stdlib.h>
2 i n t main()
3 {
4 i n t *p,i;
5 p=malloc(5*sizeof(i n t));
6 for(i=0; i<5;i++)
7 p[i]=i;
8 free(p);
9 return 0;

10 }

81 / 154

Memory leak detection:test6.c

1 #include <stdlib.h>
2 i n t main()
3 {
4 i n t *p,i;
5 p=malloc(5*sizeof(i n t));
6 for(i=0; i<5;i++)
7 p[i]=i;
8 free(p);
9 return 0;

10 }

81 / 154

Memory leak detection: Valgrind output

ruggiero@shiva:> valgrind --tool=memcheck --leak-check=full ./t6

.....
==8237== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 3 from 1)
==8237== malloc/free: in use at exit: 20 bytes in 1 blocks.
==8237== malloc/free: 1 allocs, 0 frees, 20 bytes allocated.
==8237== For counts of detected errors, rerun with: -v
==8237== searching for pointers to 1 not-freed blocks.
==8237== checked 65,900 bytes.
==8237==
==8237== 20 bytes in 1 blocks are definitely lost in loss record 1 of 1
==8237== at 0x40235B5: malloc (in /usr/lib/valgrind/x86-linux/vgpreload_memcheck.so)
==8237== by 0x80483D0: main (test6.c:5)
==8237==
==8237== LEAK SUMMARY:
==8237== definitely lost: 20 bytes in 1 blocks.
==8237== possibly lost: 0 bytes in 0 blocks.
==8237== still reachable: 0 bytes in 0 blocks.
==8237== suppressed: 0 bytes in 0 blocks.

82 / 154

What won’t Valgrind find?

1 i n t main()
2 {
3 char x[10];
4 x[11]=’a’;
5 }

• Valgrind doesn’t perform bound checking on static arrays (allocated on
stack).

• Solution for testing purposes is simply to change static arrays into
dinamically allocated memory taken from the heap, where you will get
bounds-checking, though this could be a message of unfreed memory.

83 / 154

What won’t Valgrind find?

1 i n t main()
2 {
3 char x[10];
4 x[11]=’a’;
5 }

• Valgrind doesn’t perform bound checking on static arrays (allocated on
stack).

• Solution for testing purposes is simply to change static arrays into
dinamically allocated memory taken from the heap, where you will get
bounds-checking, though this could be a message of unfreed memory.

83 / 154

sum.c: source

1 #include <stdio.h>
2 #include <stdlib.h>
3 i n t main (i n t argc, char* argv[]) {
4 const i n t size=10;
5 i n t n, sum=0;
6 i n t* A = (i n t*)malloc(sizeof(i n t)*size);
7
8 for(n=size; n>0; n--)
9 A[n] = n;

10 for(n=0; n<size; n++)
11 sum+=A[n];
12 printf("sum=%d\n", sum);
13 return 0;
14 }

84 / 154

sum.c: compilation and run

ruggiero@shiva:~> gcc -O0 -g -fbounds-check -ftrapv sum.c

ruggiero@shiva:~> ./a.out

sum=45

85 / 154

Valgrind:example

ruggiero@shiva:~> valgrind --leak-check=full --tool=memcheck ./a.out

==21579== Memcheck, a memory error detector.
...
==21791==Invalid write of size 4
==21791==at 0x804842A: main (sum.c:9)
==21791==Address 0x417B050 is 0 bytes after a block of size 40 alloc’d
at 0x40235B5: malloc (in /usr/lib/valgrind/x86-linux/vgpreload_memcheck
.so)
==21791==by 0x8048410: main (sum.c:6)
==21791==Use of uninitialised value of size 4
==21791== at 0x408685B: _itoa_word (in /lib/libc-2.5.so)
==21791==by 0x408A581: vfprintf (in /lib/libc-2.5.so)
==21791==by 0x4090572: printf (in /lib/libc-2.5.so)
==21791==by 0x804846B: main (sum.c:12)
==21791==
==21791==Conditional jump or move depends on uninitialised value(s)
==21791==at 0x4086863: _itoa_word (in /lib/libc-2.5.so)
==21791==by 0x408A581: vfprintf (in /lib/libc-2.5.so)
==21791==by 0x4090572: printf (in /lib/libc-2.5.so)
==21791==by 0x804846B: main (sum.c:12)
==21791==40 bytes in 1 blocks are definitely lost in loss record 1 of 1
at 0x40235B5: malloc (in /usr/lib/valgrind/x86-linux/vgpreload_memcheck
.so)
==21791==by 0x8048410: main (sum.c:6)
==21791==

86 / 154

Outline

1 Compiler Flags

2 Profiling

3 Valgrind

4 Debugging
GDB
Totalview
Other debbugers...
addr2line utility (on a Blue Gene system)

87 / 154

Outline

1 Compiler Flags

2 Profiling

3 Valgrind

4 Debugging
GDB
Totalview
Other debbugers...
addr2line utility (on a Blue Gene system)

88 / 154

What is gdb?

• The GNU Project debugger, is an open-source debugger.
• Protected by GNU General Public License (GPL).
• Runs on many Unix-like systems.
• Was first written by Richard Stallmann in 1986 as part of his GNU System.
• Is an Workstation Application Code extremely powerful all-purpose

debugger.
• Its text-based user interface can be used to debug programs written in C,

C++, Pascal, Fortran, and several other languages, including the assembly
language for every micro-pro cessor that GNU supports.

• www.gnu.org/software/gdb

89 / 154

prime-numbers finding program

• Print a list of all primes which are less than or equal to the user-supplied
upper bound UpperBound .

• See if J divides K ≤ UpperBound , for all values J which are
• themselves prime (no need to try J if it is nonprime)
• less than or equal to sqrt(K) (if K has a divisor larger than this square root, it

must also have a smaller one, so no need to check for larger ones).

• Prime[I] will be 1 if I is prime, 0 otherwise.

