
Parallel Algorithms-1

Parallel Domain Decomposition in Parallel Domain Decomposition in

Physical sciences
Andrew Emerson – a.emerson@cineca.it

SuperComputing Applications and Innovation Department

contents

� Introduction
� Particle decomposition
� Domain decomposition
� Case studies

Game of Life
Case studies
� Game of Life
� Classical molecular dynamics and scaling
limits

� Final comments

introduction

• Domain decomposition refers to a general set of

methods for solving a boundary value problem by

splitting it into smaller boundary value problems.

• In mathematics often used to solve systems of

partial differential equations.partial differential equations.

• In computational chemistry and physics used to

parallelise simulations over large number of

interacting particles.

example

• Consider example of a system of interacting

particles

Assume pair-wise, short-

range interactions

between particles:between particles:

∑
<

=
ji

ijUU

Serial code

Utot=0.0

do i=1,N-1

F(i) = 0.0

do j=i+1,N

rij=r(i)-r(j)rij=r(i)-r(j)

Utot=Utot+Uij

F(i)=F(i)+force(i,j)

enddo

enddo

force matrix N

P0

P1

Interaction Matrix

•Double loop is

equivalent to an

interaction

(e.g.force) matrix

•Can parallelise by

Interaction Matrix

6

N

P1

P2

•Can parallelise by

replicating the data

on each processor

0

1

2

3

N

N/P

Fi Ri(t+∆t)

A
LL-TO

-A
LL

Particle decomposition

4

5

6

7

A
LL

•In particle decomposition there is a normally at least one all-

to-all communication step to gather the processor information

•In Molecular Dynamics codes (above) at least three global

communications are required.

Particle decomposition
(replicated data)

• Simple to code and scales reasonably well for
small N.

• But communication scales as O(N) so at large N the
all-to-all communication knocks performance – may
not scale over 8-16 processors.

• Replicated data means memory requirements are • Replicated data means memory requirements are
also high.

• Possible to improve performance by using a block
subdivision of the interaction matrix, but scaling is
still limited.

• To do better we can exploit the locality of the
interactions and use domain decomposition.

Divide 3d space up

into domains and

assign particles to

domains. Also assign a

processor to each

domain.

Domain size usually

chosen such that

particles in one

domain only interact

with those in nearest-

neighbour domains.

domain decomposition

Each domain will have 2 types of particles:

1. Those which can be entirely managed by the processor, i.e. all

the interactions are within the domain

2. Those for which the interactions extend outside the domain.

Here data have to be sent/received to/from neighbouring

domains.domains.

internal part of

domain
Atoms which

need to be

shared with

neighbouring

domains.

domain decomposition

• The difficult part of DD is then to communicate data between a

domain and its neighbours.

• Convenient for each processor to assign storage also for atoms in

neighbouring regions within the cutoff (some times call “ghost” or “halo”

regions).

right border

Internal region

Storage for left

border of

neigbouring cell

domain decomposition – neighbour
communication

• neighbour coords in each dimension conveniently exchanged via

mpi_cart_shift and mpi_sendrecv calls

• First pass, x-direction, left to right,

call mpi_cart_shift(mpi_box,1,1,proc_left,proc_right,ierror)

call mpi_sendrecv(right_side,nright,MPI_INTEGER,proc_right,0, call mpi_sendrecv(right_side,nright,MPI_INTEGER,proc_right,0,

halo_left,nleft,MPI_INTEGER,proc_left,0,mpi_box,status,ierror)

domain decomposition

Then right to left

call mpi_sendrecv(left_side,nleft,MPI_REAL,proc_left,0,

halo_right,nright,MPI_REAL,proc_right,0,mpi_box,status,ier

ror)

domain decomposition

We can repeat in the y direction but to ensure we transfer the corners

we need to include data transferred in the x pass

data transferred during x

pass

domain decomposition

call mpi_cart_shift(mpi_box,0,1,proc_up,proc_down,ierror)

! top to bottom

call mpi_sendrecv(bottom_side,nlower,MPI_FLOAT,proc_down,0,
halo_top,ntop,MPI_REAL,proc_up,0,mpi_box,status,ierror)

! bottom to top

call mpi_sendrecv(top_side,ntop,MPI_REAL,proc_up,0,
halo_bottom,nbottom,MPI_REAL,proc_down,0,mpi_box,status,ierhalo_bottom,nbottom,MPI_REAL,proc_down,0,mpi_box,status,ier
ror

domain decomposition

•Similarly in the z direction, using data transferred in the

previous y passes (which includes data transferred in x)

•Each processor now has enough information to calculate

all the interactions in its domain.all the interactions in its domain.

particle and domain decomposition

• Compared to PD (or Replicated Data), DD

– Exploits the intrinsic locality , minimizing

communications (no All-to-All) and memory required

per processor

– scalable, for large systems– scalable, for large systems

– can exploit MPI cartesian topology

Case study 1 – Game of Life

• A simple 2D cellular automata originally

conceived by J. Conway in 1970.

