
Parallel Algorithms:
Adaptive Mesh Refinement

(AMR) method and its
implementation

Massimiliano Guarrasi– m.guarrasi@cineca.it
Super Computing Applications and Innovation Department

AMR - Introduction

• Solving Partial Differential Equations (PDEs)

• PDEs solved using discrete domain

• Algebraic equations estimate values of unknowns at the mesh points

• Resolution/Spacing of mesh points determines error

• Goal of grid adaptivity:

• tracking features much smaller than overall scale of the problem

providing adequate higher spatial and temporal resolution where

needed.

AMR - Introduction

Uniform meshes
• High resolution required for handling difficult regions

(discontinuities, steep gradients, shocks, etc.)
• Computationally extremely costly

Adaptive Mesh Refinement
• Start with a coarse grid
• Identify regions that need finer resolution
• Superimpose finer subgrids only on those regions
• Increased computational savings over a static grid

approach.
• Increased storage savings over a static grid approach.
• Complete control of grid resolution, compared to the

fixed resolution of a static grid approach.

AMR makes it feasible to solve problems that are intractable on uniform grid

AMR - Applications

Demo of a Shock wave passing over a step function (wind tunnel with a

step), rendered using the FLASH code.

Courtesy of the Univ. of Chicago, Flash Code group

• CFD
• Astrophysics
• Climate Modeling
• Turbulence
• Mantle Convection

Modeling
• Combustion
• Biophysics
• and many more

http://www.flash.uchicago.edu/

Courtesy of Dr. Andrea Mignone, University of Turin

AMR Techniques

 mesh distortion

Courtesy of Dr. Andrea Mignone, University of Turin

AMR Techniques

 mesh distortion

 mesh distortion

AMR Techniques

Courtesy of Dr. Andrea Mignone, University of Turin

 mesh distortion
 point-wise structured (tree-based)

refinement

AMR Techniques

Courtesy of Dr. Andrea Mignone, University of Turin

 mesh distortion
 point-wise structured (tree-based)

refinement

AMR Techniques

Courtesy of Dr. Andrea Mignone, University of Turin

 mesh distortion
 point-wise structured (tree-based)

refinement

AMR Techniques

Courtesy of Dr. Andrea Mignone, University of Turin

 mesh distortion
 point-wise structured (tree-based)

refinement
 block structured

AMR Techniques

Courtesy of Dr. Andrea Mignone, University of Turin

 mesh distortion
 point-wise structured (tree-based)

refinement
 block structured

AMR Techniques

Courtesy of Dr. Andrea Mignone, University of Turin

 mesh distortion
 point-wise structured (tree-based)

refinement
 block structured:

AMR Techniques

Courtesy of Dr. Andrea Mignone, University of Turin

 mesh distortion
 point-wise structured (tree-based)

refinement
 block structured:

 data blocks are created so

 that the same stencil can be

 used for all points and no special treatment is required.
 High level objects that encapsulate the functionality for AMR and its parallelization are

independent of the details of the physics algorithms and the problem being solved.
 Simplifies the process of adding/replacing physics modules as long as they adhere to the

interface requirements.

AMR Techniques

Courtesy of Dr. Andrea Mignone, University of Turin

Existing Frameworks

• PARAMESH - http://www.physics.drexel.edu/~olson/paramesh

• SAMRAI - https://computation.llnl.gov/casc/SAMRAI/

• p4est - http://www.p4est.org/

• Chombo - https://commons.lbl.gov/display/chombo/Chombo

• and many more

http://www.physics.drexel.edu/~olson/paramesh-doc/Users_manual/amr.html
https://computation.llnl.gov/casc/SAMRAI/
http://www.p4est.org/
https://commons.lbl.gov/display/chombo/Chombo+-+Software+for+Adaptive+Solutions+of+Partial+Differential+Equations

Typical grid hierarchy

An Example:
•6 x 4 grid is created on each block
•The numbers assigned to each block
designate the blocks location in the quad-
tree
•The numbers assigned to each block
designate the blocks location in the quad-
tree