90 / 154

Main.c

1 #include <stdio.h>
2 #define MaxPrimes 50
3 i n t Prime[MaxPrimes],UpperBound;
4 i n t main()
5 {
6 i n t N;
7 printf("enter upper bound\n");
8 scanf("%d",UpperBound);
9 Prime[2] = 1;

10 for (N = 3; N <= UpperBound; N += 2)
11 CheckPrime(N);
12 i f (Prime[N]) printf("%d is a prime\n",N);
13 return 0;
14 }

91 / 154

CheckPrime.c

1 #define MaxPrimes 50
2 extern i n t Prime[MaxPrimes];
3 void CheckPrime(i n t K)
4 {
5 i n t J; J = 2;
6 while (1) {
7 i f (Prime[J] == 1)
8 i f (K % J == 0) {
9 Prime[K] = 0;

10 return;
11 }
12 J++;
13 }
14 Prime[K] = 1;
15 }

92 / 154

Compilation and run

<ruggiero@matrix2 ~>gcc Main.c CheckPrime.c -O3 -o trova_primi

<ruggiero@matrix2 ~> ./trova_primi

enter upper bound

20

Segmentation fault

93 / 154

Compilation and run

<ruggiero@matrix2 ~>gcc Main.c CheckPrime.c -O3 -o trova_primi

<ruggiero@matrix2 ~> ./trova_primi

enter upper bound

20

Segmentation fault

93 / 154

Compilation and run

<ruggiero@matrix2 ~>gcc Main.c CheckPrime.c -O3 -o trova_primi

<ruggiero@matrix2 ~> ./trova_primi

enter upper bound

20

Segmentation fault

93 / 154

Compilation and run

<ruggiero@matrix2 ~>gcc Main.c CheckPrime.c -O3 -o trova_primi

<ruggiero@matrix2 ~> ./trova_primi

enter upper bound

20

Segmentation fault

93 / 154

Compilation and run

<ruggiero@matrix2 ~>gcc Main.c CheckPrime.c -O3 -o trova_primi

<ruggiero@matrix2 ~> ./trova_primi

enter upper bound

20

Segmentation fault

93 / 154

Compilation options for gdb

• You will need to compile your program with the appropriate flag to enable
generation of symbolic debug information, the -g option is used for this.

• Don’t compile your program with optimization flags while you are debugging
it.
Compiler optimizations can "rewrite" your program and produce machine
code that doesn’t necessarily match your source code.
Compiler optimizations may lead to:

• Misleading debugger behaviour.
• Some variables you declared may not exist at all
• some statements may execute in different places because they were moved out of

loops
• Obscure the bug.

94 / 154

Lower optimization level

• When your program has crashed, disable or lower optimization to see if the
bug disappears.
(optimization levels are not comparable between compilers, not even -O0).

• If the bug persists =⇒ you can be quite sure there’s something wrong in your
application.

• If the bug disappears,without a serious performance penalty =⇒ send the
bug to your computing center and continue your simulations.

• But your program may still contain a bug that simply doesn’t show up at lower
optimization =⇒ have some checks to verify the correctness of your code.

95 / 154

Lower optimization level

• When your program has crashed, disable or lower optimization to see if the
bug disappears.
(optimization levels are not comparable between compilers, not even -O0).

• If the bug persists =⇒ you can be quite sure there’s something wrong in your
application.

• If the bug disappears,without a serious performance penalty =⇒ send the
bug to your computing center and continue your simulations.

• But your program may still contain a bug that simply doesn’t show up at lower
optimization =⇒ have some checks to verify the correctness of your code.

95 / 154

Starting gdb

<ruggiero@matrix2 ~>gcc Main.c CheckPrime.c -g -O0 -o trova_primi

<ruggiero@matrix2 ~>gdb trova_primi

GNU gdb (GDB) Red Hat Enterprise Linux (7.0.1-23.el5_5.1)
Copyright (C) 2009 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "x86_64-redhat-linux-gnu".
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.

(gdb)

96 / 154

Starting gdb

<ruggiero@matrix2 ~>gcc Main.c CheckPrime.c -g -O0 -o trova_primi

<ruggiero@matrix2 ~>gdb trova_primi

GNU gdb (GDB) Red Hat Enterprise Linux (7.0.1-23.el5_5.1)
Copyright (C) 2009 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "x86_64-redhat-linux-gnu".
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.

(gdb)

96 / 154

Starting gdb

<ruggiero@matrix2 ~>gcc Main.c CheckPrime.c -g -O0 -o trova_primi

<ruggiero@matrix2 ~>gdb trova_primi

GNU gdb (GDB) Red Hat Enterprise Linux (7.0.1-23.el5_5.1)
Copyright (C) 2009 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "x86_64-redhat-linux-gnu".
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.

(gdb)

96 / 154

gdb: Basic commands

• run (r): start debugged program.

• help (h): print list of commands.

• she: execute the rest of the line as a shell command.

• where, backtrace (bt): print a backtrace of entire stack.

• kill (k): kill the child process in which program is running under gdb.

• list (l) linenum: print lines centered around line number lineum in the current
source file.

• quit(q): exit gdb.

97 / 154

prime-number finding program

(gdb) r

Starting program: trova_primi
enter upper bound

20

Program received signal SIGSEGV, Segmentation fault.
0xd03733d4 in number () from /usr/lib/libc.a(shr.o)

(gdb) where

#0 0x0000003faa258e8d in _IO_vfscanf_internal () from /lib64/libc.so.6
#1 0x0000003faa25ee7c in scanf () from /lib64/libc.so.6
#2 0x000000000040054f in main () at Main.c:8

98 / 154

prime-number finding program

(gdb) r

Starting program: trova_primi
enter upper bound

20

Program received signal SIGSEGV, Segmentation fault.
0xd03733d4 in number () from /usr/lib/libc.a(shr.o)

(gdb) where

#0 0x0000003faa258e8d in _IO_vfscanf_internal () from /lib64/libc.so.6
#1 0x0000003faa25ee7c in scanf () from /lib64/libc.so.6
#2 0x000000000040054f in main () at Main.c:8

98 / 154

prime-number finding program

(gdb) r

Starting program: trova_primi
enter upper bound

20

Program received signal SIGSEGV, Segmentation fault.
0xd03733d4 in number () from /usr/lib/libc.a(shr.o)

(gdb) where

#0 0x0000003faa258e8d in _IO_vfscanf_internal () from /lib64/libc.so.6
#1 0x0000003faa25ee7c in scanf () from /lib64/libc.so.6
#2 0x000000000040054f in main () at Main.c:8

98 / 154

prime-number finding program

(gdb) r

Starting program: trova_primi
enter upper bound

20

Program received signal SIGSEGV, Segmentation fault.
0xd03733d4 in number () from /usr/lib/libc.a(shr.o)

(gdb) where

#0 0x0000003faa258e8d in _IO_vfscanf_internal () from /lib64/libc.so.6
#1 0x0000003faa25ee7c in scanf () from /lib64/libc.so.6
#2 0x000000000040054f in main () at Main.c:8