• Based on a few simple rules, able to exhibit

complex evolution depending on starting complex evolution depending on starting

configuration and run time.

• Locality of interactions (i.e. state of

neighbouring cells) implies good candidate for

parallelization by domain decomposition

Case study 1 – Game of Life

• The system consists of a 2D grid of cells. Cells
evolve as follows: in the next generation a cell will
1. Be dead if the cell has < 2 live neighbours (lonely)

2. Stay the same if has exactly 2 neighbours (content)

3. Be born if the cell has exactly 3 live neighbours 3. Be born if the cell has exactly 3 live neighbours

4. Die if > 3 live neighbours (overcrowding)

Game of Life - strategy

• Maintain two boards, one for the current generation
and one for the next generation.

• Create a master-slave model: the master (e.g. rank 0)
will generate the original configuration, collect results
from other procs and write output to file.

• Partition the 2D array amongst the processors.• Partition the 2D array amongst the processors.

• Generate a cartesian topology.

• Each processor allocates storage for its own cells + halo
regions (for neighbours).

• Procs update their own cells, then communicate
boundaries to neighbouring cells. Calculate remaining
cells.

• Master gathers data from procs, updates current board,
writes to file → next generation.

Game of Life
decomposition

Game of Life – implementation hints

• cartesian topology

integer dlength(2),reorder
logical periods(0:1)
call mpi_init(ierror)
call mpi_comm_size(MPI_COMM_WORLD, size, ierror)call mpi_comm_size(MPI_COMM_WORLD, size, ierror)

! Cartesian topology for grid

call mpi_dims_create(size,2,dlength,ierror)
periods(0)=.true.
periods(1)=.true.
reorder=1
call mpi_cart_create(MPI_COMM_WORLD,2,dlength,periods,
reorder,mpi_grid, ierror)

Game of Life – implementation hints

• MPI derived data types for transferring data to
neighbours

integer mpi_block, coltype, rowtype

! define a row type
call mpi_type_vector
(local,1,nrow,MPI_INTEGER,rowtype, ierror)
call mpi_type_commit(rowtype,ierror)
(local,1,nrow,MPI_INTEGER,rowtype, ierror)
call mpi_type_commit(rowtype,ierror)

! find up and down neighbours
call
mpi_cart_shift(mpi_grid,0,1,proc_up,proc_down,ierror)

! send row to down proc, receive row data from up proc
call
mpi_sendrecv(locarray(nrow,1),1,rowtype,proc_down,0, &
edge_up,ncol,MPI_INTEGER,proc_up,0,mpi_grid,status,ier
ror)

Case study 2 – Classical molecular dynamics

• Molecular dynamics (MD) programs model physical

or chemical systems by simulating the movements

of interacting atoms or molecules.

• For realistic models, many tens of thousands or

even millions of interacting atoms may need to be even millions of interacting atoms may need to be

simulated.

• All common MD programs (e.g. GROMACS, NAMD,

DL_POLY, etc) rely on DD for parallelisation.

Particle and domain
decomposition comparison

•Gromacs v3.3 used

particle/force

decomposition as a

parallel scheme.

•DD was introduced

into Gromacs 4.x

domain decomposition and molecular
dynamics – limitations

• System size
– The number of particles may be fixed by the physical system

(e.g. the protein size). This will limit scaling since there must
be at least one particle/processor (in practice many more)

• Inhomogeinity
– Particles can move between domains → possible load – Particles can move between domains → possible load

imbalance. Modern programs have Dynamic Load Balancing to

adjust no. of particles/domain.

• Long-range forces and FFT
– In practice MD programs often stop scaling due to the FFT used

for the calculation of long-range forces, but even without FFT
scaling stops eventually.

Without FFT With FFT

Life Sciences Molecular Dynamics Applications on the IBM System Blue Gene Solution:

Performance Overview,

http://www-03.ibm.com/systems/resources/systems_deepcomputing_pdf_lsmdabg.pdf

1D and 2D decompositions

• Sometimes convenient to use 2D or even 1D domain
decompositions (send more data but to fewer processors).

• Example includes the FFT used solve the equations for long-range
interactions in many simulations (e.g. electrostatic forces in MD).

3D FFT is very inefficient for many

processors (or small N) because of all-to-processors (or small N) because of all-to-

all global communications (MPI_AlltoAll)

Instead use 2D decomposition of thin

columns or “pencils”:

In this way the first 1D part of the 3D

can be done within a single processor

(e.g. along z) to avoid extra

communication

Z

final comments

• domain decomposition commonly used in

computational chemistry, physics and

astrophysics to distribute physical domain over

processors by exploiting locality of interactions

• can be quite complex to program but MPI has

many useful commands to simplify

programming.

