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Why Computational Fluid Dynamics?

• To obtain an approximate solution of the Compressible Navier-Stokes (NS)
Equations. Set of Partial Differential Equations (PDE)

∂

∂t
U +∇ · (Fc + Fv ) = 0 (1)

U =

 ρ
ρu
ρe

 Fc =

 ρu
ρu⊗ u + pI
ρu (e + p/ρ)

 Fv =

 0
τ

τ · u− kT∇ · T


e =

1

γ − 1
RT +

1

2
u · u τ = µ (∇u + u⊗∇− 2/3I∇ · u)

• No exact solution, except simple cases.

• The Clay Mathematics Institute has a 1 million $prize waiting for the first
person to solve this problem

www.claymath.org/millennium/Navier-Stokes Equations/
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DNS of NS Equations

• DNS (Direct Numerical Simulation) of turbulent flows
• Research group of Pirozzoli, Orlandi, Bernardini, Grasso. Dipartimento di

Ingegneria Meccanica ed Aerospaziale, Universita’ di Roma “La Sapienza”

• Extremely challenging and expensive
• Large-scales dictated by the characteristic size of the problem

• Small-scales dictated by the Reynolds number (Re = U L/ν)

Re = Uc h
ν = 4300 Re = Uc h

ν = 65200

Pirozzoli, S., 2011, Numerical methods for high-speed flows,

Annu. Rev. Fluid Mech., 43, 163-194
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DNS of NS Equations

Different approach to model N-S equations
(DNS,LES,DES,RANS,URANS)

• Direct Numerical Simulation (DNS)
• Solving the N-S equations without turbulence models
• All scales of motion are properly resolved on the computational mesh
• Extremely high computational cost (limited to low and moderate Reynolds

numbers)
• Code requirements

• High-order accurate, low-dissipative, but stable algorithms required
• Computational efficiency mandatory for large-scale computations
• High scalability performance for parallel computations
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Flow solver description

• Programme Language
• Flow solver written in Fortran 90

• Numerical strategy
• NS Equations are solved using the Finite Differences (FD) schemes
• Structured Cartesian Domain of dimension Lx × Ly × Lz

• Equations discretized on a Cartesian grid with Nx × Ny × Nz points

• Method of the lines approach
• Space and Time integration handled separately in the set of PDE
• Discretization of spatial derivatives
• Set of Ordinary Differential Equations (ODE)
• Runke-Kutta (RK) scheme for time integration
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Flow solver description

Spatial Derivatives

• Convective Terms
• Convective Terms Fc in eq.(1) are non linear
• Tendency to form steep gradients in compressible flows (shock waves)
• Non-linear instability
• Hybrid Approach for shock capturing

• Central Differences in the smooth regions
• WENO reconstructions in shocked regions (adaptive stencils)
• Switch controlled by a shock sensor 0 ≤ Θ ≤ 1 to detect discontinuities

• Viscous Terms
• Viscous Terms Fv in eq.(1) are linear, no particular problems
• Direct applications of central differences formulas
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Flow solver description

Time integration-Runge-Kutta scheme

• Low storage Runge-Kutta scheme

• Two memory spaces allocated (10 three-dimensional arrays)

Code Parallelization

• Pure MPI parallelization
• Block decomposition of the computational domain
• Each core is assigned to a specific core
• Explicit schemes allow to exchange only planes. No global transposition of

data

• Virtual MPI Topology
• Cartesian 3D topology
• Cartesian 1D communicator in the x-direction
• Advantanges of Cartesian topologies: Easier and faster implementation of

communications, reduction of the number of data to exchange
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Flow solver description

• Weak Scaling
• Variation of the solution time with the number of processors for a fixed

problem size
• High-scalability, Speed-up = npTs/Tnp @ BlueGene-Q, Julich.
• Linear scalability up to 32.768 cores

Roughness-induced boundary layer transition
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Finite Differences (FD) vs Finite Volume (FV)

• Uniformly spaced mesh with h grid spacing in x, k time step
constant.

• Nodes xj = jh, intermediate nodes xj+1/2 = xj +
h

2
, interval

Ij =
[
xj−1/2; xj+1/2

]
, j = . . . ,−1, 0, 1, 2, . . .

tn = nk, n = 0, 1, 2, . . .