98 / 154

prime-number finding program

(gdb) r

Starting program: trova_primi
enter upper bound

20

Program received signal SIGSEGV, Segmentation fault.
0xd03733d4 in number () from /usr/lib/libc.a(shr.o)

(gdb) where

#0 0x0000003faa258e8d in _IO_vfscanf_internal () from /lib64/libc.so.6
#1 0x0000003faa25ee7c in scanf () from /lib64/libc.so.6
#2 0x000000000040054f in main () at Main.c:8

98 / 154

prime-number finding program

(gdb) list Main.c:8

3 int Prime[MaxPrimes],UpperBound;
5 main()
6 { int N;
7 printf("enter upper bound\n");
8 scanf("%d",UpperBound);
9 Prime[2] = 1;
10 for (N = 3; N <= UpperBound; N += 2)
11 CheckPrime(N);
12 if (Prime[N]) printf("%d is a prime\n",N);

99 / 154

prime-number finding program

(gdb) list Main.c:8

3 int Prime[MaxPrimes],UpperBound;
5 main()
6 { int N;
7 printf("enter upper bound\n");
8 scanf("%d",UpperBound);
9 Prime[2] = 1;
10 for (N = 3; N <= UpperBound; N += 2)
11 CheckPrime(N);
12 if (Prime[N]) printf("%d is a prime\n",N);

99 / 154

Main.c :new version

1 #include <stdio.h>
2 #define MaxPrimes 50
3 i n t Prime[MaxPrimes],UpperBound;
4 i n t main()
5 {
6 i n t N;
7 printf("enter upper bound\n");
8 scanf("%d", &UpperBound);
9 Prime[2] = 1;

10 for (N = 3; N <= UpperBound; N += 2)
11 CheckPrime(N);
12 i f (Prime[N]) printf("%d is a prime\n",N);
13 return 0;
14 }

In other shell COMPILATION

100 / 154

Main.c :new version

1 #include <stdio.h>
2 #define MaxPrimes 50
3 i n t Prime[MaxPrimes],UpperBound;
4 i n t main()
5 {
6 i n t N;
7 printf("enter upper bound\n");
8 scanf("%d", &UpperBound);
9 Prime[2] = 1;

10 for (N = 3; N <= UpperBound; N += 2)
11 CheckPrime(N);
12 i f (Prime[N]) printf("%d is a prime\n",N);
13 return 0;
14 }

In other shell COMPILATION

100 / 154

Main.c :new version

1 #include <stdio.h>
2 #define MaxPrimes 50
3 i n t Prime[MaxPrimes],UpperBound;
4 i n t main()
5 {
6 i n t N;
7 printf("enter upper bound\n");
8 scanf("%d", &UpperBound);
9 Prime[2] = 1;

10 for (N = 3; N <= UpperBound; N += 2)
11 CheckPrime(N);
12 i f (Prime[N]) printf("%d is a prime\n",N);
13 return 0;
14 }

In other shell COMPILATION

100 / 154

prime-number finding program

(gdb) kill

Kill the program being debugged? (y or n) y

(gdb) run

Starting program: trova_primi
enter upper bound

20

Program received signal SIGSEGV, Segmentation fault.
0x00000000004005bb in CheckPrime (K=0x3) at CheckPrime.c:7
7 if (Prime[J] == 1)

101 / 154

prime-number finding program

(gdb) kill

Kill the program being debugged? (y or n) y

(gdb) run

Starting program: trova_primi
enter upper bound

20

Program received signal SIGSEGV, Segmentation fault.
0x00000000004005bb in CheckPrime (K=0x3) at CheckPrime.c:7
7 if (Prime[J] == 1)

101 / 154

prime-number finding program

(gdb) kill

Kill the program being debugged? (y or n) y

(gdb) run

Starting program: trova_primi
enter upper bound

20

Program received signal SIGSEGV, Segmentation fault.
0x00000000004005bb in CheckPrime (K=0x3) at CheckPrime.c:7
7 if (Prime[J] == 1)

101 / 154

prime-number finding program

(gdb) kill

Kill the program being debugged? (y or n) y

(gdb) run

Starting program: trova_primi
enter upper bound

20

Program received signal SIGSEGV, Segmentation fault.
0x00000000004005bb in CheckPrime (K=0x3) at CheckPrime.c:7
7 if (Prime[J] == 1)

101 / 154

prime-number finding program

(gdb) p J

$1 = 1008

gdb l CheckPrime.c:7

2 extern int Prime[MaxPrimes];
3 CheckPrime(int K)
4 {
5 int J; J = 2;
6 while (1) {
7 if (Prime[J] == 1)
8 if (K % J == 0) {
9 Prime[K] = 0;
10 return;
11 }

102 / 154

prime-number finding program

(gdb) p J

$1 = 1008

gdb l CheckPrime.c:7

2 extern int Prime[MaxPrimes];
3 CheckPrime(int K)
4 {
5 int J; J = 2;
6 while (1) {
7 if (Prime[J] == 1)
8 if (K % J == 0) {
9 Prime[K] = 0;
10 return;
11 }

102 / 154

prime-number finding program

(gdb) p J

$1 = 1008

gdb l CheckPrime.c:7

2 extern int Prime[MaxPrimes];
3 CheckPrime(int K)
4 {
5 int J; J = 2;
6 while (1) {
7 if (Prime[J] == 1)
8 if (K % J == 0) {
9 Prime[K] = 0;
10 return;
11 }

102 / 154

prime-number finding program

(gdb) p J

$1 = 1008

gdb l CheckPrime.c:7

2 extern int Prime[MaxPrimes];
3 CheckPrime(int K)
4 {
5 int J; J = 2;
6 while (1) {
7 if (Prime[J] == 1)
8 if (K % J == 0) {
9 Prime[K] = 0;
10 return;
11 }

102 / 154

CheckPrime.c:new version

1 #define MaxPrimes 50
2 extern i n t Prime[MaxPrimes];
3 void CheckPrime(i n t K)
4 {
5 i n t J; J = 2;
6 while (1){for (J = 2; J*J <= K; J++)
7 i f (Prime[J] == 1)
8 i f (K % J == 0) {
9 Prime[K] = 0;

10 return;
11 }
12 J++;
13 }
14 Prime[K] = 1;
15 }

103 / 154

CheckPrime.c:new version

1 #define MaxPrimes 50
2 extern i n t Prime[MaxPrimes];
3 void CheckPrime(i n t K)
4 {
5 i n t J; J = 2;
6 while (1){for (J = 2; J*J <= K; J++)
7 i f (Prime[J] == 1)
8 i f (K % J == 0) {
9 Prime[K] = 0;

10 return;
11 }
12 J++;
13 }
14 Prime[K] = 1;
15 }

103 / 154

prime-number finding program

In other shell COMPILATION

(gdb)

Kill the program being debugged? (y or n) y

(gdb) run

Starting program: trova_primi
enter upper bound

20

Program exited normally.

