
Compilers and
optimization techniques

Gabriele Fatigati - g.fatigati@cineca.it

Supercomputing Group

2

The compilation is the process by which a high-level code is converted to
machine languages.

Born to avoid writing directly in machine code or Assembly.

The most famous are the Intel Compiler, GCC (GNU Compiler Collection)
and PGI for Linux.

3

 Preprocessing phase
 Compilation
 Linking

4

Lexical analysis: performed by a lexer or
scanner, is responsible for analyzing a stream
or characters and generate a stream of tokens.

123 + 141 / 725

Type Value

number 123

operator +

number 141

operator /

number 125

5

Syntactic analysis: analysis of a stream of characters according to
the rules of formal grammar (language). Performed by a parser.

int a = 0 << wrong
int a=0; OK

6

There may be a preprocessor. Example in C.

 #include directive

 Define: directive

#include <stdio.h>

 #ifdef directive

#ifdef DEBUG
printf(“versione debug \n”);
#else
printf(“versione release \n”);
#endif

#define PI 3.14159

7

Macro:

Pragma: provides additional information to the compiler

Forcing unroll a loop

#define RADTODEG(x) ((x) * 57.29578)

#pragma unroll

#pragma intel optimization_level n

Compile a function with the optimizazion level n

8

Compilation: source code is translated into machine language
according to the compilation flags. At this stage, objects are created.

-c option to manually create the object file. At this stage they are not
looking for any external functions not present in the object.

Linking: integration of various modules, object files and libraries via
a linker. This phase produces the executable.

9

Objdump: to explore the assembly of an object file

objdump -D object.o
00000000 <.comment>:
 0: 00 47 43 add %al,0x43(%edi)
 3: 43 inc %ebx
 4: 3a 20 cmp (%eax),%ah
 6: 28 55 62 sub %dl,0x62(%ebp)
 9: 75 6e jne 79 <s+0x69>
 b: 74 75 je 82 <s+0x72>
 d: 20 34 2e and %dh,(%esi,%ebp,1)
 10: 34 2e xor $0x2e,%al
 12: 33 2d 34 75 62 75 xor 0x75627534,%ebp
 18: 6e outsb %ds:(%esi),(%dx)
 19: 74 75 je 90 <s+0x80>
 1b: 35 29 20 34 2e xor $0x2e342029,%eax
 20: 34 2e xor $0x2e,%al

 22: 33 00 xor (%eax),%eax

Useful commands

10

Ldd: displays the dynamic libraries used by an executable
 ldd <executable>:

libmpi_f90.so.0 => /cineca/prod/opt/compilers/openmpi/1.3.3/intel--11.1--binary/lib/libmpi_f90.so.0
(0x00002ae9526f4000)

libmpi_f77.so.0 => /cineca/prod/opt/compilers/openmpi/1.3.3/intel--11.1--binary/lib/libmpi_f77.so.0
(0x00002ae952a2d000)

libmpi.so.0 => /cineca/prod/opt/compilers/openmpi/1.3.3/intel--11.1--binary/lib/libmpi.so.0
(0x00002ae952c64000)

libopen-rte.so.0 =>
/cineca/prod/opt/compilers/openmpi/1.3.3/intel--11.1--binary/lib/libopen-rte.so.0 (0x00002ae9530f4000)

libopen-pal.so.0 =>
/cineca/prod/opt/compilers/openmpi/1.3.3/intel--11.1--binary/lib/libopen-pal.so.0 (0x00002ae9533a0000)

librdmacm.so.1 => /usr/lib64/librdmacm.so.1 (0x0000003cd0800000)
libibverbs.so.1 => /usr/lib64/libibverbs.so.1 (0x0000003ccf800000)
libbat.so => /cineca/sysprod/lsf/7.0/linux2.6-glibc2.3-x86_64/lib/libbat.so (0x00002ae95364e000)
liblsf.so => /cineca/sysprod/lsf/7.0/linux2.6-glibc2.3-x86_64/lib/liblsf.so (0x00002ae95390d000)
libnsl.so.1 => /lib64/libnsl.so.1 (0x0000003cd6800000)
libutil.so.1 => /lib64/libutil.so.1 (0x0000003cdde00000)
libm.so.6 => /lib64/libm.so.6 (0x00002ae953c06000)
libpthread.so.0 => /lib64/libpthread.so.0 (0x0000003cd0000000)
libc.so.6 => /lib64/libc.so.6 (0x0000003ccf400000)

Useful commands

11

The exadecimal value is the entry point (or load address) of the library into the
executable, or the point which will be called

If you change the executable (eg: with the flags), the entry point can change.