•Each block has a fixed number of grid points
•Each block can be divided into 2ndim sub-blocks
•Blocks are distributed between processes
minimizing communications (see next slides)

From Paramesh User Guide

http://www.physics.drexel.edu/~olson/paramesh-doc/Users_manual/amr_users_guide.html

Block Numbering

•All the grid blocks are related to one another
as the nodes of a tree.
•The starting block is called root block, and
the blocks with an higher resolution are called
leaf blocks.
•When a leaf block is designated for
refinement, it spawns 2 child blocks in 1D, 4
child blocks in 2D or 8 child blocks in 3D, and
the original block is called mother (or parent)
block.
•These child blocks cover the same physical
line, area or volume as their parent but with
twice the spatial resolution.
•Usually it is helpful to use a particular
numbering algorithm (see next slides).

From Paramesh User Guide

http://www.physics.drexel.edu/~olson/paramesh-doc/Users_manual/amr_users_guide.html

Block ordering

•Usually, the most used block ordering algorithm is
Morton (or Z) ordering.
•It is particularly useful in order to:

•Optimize the usage of cache memory;
•Optimize ghost cells communications between
process (see next slide);

Block Structure

Usually, each block is composed by:
•standard cells
• ghost cells
In Fortran, the indexes starts with 1 and ends
with N(X or Y or Z) + 2*(number of ghost cells)
In C, the indexes starts whit 0 and ends N(X or Y

or Z) + 2*(number of ghost cells) -1

From Paramesh User Guide

http://www.physics.drexel.edu/~olson/paramesh-doc/Users_manual/amr_users_guide.html

• ghost zones values need

 to be filled before integration;

Courtesy of Dr. Andrea Mignone, University

of Turin

Passing Ghost Cells

• ghost zones values need

 to be filled before integration;

• Patches at the same level are

 syncrhonized.

Courtesy of Dr. Andrea Mignone, University

of Turin

Passing Ghost Cells

• ghost zones values need

 to be filled before integration;

• Patches at the same level are

 syncrhonized;

• Physical boundaries are imposed

 externally;

 Courtesy of Dr. Andrea Mignone, University

of Turin

Passing Ghost Cells

• ghost zones values need

 to be filled before integration;

• Patches at the same level are

 synchronized;

• Physical boundaries are imposed

 externally;

• Fine-Coarse and Coarse-Fine

 interface need interpolation /

averaging

• Integration proceeds as for the

single-grid case

Courtesy of Dr. Andrea Mignone, University

of Turin

Passing Ghost Cells

Ghost cells communications

When we pass the ghost cells to the adjoining
blocks, if these blocks have different
resolutions we must modify the data.

The most simple (and used) method is the
interpolation method:
•If we must pass the ghost cells to a block
with higher resolution we can use the linear
interpolation to artificially increase the
resolution.
•If we must pass the ghost cells to a block
with lower resolution we can average the
data in order to have the same resolution.

Pros:
•Easy to implement
•It is possible to use many different kind of
interpolation (linear, quadratic, and so on)
increasing precision

Cons:
•Non-conservative

From Paramesh User Guide

http://www.physics.drexel.edu/~olson/paramesh-doc/Users_manual/amr_users_guide.html

Passing ghost cells to neighbors blocks

Flux conservation:
It is possible to ensure flux conservation
after the interpolation checking the
equation:
f1A1+f2A2+f3A3+f4A4=FTotATot

From Paramesh User Guide

http://www.physics.drexel.edu/~olson/paramesh-doc/Users_manual/amr_users_guide.html

Passing ghost cells to neighbors blocks

Circulation integral control:
It is possible also to check the value of some
physical quantity at the edges of the cells

NOTE: Both these three methods are usable in order
to change the resolution of the blocks.

From Paramesh User Guide

http://www.physics.drexel.edu/~olson/paramesh-doc/Users_manual/amr_users_guide.html

Particular Geometries

When we have a non symmetric
computational domain many different
approach can be used. For a rectangular
domain:
•We can have different number of points
per block on x and y directions (dx = dy)
•We can have different number of points
on x and y directions (dx ≠ dy)
•We can use more blocks on the x
directions , and 1 block on x direction
(same resolution on x and y, and more
parallelizable)

If we have more complicate computational
domains, we can always use more blocks in
order to fully cover the whole domain.