104 / 154

prime-number finding program

In other shell COMPILATION

(gdb)

Kill the program being debugged? (y or n) y

(gdb) run

Starting program: trova_primi
enter upper bound

20

Program exited normally.

104 / 154

prime-number finding program

In other shell COMPILATION

(gdb)

Kill the program being debugged? (y or n) y

(gdb) run

Starting program: trova_primi
enter upper bound

20

Program exited normally.

104 / 154

prime-number finding program

In other shell COMPILATION

(gdb)

Kill the program being debugged? (y or n) y

(gdb) run

Starting program: trova_primi
enter upper bound

20

Program exited normally.

104 / 154

prime-number finding program

In other shell COMPILATION

(gdb)

Kill the program being debugged? (y or n) y

(gdb) run

Starting program: trova_primi
enter upper bound

20

Program exited normally.

104 / 154

gdb commands

(gdb) help break

Set breakpoint at specified line or function.
break [LOCATION] [thread THREADNUM] [if CONDITION]
LOCATION may be a line number, function name, or "*" and an address.
If a line number is specified, break at start of code for that line.
If a function is specified, break at start of code for that function.
If an address is specified, break at that exact address.
.........
Multiple breakpoints at one place are permitted,
and useful if conditional.
.........

(gdb) help display

Print value of expression EXP each time the program stops.
.........
Use "undisplay" to cancel display requests previously made.

105 / 154

gdb commands

(gdb) help break

Set breakpoint at specified line or function.
break [LOCATION] [thread THREADNUM] [if CONDITION]
LOCATION may be a line number, function name, or "*" and an address.
If a line number is specified, break at start of code for that line.
If a function is specified, break at start of code for that function.
If an address is specified, break at that exact address.
.........
Multiple breakpoints at one place are permitted,
and useful if conditional.
.........

(gdb) help display

Print value of expression EXP each time the program stops.
.........
Use "undisplay" to cancel display requests previously made.

105 / 154

gdb commands

(gdb) help break

Set breakpoint at specified line or function.
break [LOCATION] [thread THREADNUM] [if CONDITION]
LOCATION may be a line number, function name, or "*" and an address.
If a line number is specified, break at start of code for that line.
If a function is specified, break at start of code for that function.
If an address is specified, break at that exact address.
.........
Multiple breakpoints at one place are permitted,
and useful if conditional.
.........

(gdb) help display

Print value of expression EXP each time the program stops.
.........
Use "undisplay" to cancel display requests previously made.

105 / 154

gdb commands

(gdb) help break

Set breakpoint at specified line or function.
break [LOCATION] [thread THREADNUM] [if CONDITION]
LOCATION may be a line number, function name, or "*" and an address.
If a line number is specified, break at start of code for that line.
If a function is specified, break at start of code for that function.
If an address is specified, break at that exact address.
.........
Multiple breakpoints at one place are permitted,
and useful if conditional.
.........

(gdb) help display

Print value of expression EXP each time the program stops.
.........
Use "undisplay" to cancel display requests previously made.

105 / 154

gdb commands

(gdb) help next

Step program, proceeding through subroutine calls.
Like the "step" command as long as subroutine calls do not happen;
when they do, the call is treated as one instruction.
Argument N means do this N times
(or till program stops for another reason).

(gdb) help step

Step program until it reaches a different source line.
Argument N means do this N times
(or till program stops for another reason).

(gdb) break Main.c:1

Breakpoint 1 at 0x8048414: file Main.c, line 1.

106 / 154

gdb commands

(gdb) help next

Step program, proceeding through subroutine calls.
Like the "step" command as long as subroutine calls do not happen;
when they do, the call is treated as one instruction.
Argument N means do this N times
(or till program stops for another reason).

(gdb) help step

Step program until it reaches a different source line.
Argument N means do this N times
(or till program stops for another reason).

(gdb) break Main.c:1

Breakpoint 1 at 0x8048414: file Main.c, line 1.

106 / 154

gdb commands

(gdb) help next

Step program, proceeding through subroutine calls.
Like the "step" command as long as subroutine calls do not happen;
when they do, the call is treated as one instruction.
Argument N means do this N times
(or till program stops for another reason).

(gdb) help step

Step program until it reaches a different source line.
Argument N means do this N times
(or till program stops for another reason).

(gdb) break Main.c:1

Breakpoint 1 at 0x8048414: file Main.c, line 1.

106 / 154

gdb commands

(gdb) help next

Step program, proceeding through subroutine calls.
Like the "step" command as long as subroutine calls do not happen;
when they do, the call is treated as one instruction.
Argument N means do this N times
(or till program stops for another reason).

(gdb) help step

Step program until it reaches a different source line.
Argument N means do this N times
(or till program stops for another reason).

(gdb) break Main.c:1

Breakpoint 1 at 0x8048414: file Main.c, line 1.

106 / 154

prime-number finding program

(gdb) r

Starting program: trova_primi
Failed to read a valid object file image from memory.

Breakpoint 1, main () at Main.c:6
6 { int N;

(gdb) next

main () at Main.c:7
7 printf("enter upper bound\n");

107 / 154

prime-number finding program

(gdb) r

Starting program: trova_primi
Failed to read a valid object file image from memory.

Breakpoint 1, main () at Main.c:6
6 { int N;

(gdb) next

main () at Main.c:7
7 printf("enter upper bound\n");

107 / 154

prime-number finding program

(gdb) r

Starting program: trova_primi
Failed to read a valid object file image from memory.

