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introduction

• Domain decomposition refers to a general set of 

methods for solving a boundary value problem by 

splitting it into smaller boundary value problems.

• In mathematics often used to solve systems of 

partial differential equations.partial differential equations.

• In computational chemistry and physics used to 

parallelise simulations over large number of 

interacting particles.



example

• Consider example of a system of interacting 

particles 

Assume pair-wise, short-

range interactions 

between particles:between particles:
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Serial code

Utot=0.0

do i=1,N-1

F(i) = 0.0

do j=i+1,N

rij=r(i)-r(j)rij=r(i)-r(j)

Utot=Utot+Uij

F(i)=F(i)+force(i,j)   

enddo

enddo



force matrix N
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Interaction Matrix

•Double loop is 

equivalent to an 

interaction 

(e.g.force) matrix

•Can parallelise by 

Interaction Matrix

6

N

P1

P2

•Can parallelise by 

replicating the data 

on each processor
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Particle decomposition
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•In particle decomposition there is a normally at least one all-

to-all communication step to gather the processor information

•In Molecular Dynamics codes (above) at least three global 

communications are required.



Particle decomposition
(replicated data)

• Simple  to code and scales reasonably well for 
small N.

• But communication scales as O(N) so at large N the 
all-to-all communication knocks performance – may 
not scale over 8-16 processors.

• Replicated data means memory requirements are • Replicated data means memory requirements are 
also high.

• Possible to improve performance by using a block 
subdivision of the interaction matrix, but scaling is 
still limited.

• To do better we can exploit the locality of the 
interactions and use domain decomposition.



Divide 3d space up 

into domains and 

assign particles to 

domains. Also assign a 

processor to each 

domain.

Domain size usually 

chosen such that 

particles in one 

domain only interact 

with those in nearest-

neighbour domains.



domain decomposition

Each domain will have 2 types of particles:

1. Those which can be entirely managed by the processor, i.e. all 

the interactions are within the domain

2. Those for which the interactions extend outside the domain. 

Here data have to be sent/received  to/from neighbouring 

domains.domains.

internal part of 

domain 
Atoms which 

need to be 

shared with 

neighbouring 

domains.



domain decomposition

• The difficult part of DD is then to communicate data between a 

domain and its neighbours.

• Convenient for each processor to assign storage also for atoms in 

neighbouring regions within the cutoff (some times call “ghost” or “halo” 

regions).

right border

Internal region

Storage for left 

border of

neigbouring cell



domain decomposition – neighbour 
communication

• neighbour coords in each dimension conveniently exchanged via 

mpi_cart_shift and  mpi_sendrecv calls

• First pass, x-direction, left to right,

call mpi_cart_shift(mpi_box,1,1,proc_left,proc_right,ierror)

call mpi_sendrecv(right_side,nright,MPI_INTEGER,proc_right,0,             call mpi_sendrecv(right_side,nright,MPI_INTEGER,proc_right,0,             

halo_left,nleft,MPI_INTEGER,proc_left,0,mpi_box,status,ierror)



domain decomposition

Then right to left

call mpi_sendrecv(left_side,nleft,MPI_REAL,proc_left,0,             

halo_right,nright,MPI_REAL,proc_right,0,mpi_box,status,ier

ror)



domain decomposition

We can repeat in the y direction but to ensure we transfer the corners 

we need to include data transferred in the x pass 

data transferred during x 

pass



domain decomposition

call mpi_cart_shift(mpi_box,0,1,proc_up,proc_down,ierror)

! top to bottom

call mpi_sendrecv(bottom_side,nlower,MPI_FLOAT,proc_down,0,             
halo_top,ntop,MPI_REAL,proc_up,0,mpi_box,status,ierror)

! bottom to top

call mpi_sendrecv(top_side,ntop,MPI_REAL,proc_up,0,             
halo_bottom,nbottom,MPI_REAL,proc_down,0,mpi_box,status,ierhalo_bottom,nbottom,MPI_REAL,proc_down,0,mpi_box,status,ier
ror



domain decomposition

•Similarly in the z direction, using data transferred in the 

previous y passes (which includes data transferred in x)

•Each processor now has enough information to calculate 

all the interactions in its domain.all the interactions in its domain.



particle and domain decomposition

• Compared to PD (or Replicated Data), DD 

– Exploits the intrinsic locality , minimizing 

communications (no All-to-All) and memory required 

per processor

– scalable, for large systems– scalable, for large systems

– can exploit MPI cartesian topology



Case study 1 – Game of Life

• A simple 2D cellular automata originally 

conceived by J. Conway in 1970.

• Based on a few simple rules, able to exhibit 

complex evolution depending on starting complex evolution depending on starting 

configuration and run time.