• Finite difference Un
j = v (xj , t

n)

• Finite Volume
Un

j = 1
h

∫ xj+1/2

xj−1/2
v (xj , t

n) dx

v (xj , t
n) = 1

h

∫ xj+1/2

xj−1/2
v (xj , t

n) dx + O(h2)
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Finite Difference Approximation (FD)

• Uniformly spaced mesh where the nodes are indexed as i,
h = L/(N − 1) grid spacing, for 1 ≤ i ≤ N.

• Independent variable at the nodes is xi = (i − 1)h

• Given the values of a function on a set of nodes, the finite difference
approximation to the derivative of the function is expressed as a
linear combination of the given function values.
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Finite Difference Approximation (FD)

• The finite difference approximation f ′i to the first derivative
(df /dx) (xi ) at the node i, using a (q + r + 1) point stencil, depends
on the function values at the nodes near i :

R∑
L=−Q

αL f ′i+L =
1

h

r∑
`=−q

a` fi+` + O(hn) (2)

(q + r) ≥ 1; Q ≤ q and R ≤ r

• q = r the (q + r + 1) stencil is symmetric ⇒ Central FD

• q < r the (q + r + 1) stencil is asymmetric ⇒ Forward FD

• q > r the (q + r + 1) stencil is asymmetric ⇒ Backward FD

• Q = R = 0 explicit schemes.

• Q = R 6= 0 implicit, compact or Pade’ schemes.

• the non-optimized classical FD will be denoted as CQRqr
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FD Approximation in matrix form

• the system of eqs. (2) can be rewritten in matrix form as:
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An intuitive introduction to FD...

• Starting from eq. (2)

• Explicit, second-order central FD, 3 point stencil Q = R = 0,
q = r = 1, C 0011

f ′i
∼=

1

h
[a−1fi−1 + a1fi+1] (3)

• The function fi−1 and fi+1 are Taylor series expanded with a
truncation error of the order of ∼ O(h2):

fi+1
∼= fi + hf ′i + O(h2)

fi−1
∼= fi − hf ′i + O(h2)
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....and the big O notation

• By substituting the Taylor series expansion in eq. (3):

f ′i =
1

h
[(a−1 + a1)fi + h(a−1 + a1)f ′i ]

• And equating member by member:{
a−1 + a1 = 0

−a−1 + a1 = 1

• ⇒ a1 = −a−1 = 1/2. Note the the relation a−p = −ap is valid as
long as p = q.

• And so the eq. (3) can be rewritten in

f ′i =
(fi+1 − fi−1)

2h
+ O(h2)
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Fourier analysis of FD schemes

The finite difference equation (2) is a special case of the following
equation with respect to the continuous variable x :

Q∑
j=−P

αj f ′(x + j h) =
1

h

S∑
j=−R

aj f (x + j h) + O(hn), (4)

which discretizes into eq. (2) by setting x = xi . The Fourier
transform of the function f (x) is:

f̃ (k) =

∫ ∞
−∞

f (x) e−i k x dx , (5)

where i =
√
−1, k is the wavenumber, and the tilde “˜” represents

the transformed function.
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Fourier analysis of FD schemes

Given a monochromatic wave of wavelength λ, resolved with Nλ
number of points per wavelength, the equation

Nλ =
λ

h
=

2π

κ
, (6)

is used to relate the scaled wavenumber

κ = k h (7)

to the wavelength λ. The Figure shows an example of
monochromatic wave, of wavelength λ, resolved respectively with
Nλ = 8, 6 ans 4
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Fourier analysis of FD schemes

Taking the Fourier transform of both sides of eq. (4) gives:

κ̄ (κ) = k̄ (k) h =
1

i

∑S
j=−R aj e

i j κ∑Q
j=−P αj e i j κ

,=

∑S
j=−K aj sin(jκ)

1 +
∑R

j=−Q aj cos(jκ)
(8)

where κ̄ = k̄ h is the scaled pseudo-wavenumber. The scaled
wavenumber and the scaled pseudo-wavenumber are both
non-dimensional values, κ ∈ R, 0 < |κ| ≤ π, and generally κ̄ ∈ C,
with real and imaginary part <[κ̄] and =[κ̄]. It is desirable to make
κ̄ equal to κ. It is impossible to build up a perfect match between
κ̄ and κ over the entire wavenumber range due to the limitation of
numerical discretization. The coefficients aj, αj of eq. (8) may be
chosen: to minimize the truncation error (the big O), by truncation
of the Taylor series or to optimize the behaviour in wavenumber
space so as to have κ̄ (κ) ' κ at the expense of the formal order of
accuracy or to reduce the computational cost for a given level of
error.
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Fourier analysis of FD schemes