Very useful if you have no a priori information about an executable.

12

Architecture
Aliasing
Interprocedural analysis
Inlining
Loop
Intrinsic functions

Categories optimization

13

It is possible to enable specific optimizations for a given processor.

-march=pentium4

-mtune=pentium2 | pentium3 | pentium4 | core2 | atom | athlon

Why use them? The compiler should already know which processor is
using.

All optimization quite often aren't enabled for a given processor

Both as a matter of compile time, both for the quality of results. The -O3
flag can intrinsically call up these flags. Refer to your compiler manual.

Architecture

14

You can lose portability

If you are using a generic -march=i386 executable can potentially run on
all i386.

If you are using -march=pentium4,the executable can not work on Pentium
earlier.

The precompiled binaries are the most generic possible. Portability, but
loss of performance.

Architettura

15

Aliasing

It refers to a situation where the same memory location can be
accessed through multiple symbolic names.

void func(int*vector){

vector[0] = 10;

}

int main(){

int a[10];
func(a);

}

int vector[10];

int* punt = &vector[0];

int* punt2 = &vector[0];

vector[0] = 10;

punt[0] = 10;

punt2[0] = 10;

16

The optimizer can make conservative assumptions in the presence of
pointers

Si supponga di avere

Aliasing

x = 5
.. codice...
int *y = &x
*y = 10

Can not propagate as well as the value 5, because y, (x alias) has
changed it.

If y is not x aliases, the compiler may decide to reverse these
instructions:

*y = 10
x = 5

17

X

P0
P1

P2

Cheching a single memory
location is simple.

Checking 4 aliases to same
memory location is more
difficult.

P3

Aliasing

18

If the compilers has information about pointers, it can perform
optimizations.

Strict aliasing: C99 standard according to which pointers to object of
different types do not ever refer to the same memory location

Flag: -fstrict-aliasing

Aliasing

int16_t* foo;
int32_t* bar;

The compiler assumes that foo and bar never refer to the same
memory location

funzione(int* restrict vector)

Flag: -restrict. Inform the compiler that vector is accessed
exclusively within the function

19

Interprocedural analysis

By default, the compiler optimizes files for a time, without having a global
vision, focusing on portions of code, loops, and/or functions

If a loop contains call to external function, the IPO can analyse whether or
not it is convenient to inline it.

Flags: -ip -ipo (o -ipa)

20

COMMON X,Y
...

 DO I = 1, N

S0: CALL P
S1: X(I) = X(I) + Y(I)

 ENDDO

Interprocedural analisys

Anybody use or change X?
Anybody change Y?

21

In IPO is important to analyse whether a function has side-effects

A function has side-effects if a change was outside of their local scope.

Interprocedural analysis

Changing global variables
Changing static variables
Changing one or more arguments
Screen writing
Writing/reading a file
Throwing an exception
Calling other side-effects functions

22

SUBROUTINE S(A,X,N)
COMMON Y /* Y is global variable */

DO I = 1, N
S0: X = X + Y*A(I)

ENDDO
END

It might be more efficient to mantain different register X and Y and
write X out of the loop
What happens if we call S(A,Y,N)?
 Y has X aliases
Any modification of X is reflected in Y

23

Inlining

The function call is an operation performed on the stack rather
expensive

1) Create a stack frame on top of the stack
2) Writiting the return address
3) Writing any local variables
4) Writing any parameters passed (by value, reference)
3) Deleting of the stack frame and return to the caller

24

PUSH: put a value on the stack
POP: read and remove a value on the stack
JSR: jump to subroutine, (saving the return address on the stack
with PUSH)
RET: return from a subroutine to the caller (indentified by running a
POP of return value from the stack)

Inlining

25

Inlining is a technique whereby a function call is replaced with its body

Benefits:

Delete the cost of the function call and instruction return
Delete statement executed branches and maintains the code locality

Disadvantages:

Increase the executable size
Could need additional variables (using multiple registers)

Inlining

26

Example::

int main(){
int x=10;
cout << “ square value “ << pow(x) << endl;

}

coid pow(int value){
return value*value;
}

int main(){
int x=10;

cout << “ square value “ << x*x << endl;

}

Inlining

27

It is possible to make inlining by hand, but can be tedious and can lead to
errors.

Modern compilers allow you to make automatic inlining:

Inline keyword in C/C++. In this case, a suggestion, it is said that the
function is converted into inline

The compiler chooses whether to make an inline function or not according to
the size of its body. You can not do inline parts of a function.