Breakpoint 1, main () at Main.c:6
6 { int N;

(gdb) next

main () at Main.c:7
7 printf("enter upper bound\n");

107 / 154

prime-number finding program

(gdb) next

8 scanf("%d",&UpperBound);

(gdb) next

20

9 Prime[2] = 1;

(gdb) next

10 for (N = 3; N <= UpperBound; N += 2)

(gdb) next

11 CheckPrime(N);

108 / 154

prime-number finding program

(gdb) next

8 scanf("%d",&UpperBound);

(gdb) next

20

9 Prime[2] = 1;

(gdb) next

10 for (N = 3; N <= UpperBound; N += 2)

(gdb) next

11 CheckPrime(N);

108 / 154

prime-number finding program

(gdb) next

8 scanf("%d",&UpperBound);

(gdb) next

20

9 Prime[2] = 1;

(gdb) next

10 for (N = 3; N <= UpperBound; N += 2)

(gdb) next

11 CheckPrime(N);

108 / 154

prime-number finding program

(gdb) next

8 scanf("%d",&UpperBound);

(gdb) next

20

9 Prime[2] = 1;

(gdb) next

10 for (N = 3; N <= UpperBound; N += 2)

(gdb) next

11 CheckPrime(N);

108 / 154

prime-number finding program

(gdb) next

8 scanf("%d",&UpperBound);

(gdb) next

20

9 Prime[2] = 1;

(gdb) next

10 for (N = 3; N <= UpperBound; N += 2)

(gdb) next

11 CheckPrime(N);

108 / 154

prime-number finding program

(gdb) next

8 scanf("%d",&UpperBound);

(gdb) next

20

9 Prime[2] = 1;

(gdb) next

10 for (N = 3; N <= UpperBound; N += 2)

(gdb) next

11 CheckPrime(N);

108 / 154

prime-number finding program

(gdb) display N

1: N = 3

(gdb) step

CheckPrime (K=3) at CheckPrime.c:6
6 for (J = 2; J*J <= K; J++)

(gdb) next

12 Prime[K] = 1;

(gdb) next

13 }

109 / 154

prime-number finding program

(gdb) display N

1: N = 3

(gdb) step

CheckPrime (K=3) at CheckPrime.c:6
6 for (J = 2; J*J <= K; J++)

(gdb) next

12 Prime[K] = 1;

(gdb) next

13 }

109 / 154

prime-number finding program

(gdb) display N

1: N = 3

(gdb) step

CheckPrime (K=3) at CheckPrime.c:6
6 for (J = 2; J*J <= K; J++)

(gdb) next

12 Prime[K] = 1;

(gdb) next

13 }

109 / 154

prime-number finding program

(gdb) display N

1: N = 3

(gdb) step

CheckPrime (K=3) at CheckPrime.c:6
6 for (J = 2; J*J <= K; J++)

(gdb) next

12 Prime[K] = 1;

(gdb) next

13 }

109 / 154

prime-number finding program
(gdb) n

10 for (N = 3; N <= UpperBound; N += 2)
1: N = 3
}

(gdb) n

11 CheckPrime(N);
1: N = 5

(gdb) n

10 for (N = 3; N <= UpperBound; N += 2)
1: N = 5

(gdb) n

11 CheckPrime(N);
1: N = 7

110 / 154

prime-number finding program
(gdb) n

10 for (N = 3; N <= UpperBound; N += 2)
1: N = 3
}

(gdb) n

11 CheckPrime(N);
1: N = 5

(gdb) n

10 for (N = 3; N <= UpperBound; N += 2)
1: N = 5

(gdb) n

11 CheckPrime(N);
1: N = 7

110 / 154

prime-number finding program
(gdb) n

10 for (N = 3; N <= UpperBound; N += 2)
1: N = 3
}

(gdb) n

11 CheckPrime(N);
1: N = 5

(gdb) n

10 for (N = 3; N <= UpperBound; N += 2)
1: N = 5

(gdb) n

11 CheckPrime(N);
1: N = 7

110 / 154

prime-number finding program
(gdb) n

10 for (N = 3; N <= UpperBound; N += 2)
1: N = 3
}

(gdb) n

11 CheckPrime(N);
1: N = 5

(gdb) n

10 for (N = 3; N <= UpperBound; N += 2)
1: N = 5

(gdb) n

11 CheckPrime(N);
1: N = 7

110 / 154

prime-number finding program
(gdb) n

10 for (N = 3; N <= UpperBound; N += 2)
1: N = 3
}

(gdb) n

11 CheckPrime(N);
1: N = 5

(gdb) n

10 for (N = 3; N <= UpperBound; N += 2)
1: N = 5

(gdb) n

11 CheckPrime(N);
1: N = 7

110 / 154

prime-number finding program

(gdb) l Main.c:10

5 main()
6 { int N;
7 printf("enter upper bound\n");
8 scanf("%d",&UpperBound);
9 Prime[2] = 1;
10 for (N = 3; N <= UpperBound; N += 2)
11 CheckPrime(N);
12 if (Prime[N]) printf("%d is a prime\n",N);
13 return 0;
14 }

111 / 154

prime-number finding program

(gdb) l Main.c:10

5 main()
6 { int N;
7 printf("enter upper bound\n");
8 scanf("%d",&UpperBound);
9 Prime[2] = 1;
10 for (N = 3; N <= UpperBound; N += 2)
11 CheckPrime(N);
12 if (Prime[N]) printf("%d is a prime\n",N);
13 return 0;
14 }

111 / 154

Main.c :new version

1 #include <stdio.h>
2 #define MaxPrimes 50
3 i n t Prime[MaxPrimes],
4 UpperBound;
5 main()
6 { i n t N;
7 printf("enter upper bound\n");
8 scanf("%d",&UpperBound);
9 Prime[2] = 1;

10 for (N = 3; N <= UpperBound; N += 2){
11 CheckPrime(N);
12 i f (Prime[N]) printf("%d is a prime\n",N);
13 }
14 return 0;
15 }

112 / 154

Main.c :new version

1 #include <stdio.h>
2 #define MaxPrimes 50
3 i n t Prime[MaxPrimes],
4 UpperBound;
5 main()
6 { i n t N;
7 printf("enter upper bound\n");
8 scanf("%d",&UpperBound);
9 Prime[2] = 1;

10 for (N = 3; N <= UpperBound; N += 2){
11 CheckPrime(N);
12 i f (Prime[N]) printf("%d is a prime\n",N);
13 }
14 return 0;
15 }