In practice, the scaled pseudo-wavenumber κ̄ implies a certain
deviation from the true scaled wavenumber κ, which increases as
κ→ π (for κ = π, κ̄ = 0, see Fig. ??). This deviation results in
spatial numerical error:

e0(κ) =

∣∣∣∣ κ̄(κ)− κ
κ

∣∣∣∣ , (9)

where the real part represents the dispersive error

εR (κ) =

∣∣∣∣< [κ̄(κ)]− κ
κ

∣∣∣∣ , (10)

and the imaginary part the dissipative error

εI (κ) =

∣∣∣∣= [κ̄(κ)]

κ

∣∣∣∣ . (11)
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Dispersive characteristics of the schemes

• schemes are centered, that is εI (κ) =

∣∣∣∣= [κ̄(κ)]

κ

∣∣∣∣ = 0.
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Explicit vs Compact Schemes

• Explicit schemes employ large computational stencil for a given level
of accuracy

• Compact schemes use smaller stencil by solving a linear system at
each grid point

• Compact schemes are more accurate than the equivalent formal
order of accuracy explicit scheme

• A matrix has to be inverted to obtain the spatial derivative at each
grid point

• Boundary stencil has a large effect on the stability and accuracy of
the scheme

• Correct implementation and non-trivial parallelization
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Parallelization

∂U

∂t
+ A0

∂U

∂x
+ B0

∂U

∂y
= 0 (12)

• LEE (Linearized Euler Equations)

• Domain decomposition Each block use 1 proc

• Communication method by finite-sized overlaps

• At every time-step solution computed independently in each block
with interior/boundary closure

• Up-date at every RK sub-iteration

• Interior scheme sixth-order compact

• 11 point stencil inter-block boundary

• Method of communication suitable for explicit scheme

• Compact scheme, introduce an error given by the different dispersion
characteristics.
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Parallelization

I. Spisso, P. Ghillani, A Rona: Development of multi-block interface for a high-order compact scheme applied to sound scattering problems
in aeronautics: Parallelization strategy and efficiency, Science and SuperComputing in Europe, Report 2009.
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Parallelization

• Explicit FD, share data where stencil overlap

• Compact FD, data transpose. Slice division for given direction of
parallelization (slub decomposition). Use MPI Alltoall to transpose
data.
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OpenFOAM

• OpenFOAM The Open Source Computational Fluid Dynamics Toolbox
• Version 2.1.x by OpenCFD Ltd
• Version 1.6.ext by Wikki
• The OpenFOAM (Open Field Operation and Manipulation) CFD Toolbox is a

free, open source CFD software package.
• OpenFOAM has an extensive range of features to solve anything from

complex fluid flows involving chemical reactions, turbulence and heat transfer,
to solid dynamics and electromagnetics.

• It includes tools for meshing, notably snappyHexMesh, and for pre- and
post-processing

• Almost everything (including meshing, and pre- and post-processing) runs in
parallel.

• OpenFOAM includes over 80 solver applications that simulate specific
problems in engineering mechanics and over 170 utility applications that
perform pre- and post-processing tasks, e.g. meshing, data visualisation, etc.

• Free-to-use means using the software without paying for license and support,
including massively parallel computers: free 1000-CPU CFD license!

Ivan Spisso 30 / 46



Parallel Algorithms for CFD

OpenFOAM

• Why OpenSource CFD?
• Academic rationale for open source code is clear: open collaboration and

sharing
• Industrial users rely on commercial software with strict quality control and

dedicated support teams
• ...but its flexibitily is not sufficient, development is too slow, support quality

varies and parallel CFD licences has to paid

• Open Source CFD Solution
• Reminder: Open Source and GPL does not imply zero price
• Computer time is still expensive but cost is unavoidable
• Software support, help with running and customisation is still required
• Engineers running the code are the most costly part: better!