• Locality of interactions (i.e. state of 

neighbouring cells) implies good candidate for 

parallelization by domain decomposition



Case study 1 – Game of Life

• The system consists of a 2D grid of cells. Cells 
evolve as follows: in the next generation a cell will
1. Be dead if the cell has < 2 live neighbours (lonely)

2. Stay the same if has exactly 2 neighbours (content)

3. Be born if the cell has exactly 3 live neighbours 3. Be born if the cell has exactly 3 live neighbours 

4. Die if > 3 live neighbours (overcrowding)



Game of Life - strategy

• Maintain two boards, one for the current generation 
and one for the next generation.

• Create a master-slave model: the master (e.g. rank 0) 
will generate the original configuration, collect results 
from other procs and write output to file.

• Partition the 2D array amongst the processors.• Partition the 2D array amongst the processors.

• Generate a cartesian topology.

• Each processor allocates storage for its own cells + halo 
regions (for neighbours).

• Procs update their own cells, then communicate 
boundaries to neighbouring cells. Calculate remaining 
cells.

• Master gathers data from procs, updates current board, 
writes to file → next generation.



Game of Life 
decomposition



Game of Life – implementation hints

• cartesian topology

integer dlength(2),reorder
logical periods(0:1)
call mpi_init(ierror)
call mpi_comm_size(MPI_COMM_WORLD, size, ierror)call mpi_comm_size(MPI_COMM_WORLD, size, ierror)

! Cartesian topology for grid

call mpi_dims_create(size,2,dlength,ierror)
periods(0)=.true.
periods(1)=.true.
reorder=1
call mpi_cart_create(MPI_COMM_WORLD,2,dlength,periods, 
reorder,mpi_grid, ierror)



Game of Life – implementation hints

• MPI derived data types for transferring data to 
neighbours

integer mpi_block, coltype, rowtype

! define a row type
call mpi_type_vector
(local,1,nrow,MPI_INTEGER,rowtype, ierror)
call mpi_type_commit(rowtype,ierror)
(local,1,nrow,MPI_INTEGER,rowtype, ierror)
call mpi_type_commit(rowtype,ierror)

! find up and down neighbours
call 
mpi_cart_shift(mpi_grid,0,1,proc_up,proc_down,ierror)

! send row to down proc, receive row data from up proc
call 
mpi_sendrecv(locarray(nrow,1),1,rowtype,proc_down,0, &            
edge_up,ncol,MPI_INTEGER,proc_up,0,mpi_grid,status,ier
ror)



Case study 2 – Classical molecular dynamics

• Molecular dynamics (MD) programs model physical 

or chemical systems by simulating the movements 

of interacting atoms or molecules.

• For realistic models, many tens of thousands or 

even millions of interacting atoms may need to be even millions of interacting atoms may need to be 

simulated.

• All common MD programs (e.g. GROMACS, NAMD, 

DL_POLY, etc) rely on DD for parallelisation.



Particle and domain 
decomposition comparison

•Gromacs v3.3 used 

particle/force 

decomposition as a 

parallel scheme.

•DD was introduced 

into Gromacs 4.x



domain decomposition and molecular
dynamics – limitations

• System size 
– The number of particles may be fixed by the physical system 

(e.g. the protein size). This will limit scaling since there must 
be at least one  particle/processor (in practice many more)

• Inhomogeinity
– Particles can move between domains → possible load – Particles can move between domains → possible load 

imbalance. Modern programs have Dynamic Load Balancing to 

adjust no. of particles/domain.

• Long-range forces and FFT
– In practice MD programs often stop scaling due to the FFT used 

for the calculation of long-range forces, but even without FFT 
scaling stops eventually.



Without FFT With FFT

Life Sciences Molecular Dynamics Applications on the IBM System Blue Gene Solution: 

Performance Overview,

http://www-03.ibm.com/systems/resources/systems_deepcomputing_pdf_lsmdabg.pdf



1D and 2D decompositions

• Sometimes convenient to use 2D or even 1D domain 
decompositions (send more data but to fewer processors).

• Example includes the FFT used solve the equations for long-range 
interactions in many simulations (e.g. electrostatic forces in MD).

3D FFT is very inefficient for many 

processors (or small N) because of all-to-processors (or small N) because of all-to-

all global communications (MPI_AlltoAll)

Instead use 2D decomposition of thin 

columns or “pencils”: 

In this way the first 1D part of the 3D  

can be done within a single processor 

(e.g. along z) to avoid extra 

communication

Z



final comments

• domain decomposition commonly used in 

computational chemistry, physics and 

astrophysics to distribute physical domain over 

processors by exploiting locality of interactions

• can be quite complex to program but MPI has 

many useful commands to simplify 

programming.