112 / 154

prime-number finding program

In other shell COMPILATION

(gdb) kill

Kill the program being debugged? (y or n) y

(gdb) d

Delete all breakpoints? (y or n) y

(gdb)r

Starting program: trova_primi
enter upper bound

20

113 / 154

prime-number finding program

In other shell COMPILATION

(gdb) kill

Kill the program being debugged? (y or n) y

(gdb) d

Delete all breakpoints? (y or n) y

(gdb)r

Starting program: trova_primi
enter upper bound

20

113 / 154

prime-number finding program

In other shell COMPILATION

(gdb) kill

Kill the program being debugged? (y or n) y

(gdb) d

Delete all breakpoints? (y or n) y

(gdb)r

Starting program: trova_primi
enter upper bound

20

113 / 154

prime-number finding program

In other shell COMPILATION

(gdb) kill

Kill the program being debugged? (y or n) y

(gdb) d

Delete all breakpoints? (y or n) y

(gdb)r

Starting program: trova_primi
enter upper bound

20

113 / 154

prime-number finding program

In other shell COMPILATION

(gdb) kill

Kill the program being debugged? (y or n) y

(gdb) d

Delete all breakpoints? (y or n) y

(gdb)r

Starting program: trova_primi
enter upper bound

20

113 / 154

prime-number finding program

In other shell COMPILATION

(gdb) kill

Kill the program being debugged? (y or n) y

(gdb) d

Delete all breakpoints? (y or n) y

(gdb)r

Starting program: trova_primi
enter upper bound

20

113 / 154

prime-number finding program

In other shell COMPILATION

(gdb) kill

Kill the program being debugged? (y or n) y

(gdb) d

Delete all breakpoints? (y or n) y

(gdb)r

Starting program: trova_primi
enter upper bound

20

113 / 154

prime-number finding program

In other shell COMPILATION

(gdb) kill

Kill the program being debugged? (y or n) y

(gdb) d

Delete all breakpoints? (y or n) y

(gdb)r

Starting program: trova_primi
enter upper bound

20

113 / 154

prime-number finding program

In other shell COMPILATION

(gdb) kill

Kill the program being debugged? (y or n) y

(gdb) d

Delete all breakpoints? (y or n) y

(gdb)r

Starting program: trova_primi
enter upper bound

20

113 / 154

prime-number finding program

3 is a prime
5 is a prime
7 is a prime
11 is a prime
13 is a prime
17 is a prime
19 is a prime

Program exited normally.

114 / 154

prime-number finding program

(gdb) list Main.c:6

1 #include <stdio.h>
2 #define MaxPrimes 50
3 int Prime[MaxPrimes],
4 UpperBound;
5 main()
6 { int N;
7 printf("enter upper bound\n");
8 scanf("%d",&UpperBound);
9 Prime[2] = 1;
10 for (N = 3; N <= UpperBound; N += 2){

115 / 154

prime-number finding program

(gdb) list Main.c:6

1 #include <stdio.h>
2 #define MaxPrimes 50
3 int Prime[MaxPrimes],
4 UpperBound;
5 main()
6 { int N;
7 printf("enter upper bound\n");
8 scanf("%d",&UpperBound);
9 Prime[2] = 1;
10 for (N = 3; N <= UpperBound; N += 2){

115 / 154

prime-number finding program

(gdb) break Main.c:8

Breakpoint 1 at 0x10000388: file Main.c, line 8.

(gdb)run

Starting program: trova_primi
enter upper bound
Breakpoint 1, main () at /afs/caspur.it/user/r/ruggiero/Main.c:8
8 scanf("%d",&UpperBound);

(gdb) next

20

9 Prime[2] = 1;

116 / 154

prime-number finding program

(gdb) break Main.c:8

Breakpoint 1 at 0x10000388: file Main.c, line 8.

(gdb)run

Starting program: trova_primi
enter upper bound
Breakpoint 1, main () at /afs/caspur.it/user/r/ruggiero/Main.c:8
8 scanf("%d",&UpperBound);

(gdb) next

20

9 Prime[2] = 1;

116 / 154

prime-number finding program

(gdb) break Main.c:8

Breakpoint 1 at 0x10000388: file Main.c, line 8.

(gdb)run

Starting program: trova_primi
enter upper bound
Breakpoint 1, main () at /afs/caspur.it/user/r/ruggiero/Main.c:8
8 scanf("%d",&UpperBound);

(gdb) next

20

9 Prime[2] = 1;

116 / 154

prime-number finding program

(gdb) break Main.c:8

Breakpoint 1 at 0x10000388: file Main.c, line 8.

(gdb)run

Starting program: trova_primi
enter upper bound
Breakpoint 1, main () at /afs/caspur.it/user/r/ruggiero/Main.c:8
8 scanf("%d",&UpperBound);

(gdb) next

20

9 Prime[2] = 1;

116 / 154

prime-number finding program

(gdb) break Main.c:8

Breakpoint 1 at 0x10000388: file Main.c, line 8.

(gdb)run

Starting program: trova_primi
enter upper bound
Breakpoint 1, main () at /afs/caspur.it/user/r/ruggiero/Main.c:8
8 scanf("%d",&UpperBound);

(gdb) next

20

9 Prime[2] = 1;

116 / 154

prime-number finding program

(gdb) set UpperBound=40
(gdb) continue

Continuing.
3 is a prime
5 is a prime
7 is a prime
11 is a prime
13 is a prime
17 is a prime
19 is a prime
23 is a prime
29 is a prime
31 is a prime
37 is a prime

Program exited normally.

117 / 154

prime-number finding program

(gdb) set UpperBound=40
(gdb) continue

Continuing.
3 is a prime
5 is a prime
7 is a prime
11 is a prime
13 is a prime
17 is a prime
19 is a prime
23 is a prime
29 is a prime
31 is a prime
37 is a prime

Program exited normally.

117 / 154

Debugging post mortem

• When a program exits abnormally the operating system can write out core
file, which contains the memory state of the program at the time it crashed.

• Combined with information from the symbol table produced by -g the core file
can be used fo find the line where program stopped, and the values of its
variables at that point.

• Some systems are configured to not write core file by default, since the files
can be large and rapidly fill up the available hard disk space on a system.

• In the GNU Bash shell the command ulimit -c control the maximum size of
the core files. If the size limit is set to zero, no core files are produced.

ulimit -c unlimited
gdb exe_file core

118 / 154

Debugging post mortem

• When a program exits abnormally the operating system can write out core
file, which contains the memory state of the program at the time it crashed.

• Combined with information from the symbol table produced by -g the core file
can be used fo find the line where program stopped, and the values of its
variables at that point.

• Some systems are configured to not write core file by default, since the files
can be large and rapidly fill up the available hard disk space on a system.