• Mode of operation
• When a CFD works well in a design process, it will be used in large volume
• Development and validation may need to be funded by user but further cost

drops significantly: no annual license fee to pay
• Parts of acceptance and validation effort become responsibility of the user

Ivan Spisso 31 / 46



Parallel Algorithms for CFD

OpenFOAM parallel aspects

PRACE 1IP - Task 7.2
. . . will provide petascaling expertise to ensure that key application

codes can effectively exploit Tier-0 systems. Will identify opportunities to
enable applications through engagement with selected scientific
communities, industrial users and specific application projects . . .

PRACE 1IP - Task 7.5

. . . will work with users to implement new programming techniques,
paradigms and algorithms for Tier-0 systems, which have the potential to
facilitate significant improvements in the performance of their applications.
This task will work in close collaboration with tasks 7.1 and 7.2 . . .
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Finite Volume Discretization

• Direct discretization of the integral form of the conservation laws.∫
Vi

∂U

∂t
dV +

∫
Vi
∇ · Fc dV = 0

• Finite-volume flux vector discretization. Applying the Gauss

divergence theorem
∂

∂t

∫
Vi

UdV +
∮

Si
Fc · ndS = 0

Ui =
1

Vi

∫
Vi

UdV ,
∮

Si
Fc · ndS =

∑Nfaces

k=1 Fc,k · ni,kSi,k

Vi
∂Ui

∂t
+ Ri = 0

• To solve the Euler or NS equations, the residual operator Ri needs
to linearize the flux vector Fc . The Godunov method, or Flux
Difference Splitting, is used. Interface fluxes normal to the
finite-volume unit cell boundaries are tipically estimated by the
approximate Riemann solver based on Roe (1981). To reduce the
excessive artificial dissipation MUSCL or TVD.
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Finite Volume Discretization

Finite Volume Primer
∫

Cell
div(A∇p) dV :=

∑
Faces

∫
f

(A∇p) · Sf dS

Data Representation

• Variables may be associated with:

1 cells
2 faces
3 points

• Time discretized independently
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Finite Volume Discretization

Solution Process: Overview

1 Different solvers, same kernel

• sparse linear systems
• iterative Krylov methods
• SpMV multiplication

Task Decomposition
• Zero-Halo layer approach

• Internal Edges

1 treated as BCs

• Usual pattern

1 Interface initialization
2 Local computation
3 Interface update

• Local: Diagonal Block

• Interface: Off-Diagonal Blocks
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Preconditioned Conjugate Gradient

Base Algorithm
1: r0 ← b− Ax0

2: z0 ← M−1r0

3: p0 ← z0

4: k ← 0
5: repeat

6: αk ←
rTk zk

pT
k Apk

7: xk+1 ← xk + αk pk

8: rk+1 ← rk − αk Apk
9: zk+1 ← M−1rk+1

10: βk ←
zTk+1rk+1

zTk rk

11: pk+1 ← zk+1 + βk pk

12: k ← k + 1
13: until (‖rk+1‖ < tol)

Key Operations at Each Step

1 Sparse Matrix-Vector multiplication

1 Preconditioning

3 Scalar products

Zero-Halo Layer Scalar Product
s c a l a r SumProd = 0 ;
s c a l a r p a r t i a l S u m = 0 ;
// L o c a l p a r t o f the product
f o r ( l a b e l i i =0; i i <max ; i i ++)

p a r t i a l S u m += f 1 p [ i i ] ∗ f 2 p [ i i ] ;
// Gather o t h e r t a s k s c o n t r i b u t i o n
M P I A l l r e d u c e (&SumProd ,& p a r t i a l S u m , 1
MPI SCALAR , MPI SUM ,MPI COMM WORLD ) ;
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Lessons learned so far. . .

1 The scalar products in the PCG algorithm act as barriers

2 The whole bunch of MPI Allreduce

• stems from an algorithmic constraint
• is unavoidable, unless we venture on an algorithmic rewrite

3 How can we reduce communication and preserve the algorithm?

• add multi-threading capabilities to sparse linear-algebra

4 To do that we have to dig into sparse matrix representation!
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Artificial Boundary Conditions

• Why you need Artificial Boundary Conditions?

• Artificial Boundary Conditions
• Characteristic Based Methods
• Buffer Zone Method
• Asymptotic Expansion Method
• Perfectly Matched Layer
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Why ABC?

Why ABC?

God gave you the interior scheme, and Evil put the Boundary Conditions!