-finline-limit=n where n is the size of the function

Agrees to inlining functions “small” and frequently called.

Inlining

28

Loop optimization

Loop interchange
Loop fusion
Loop unrolling
Loop unswitching
Loop fission

29

Loop interchange

for(int i = 0; i< N; i++)
 for(int j=0; j<N; j++)

 matrix[i][j] = i*j;

 for(int j=0; j<N; j++)
 for(int i = 0; i< N; i++)

 matrix[i][j] = i*j;

Allows you to reduce cache misses when access to non-contiguos memory
locations.

30

You can not always do. It may not agree:

do i = 1, 10000
 do j = 1, 1000
 a(i) = a(i) + b(j,i) * c(i)
 end do
end do

If you reverse the cycles, they are made useless store of “a” variable

31

Loop fusion

int i, a[100], b[100];

 for (i = 0; i < 100; i++){
 a[i] = a[i] + 1;
 x+=a[i];
 }
 for (i = 0; i < 100; i++)
 a[i] = a[i] + 2;

 int i, a[100], b[100];

 for (i = 0; i < 100; i++)
 {
 a[i] = a[i]+1;
 x+=a[i];
 a[i] = a[i]+2;
 }

It eliminates a loop, but it extends the body loop. Need to find the right
balance.

32

Loop unrolling

At the end of loop body, end-of-loop test is provided. This condition can be
expensive, especially with many cycles iterations.

int x;
 for (x = 0; x < 100; x++)
 {
 a[i] = a[i]+1;
 }

int x;
 for (x = 0; x < 100; x += 5)
 {
 a[i] = a[i]+1;
 a[i+1] = a[i+1]+1;
 a[i+2] = a[i+2]+1;
 a[i+3] = a[i+3]+1;
 a[i+4] = a[i+4]+1;
 }

33

The new loop executes 1/5 of the control loop at the end than the
original loop.

More instruction per iteration → better use of the pipeline. Potentially
is 5 times faster.

If the unroll step is not a divisor of the number of iteration, you must
handle the rest:

int x;
 for (x = 0; x < 11; x++)
 {
 a[i] = a[i]+1;
 }

int x;
a[0] = a[0] + 1
 for (x = 1; x < 11; x += 2)
 {
 a[i] = a[i]+1;
 a[i+1] = a[i+1]+1;
 }

34

There is no method to find optimal unroll step.

Usually, a maximum of 2 or unroll 4 is enough.

If the loop is complex and has instruction dependencies, the compiler
may fail to make the unroll.

If found the optimal unroll step, allows significant speedup.

35

Loop unswitching

Move internal loop condition outside, replicating the loop body in the
if/else clauses:

 int i, w, x[1000], y[1000];
 for (i = 0; i < 1000; i++) {
 x[i] = x[i] + y[i];
 if (w)
 y[i] = 0;
 }

 int i, w, x[1000], y[1000];
 if (w) {
 for (i = 0; i < 1000; i++) {
 x[i] = x[i] + y[i];
 y[i] = 0;
 }
 } else {
 for (i = 0; i < 1000; i++) {
 x[i] = x[i] + y[i];
 }
 }

Used to optimize separately
the cases

36

Loop fission

Unlike loop fusion

int i, a[100], b[100];
 for (i = 0; i < 100; i++) {
 a[i] = 1;
 b[i] = 2;
 }

 int i, a[100], b[100];
 for (i = 0; i < 100; i++) {
 a[i] = 1;
 }
 for (i = 0; i < 100; i++) {
 b[i] = 2;
 }

Allow to exploit better data and instruction locality

37

Performance of loop techniques are strongly affected by the number
of the iterations of the loop under consideration.

It is often convenient try more than one technique, or even mix them

Usually, a loop is one of the portion more time expensive in a source
code

38

Intrinsic functions

Modern compilers have built-in intrinsic functions highly optimized and
tested.

Some are implemented directly in hardware (SSE, AVX)

Use them whenever possible instead of doing “by hand”

Refer to your manual compiler to the lists of functions available.

39

SSE instructions

Vector instructions that perform the same operations on multiple
data.

Activated by the compiler, or by hand tuning (intrinsic)

 128-bit register integer/single precision floating point operations at a
time, or 2 with double precision.

__m128 _mm_add_ps(__m128 a, __m128 b)

40

SSE instructions (Streaming SIMD Istruction)

SSE Single precision

41

SSE double precision