• In the GNU Bash shell the command ulimit -c control the maximum size of
the core files. If the size limit is set to zero, no core files are produced.

ulimit -c unlimited
gdb exe_file core

118 / 154

Outline

1 Compiler Flags

2 Profiling

3 Valgrind

4 Debugging
GDB
Totalview
Other debbugers...
addr2line utility (on a Blue Gene system)

119 / 154

Totalview (www.totalviewtech.com)

• Used for debugging and analyzing both serial and parallel programs.
• Supported languages include the usual HPC application languages:

• C,C++,Fortran
• Mixed C/C++ and Fortran
• Assembler

• Supported many commercial and Open Source Compilers.
• Designed to handle most types of HPC parallel coding(multi-process and/or

multi-threaded applications).
• Supported on most HPC platforms.
• Provides both a GUI and command line interface.
• Can be used to debug programs, running processes, and core files.
• Provides graphical visualization of array data.
• Includes a comprehensive built-in help system.
• And more...

120 / 154

Compilation options for Totalview

• You will need to compile your program with the appropriate flag to enable
generation of symbolic debug information. For most compilers, the -g option
is used for this.

• It is recommended to compile your program without optimization flags while
you are debugging it.

• TotalView will allow you to debug executables which were not compiled with
the -g option. However, only the assembler code can be viewed.

• Some compilers may require additional compilation flags. See the TotalView
User’s Guide for details.

ifort [option] -O0 -g file_source.f -o filename

121 / 154

How to use TOTALVIEW on FERMI:
TOTALVIEW on FERMI .

122 / 154

Starting Totalview

Command Action
totalview Starts the debugger.You can then load a program or corefile,

or else attach to a running process.
totalview filename Starts the debugger and

loads the program specified by filename.
totalview filename corefile Starts the debugger and

loads the program specified by filename
and its core file specified by corefile.

totalview filename -a args Starts the debugger and
passes all subsequent arguments (specified

by args) to the program specified by filename.
The -a option must appear after all other
TotalView options on the command line.

123 / 154

Totalview:panel

1 Stack Trace
• Call sequence

2 Stack Frame
• Local variables and their

values
3 Source Window

• Indicates presently executed
statement

• Last statement executed if
program crashed

4 Info tabs
• Informations about processes

and action points.

124 / 154

Totalview:Action points

• Breakpoint stops the excution of the process and threads that reach it.
• Unconditional
• Conditional: stop only if the condition is satisfied.
• Evaluation: stop and excute a code fragment when reached.

• Process barrier point synchronizes a set of processes or threads.
• Watchpoint monitors a location in memory and stop execution when its value

changes.

125 / 154

Totalview:Setting Action points

• Breakpoint
• Right click on a source line→ Set breakpoint
• Click on the line number

• Watchpoint
• Right click on a variable→ Create watchpoint

• Barrier point
• Right click on a source line→ Set barrier

• Edit action point property
• Rigth click on a action point in the Action Points tab→ Properties.

126 / 154

Totalview:Status

Status
Code

Description

T Thread is stopped
B Stopped at a breakpoint
E Stopped because of a error
W At a watchpoint
H In a Hold state
M Mixed - some threads in a process are running and some not
R Running

127 / 154

Totalview:Execution control commands

Command Description
Go Start/resume excution
Halt Stop excution
Kill Terminate the job
Restart Restarts a running program, or one that has stopped without exiting
Next Run to next source line or instruction. If the next line/instruction calls a function

the entire function will be excuted and control will return to the next source line or instruction.
Step Run to next source line or instruction. If the next line/instruction calls a function,

excution will stop within function.
Out Excute to the completion of a function.

Returns to the instruction after one which called the function.
Run to Allows you to arbitrarily click on any source line and then run to that point.

128 / 154

Totalview:Mouse buttons

Mouse Button Purpose Description Examples
Left Select Clicking on object causes it to be Clicking a line number sets a breakpoint.

selected and/ or to perform its action Clicking on a process/thread name in the root
window will cause its source code to appear

in the Process Window’s source frame.
Middle Dive Shows additional information about Clicking on an array object in the source

the object - usually by popping frame will cause a new window
open a new window. to pop open, showing the array’s values.

Rigth Menu Pressing and holding this button Holding this but ton while the mouse pointer
a window/frame will cause its is in the Root Window will cause
associated menu to pop open. the Root Window menu to appear.

A menu selection can then be made by
dragging the mouse pointer while continuing

to press the middle button down.

129 / 154

Outline

1 Compiler Flags

2 Profiling

3 Valgrind

4 Debugging
GDB
Totalview
Other debbugers...
addr2line utility (on a Blue Gene system)

130 / 154

Other debbugers...

• DDD
• Kdevelop
• Eclipse
• ...

131 / 154

Outline

1 Compiler Flags

2 Profiling

3 Valgrind

4 Debugging
GDB
Totalview
Other debbugers...
addr2line utility (on a Blue Gene system)

132 / 154

Core Files and addr2line utility

• When a Blue Gene/Q program runs unsuccesfully, a core file is generated.
• You can use the addr2line utility to analyze the core file.
• This utility uses the debugging information in an executable program to

provide information about the file name and line number for the source that
was used to create the program.

• addr2line retrieves source code location from hexadecimal address
• Standard Linux command

http://www.linuxcommand.org/man_pages/addr2line1.html

133 / 154

addr2line – how-to

• Blue Gene core files are lightweight text files
• Hexadecimal addresses in section STACK describe function call chain until

program exception: section delimited by tags: +++STACK / —STACK
• Example of core file output format:

+++STACK
Frame Address Saved Link Reg
0000001fffff5ac0 000000000000001c
0000001fffff5bc0 00000000018b2678
0000001fffff5c60 00000000015046d0
0000001fffff5d00 00000000015738a8
0000001fffff5e00 00000000015734ec
0000001fffff5f00 000000000151a4d4
0000001fffff6000 00000000015001c8
---STACK

• Control core generation (c.f BG/Q Application Development redbook)

• export BG_COREDUMPBINARY= 0 | 1
• export BG_COREDUMPDISABLED= 0 | 1
• export BG_COREDUMPONEXIT= 0| 1

134 / 154

addr2line – how-to

• From the core file output, save only the addresses in the Saved Link Reg
column:

000000000000001c
00000000018b2678
00000000015046d0
00000000015738a8
00000000015734ec
000000000151a4d4
00000000015001c8

• Replace the first eight 0s with 0x:
00000000018b2678 => 0x018b2678
(page 89 of Application redbook - bgqtranslate.pl)

• Run the addr2line utility:
addr2line -e <binary> <hexadecimal address>
addr2line -e <executable> < <file with hexadecimal address>

135 / 154

QUESTIONS ???