Colonius, T., ”Modeling artificial boundary conditions for compressible flow”, Annual
Review of Fluid Mechanics, vol. 40, pp. 315–345, 2004.
Literature cited more than 100 papers!
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Characteristic Based Methods

• 1D Characteristic Based Boundary Conditions

• Thompson’s Characteristic Based Boundary Conditions
Thompson, K. W., Time Dependent Boundary Conditios for Hyperbolic System,
J. Comp. Phys. 68 (1987) 1-24

∂U

∂t
+ A

∂U

∂x
= 0

U =

 ρ
p
u

 , A0 =

 u 0 ρ
0 u γp
0 1/ρ u


By using eigenvectors and diagonalization, we get the primitive equations

lT
i

∂U

∂t
+ Li = 0, , Li = λi l

T
i

∂U

∂x
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Determinations of Li :

When the characteristic velocity λi points out of the solution volume,
compute the corresponding Li from the definition given above, using
one-sided derivative approximations. When λi points into the domain,
specify the value from the boundary conditions.

• Multi-Dimensional Characteristic Based Boundary Conditions

• Giles, M. B.: ’Non-reflecting boundary conditions for Euler Equation
calculation’, AIAA J. 18 (1990) 2050-2058

• Rowley, C. W., Colonius, T.: ’Numerically Non-reflecting boundary
conditions for multidimesional Aeroacoustic Coomputations’, AIAA
paper 4th AIAA/CEAS Aeroacoustics Conference, 1998

• Poinsot & Lele: ’Boundary Conditions for direct simulations of
compressible viscous flows’ JCP, vol. 101, no. 1, 1992
LODI Approximation: Local One Dimensional Inviscid
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Buffer Zone Method

• Buffer Zone Method

Several absorbing layers have been suggested to

• enhance the efficacy of an ABC or

• to obviate the need for any ABC.

Absorbing layer treatments typically provide for damping of disturbances prior to
interact with an Artificial Boundary Condition.
Some obvious ways to do this are the to introduce artificial dissipation (by
upwinding), to increase the value of physical viscosity (or add hyperviscosity),
and perhaps most simply, to add a linear friction coefficient to the governing
equations.

Q̃ = Q− σ (Q−Qtarget) , σ(l) = α2

(
L−l

L

)β1

where Q̃ is the damped solution vector and Qtarget is a given reference.
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Buffer Zone Method

• Chen, X. X. and Zhang, X. and Morfey, C. L. and Nelson, P. A., ”A
numerical method for computation of sound radiation from an unflanged
duct”, Journal of Sound and Vibration, vol. 270, no. 3, pp. 573–586, 2003.

• Sandberg R. D., Sandham N. D. ”Nonreflecting Zonal Characteristic
Boundary Condition for Direct Numerical Simulation of Aerodynamic
Sound”, AIAA Journal, TN, vol. 44, no. 2, February 2006.
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Asymptotic Expansion Method

Assume that far-field equations reduce to simple model equations
Construct asymptotic solutions to model equations
Derive differential equations for asymptotic solutions
More accuracy as boundary moves away from source region

• Radiation Boundary Conditions

• Decompose the linearized Euler equations into their exact solutions - for
acoustic waves,

(
1

V (θ)

∂

∂t
+

∂

∂r
+

1

2r

)
ρa

ua

va

pa

 = 0 + O(r−5/2),

V (θ) = co

[
M cos θ +

(
1−M2sin2θ

)1/2
]

Similar expression for the outflow boundary conditions. When a flow exists
through a boundary, acoustic, entropy, and vorticity waves must exit.
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Asymptotic Expansion Method

• Tam, C. K. W. and Web, J. C., ”Dispersion-Relation-Preserving finite
difference schemes for Computational Acoustics”, Journal of Computational
Physics, vol. 107, pp. 262–281, 1993.

• Tam, C., and Dong, Z., Radiation and Outflow Boundary Conditions for
Direct Computation of Acoustic and Flow Disturbances in a Nonuni-form
Mean Flow, Journal of Computational Acoustics, Vol. 4, No. 2, 1996, pp.
175201.
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Perfectly Matched Layer PML

• Perfectly Matched Layer (PML)

Originally developed for Maxwells equations electromagnetics
Extended to Linearized Euler equations by Hu
Surround computational domain with absorbing that damps outgoing waves, but
allows waves to enter smoothly with no reflection = perfectly matched
Formulated in split and unsplit forms
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