From Paramesh User Guide

http://www.physics.drexel.edu/~olson/paramesh-doc/Users_manual/amr_users_guide.html

• fill data, level 0

How to refine

Courtesy of Dr. Andrea

Mignone, University of Turin

• fill data, level 0

• find where refinement is needed;

How to refine

Courtesy of Dr. Andrea

Mignone, University of Turin

• fill data, level 0

• find where refinement is needed;

• group cells into patches according

to the “grid efficiency”

How to refine

Courtesy of Dr. Andrea

Mignone, University of Turin

• fill data, level 0

• find where refinement is needed;

• group cells into patches according

to the “grid efficiency”

• refine and ensure proper nesting

How to refine

• fill data, level 0

• find where refinement is needed;

• group cells into patches according

to the “grid efficiency”

• refine and ensure proper nesting

efficiency = 0.7 efficiency = 0.9 efficiency = 0.5

How to refine

Courtesy of Dr. Andrea Mignone, University of Turin

Little more background on AMR

Refinement structure can be
represented using a quad-tree (2D)/
oct-tree (3D)

An important condition in AMR
Refinement levels of neighboring
blocks differ by ±1
Note: This is generally true, but
Chombo library allow more than 1
refinement level discrepancy.

• A set of blocks assigned to a process
• Use space-filling curves for load balancing

Traditional Approach – Parallel Implementations

Traditional Approach - Disadvantages

•Adaptive mesh restructuring:
Tree metadata replicated on each process

Required memory increases with # of cores
Memory can became a problem if we use
more than 105 cores (and more than 106 boxes)

Level-by-level restructuring
Ripple propagation
Step needed to propagate restructuring ∝
level of refinement (d)

•Load Balancing
•Memory needed ∝ Number of blocks used
•Time needed ∝ Number of blocks used

•Currently for 3D problems with less than 106 boxes standard AMR library scales up to few
tens of thousands of cores
•This is a serious problem considering that next generation supercomputers will require the
use of many hundreds of thousands of cores

Improving AMR: Possible strategies

1. Compress tree metadata
•Already implemented in the last versions of CHOMBO, PARAMESH and SAMRAI libraries

2. Rewrite the algorithm for coarse-fine interpolation in order to minimize communications
•Already implemented in the last versions of CHOMBO, PARAMESH libraries
•Using these first two methods it is possible to scale up to 2x105 cores using 107 grid
cells

3. Use a distributed memory version for tree metadata
•Currently Langer at al are working on the implementation of this algorithm on
CHARM++

Some additional information about PARAMESH

•Written in Fortran 90
•Easy to implement on a existing code
•Support many geometries (Cartesian, cylindrical, spherical, from 1D to 3D)
•Refinement levels of neighbouring blocks differ by ±1
•Compatible with hdf5 format
•Some simple routine are already written by the authors of the library in order to save the
data and the grid structure into Fortran binary format, and hdf5 format.
•Easy visualization of the results using many external programs (e.g. visit)

Some additional information about CHOMBO

•Written in C
•Easy to implement on a existing code
•Support many geometries (Cartesian, cylindrical, spherical, from 2D to 3D)
•Compatible with hdf5 format
•Easy visualization of the results using many external programs (e.g. visit)

Problem: Blast Wave –

Cloud Interaction

Base Grid: 128x128

Levels of Refinement:

5 (eq. 4096x4096)

Method: Unsplit PPM

Code: PLUTO +

Chombo Lib

Example: 2D Blast Wave

Courtesy of Dr. Andrea Mignone, University of Turin

Problem:

 Rayleigh Taylor

Base Grid:

 32x64x32

Levels of Refinement:

 2 (eq. 128x256x128)

Method:

 Unsplit PPM

Code:

 PLUTO + Chombo Lib

Example: 3D Rayleigh-Taylor

Courtesy of Dr. Andrea Mignone,

University of Turin

Thank you for attention

The author is grateful to Dr. A. Mignone for the help given during the making of these slides