136 / 154

Outline

5 More

137 / 154

SCALASCA on FERMI

In what follows,
• examples of job scripts to use SCALASCA on FERMI.
• how to have a GUI on FERMI

138 / 154

Analysis – Pure MPI

#!/bin/bash
#
@ job_name = myjob.$(jobid)
@ output = $(job_name).out
@ error = $(job_name).err
@ environment = COPY_ALL
@ job_type = bluegene
@ wall_clock_limit = 1:00:00
@ bg_size = 128
@ account_no = <Account number>
@ notification = always
@ notify_user = <valid email address>
@ queue

module load bgq-xl/1.0
module load scalasca/1.4.2
scalasca -analyze runjob --np 256 --ranks-per-node 2
--exe <my_exe>

139 / 154

Analysis – MPI+OpenMP

#!/bin/bash
#
@ job_name = myjob.$(jobid)
@ output = $(job_name).out
@ error = $(job_name).err
@ environment = COPY_ALL
@ job_type = bluegene
@ wall_clock_limit = 1:00:00
@ bg_size = 128
@ account_no = <Account number>
@ notification = always
@ notify_user = <valid email address>
@ queue

module load bgq-xl/1.0
module load scalasca/1.4.2
scalasca -analyze runjob --np 256 --ranks-per-node 4
-envs OMP_NUM_THREADS=4 --exe <my_exe>

140 / 154

Archive with log files 1/2

• Pure MPI:
scalasca -analyze runjob –np 256 –ranks-per-node 2 –exe <my_exe>
==> epik_<myexe>_2p256_sum

• MPI + OpenMP:
scalasca -analyze runjob –np 256 –ranks-per-node 4 -envs
OMP_NUM_THREADS=4 –exe <my_exe>
==> epik_<myexe>_4p256x4_sum

141 / 154

Archive with log files 2/2

In each epik archive there are the following files:

epik.conf Measurement configuration when
the experiment was collected

epik.log Output of the instrumented program
and measurement system

epik.path Callpath-tree recorded by the measurement system
epitome.cube Intermediate analysis report of the

runtime summarization system
summary.cube[.gz] Post-processed analysis report

of runtime summarization

142 / 154

VNC on FERMI

• In order to use a tool with GUI, first you need to have downloaded and
installed VNCviewer on your local machine.
(http://www.realvnc.com/download/viewer/)

• Windows users will also find useful Cygwin, a Linux-like environment for
Windows. During installation, be sure to select ’openSSH’ from the list of
available packages. (http://cygwin.com/setup.exe)

143 / 154

VNC connection on FERMI 1

• On FERMI, load tightvnc module: module load tightvnc
• Execute the script vncserver_wrapper: vncserver_wrapper
• Instructions will appear.

Copy/paste to your local machine (Cygwin shell if Windows) this line from
those instructions:
ssh -L 59xx:localhost:59xx -L 58xx:localhost:58xx -N
<username>@login<no>.fermi.cineca.it
where xx is your VNC display number, and <no> is the number of the
front-end node you are logged into (01, 02, 07 or 08)

144 / 154

VNC connection on FERMI 2

• Open VNCViewer:
• On Linux, use another local shell and type:

vncviewer localhost:xx
• On Windows, double click on VNCviewer icon and write localhost:xx when

asked for the server.

• Type your VNC password (or choose it, if it is your first visit)
• The GUI will appear and enjoy to use SCALASCA on FERMI !!!
• At the end, remember to kill the vnc server from the login node used:

vncserver -kill :xx

145 / 154

Back to main-scalasca .

146 / 154

Totalview on FERMI

In what follows,
• preliminaries to use Totalview on FERMI
• setting of the job script
• start to debug

147 / 154

Using Totalview: preliminaries

• In order to use a tool with GUI, first you need to have downloaded and
installed VNCviewer on your local machine.
(http://www.realvnc.com/download/viewer/)

• Windows users will also find useful Cygwin, a Linux-like environment for
Windows. During installation, be sure to select ’openSSH’ from the list of
available packages. (http://cygwin.com/setup.exe)

148 / 154

Using Totalview: preparation

• On FERMI, load tightvnc module: module load tightvnc
• Execute the script vncserver_wrapper: vncserver_wrapper
• Instructions will appear.

Copy/paste to your local machine (Cygwin shell if Windows) this line from
those instructions:
ssh -L 59xx:localhost:59xx -L 58xx:localhost:58xx -N
<username>@login<no>.fermi.cineca.it
where xx is your VNC display number, and <no> is the number of the
front-end node you are logged into (01, 02, 07 or 08)

• Open VNCViewer:
• On Linux, use another local shell and type:

vncviewer localhost:xx
• On Windows, double click on VNCviewer icon and write localhost:xx when

asked for the server.

• Type your VNC password (or choose it, if it is your first visit)

149 / 154

Using Totalview: job script setting

1 Inside your job script, you have to load the proper module and export the
DISPLAY environment variable:

module load totalview
export DISPLAY=fen<no>:xx
where xx and <no> are as the above slide (you will find the correct DISPLAY
name to export in vncserver_wrapper instructions)

2 Totalview execution line (inside your LoadLeveler script) will be as follows:

totalview runjob -a <runjob arguments...>
3 Launch the job. When it will start running, you will find a Totalview window

opened on your VNCviewer display!

4 Closing Totalview will also kill the job.

5 At the end, remember to kill the vnc server from the login node used:
vncserver -kill :xx

150 / 154

Using Totalview: start debugging

• Select “BlueGene” as a parallel system, and a number of tasks and nodes
according to the arguments you gave to runjob during submission phase.

• Click “Go” (the green arrow) on the next screen and your application will start
running.

151 / 154

Using Totalview: start debugging

User Guide for Totalview:
• module load totalview
• module show totalview
• $MANPATH : /cineca/prod/tools/totalview/8.11.0-

0/binary/toolworks/totalview.8.11.0-0/doc/pdf

152 / 154

Using Totalview: licenses

WARNING:
due to license issues, you are NOT allowed to run Totalview sessions with
more than 1024 tasks simultaneously!!!

You can visualize the usage status of the licenses by typing the command:

• module load totalview
• lmstat -c $LM_LICENSE_FILE -a

153 / 154

Back to main-totalview .

154 / 154

	Compiler Flags
	Usefull links
	Debugging Flags
	Profiling Flags

	Profiling
	Timing
	GNU Profiler – Gprof
	Scalasca

	Valgrind
	Debugging
	GDB
	Totalview
	Other debbugers...
	addr2line utility (on a Blue Gene system)

	Appendix
	More

