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Overview: HPC and QChS

• What a HPC person should know about QChS?

• Why a HPC person should aware of QChS?

• How HPC experience can be used in QChS?
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Quantum Chemistry in 2-3 slides

ĤΨ = EΨ

Looks rather simple...

Hamiltonian describes interactions between particles,
so we can solve Schrödinger equation,
and use wavefunction Ψ to compute various properties:

< Ψ|X̂|Ψ >
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A simple example

Let’s have an example: 26 particles,
in a cubic box 10x10x10

Classical mechanics: particles are independent
wavefuction can be described by 26*10*10*10 ’combinations’
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.. is not so simple

In Quantum mechanics: particles are not independent

Ψ(x1, y1, z1, x2, y2, z2, ....xn, yn, zn)
So, instead of 26000, we have 10*10*...10=1078

The Sun contains [only] 1058 protons

And 26 particles it is :

Approximations are mandatory
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Quality vs. time

Basis set is used, so the problem is converted into matrix problem
Larger basis sets means larger size of matrices, and longer time

Hamiltonian quality:

Time

Semiempirical
methods

Hartree-Fock

DFT
CASSCF CASPT2

Full CI
Right

Wrong

CCSD(T)

Precise methods need more time!
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Just some nice pictures
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Quantum chemical software

• Established software packages (10-20 years of development)

• ’no experience is required’

• Substitution for ’wet chemistry’

� prediction of new materials

� understanding of chemical reactions

• occupies near 30% of computational resources
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MOLCAS

• developed in Lund since 90-es

• with emphasis to multiconfigurational approach, and precise
calculations

• non-profitable University based project

• 33 Mb of the source code (Fortran 77 + C)

• runs on all platforms

• best use: PC with a lot of memory, Linux clusters

• www.molcas.org
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MOLCAS modules

• computational tasks are very different:

� Computing of integrals (with possible packing)
• CPU, I/O (writing)

� Optimizing wavefunction
• CPU (BLAS), memory (large matrices), I/O

� Optimizing geometry (numerical)
• parallelization by task (low communication)
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"Theoretical" progress
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So, why it "doesn’t work" for QCh?

• very long development cycle

• code demands not only CPU power, but memory and I/O

• not obvious parallelization
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Some sad stories..

...told by Molcas users and SysAdmins.

• multicore CPUs
Parallel run can be slower (!) than serial

• advanced network file system
code uses CPU only by 3− 5%

• GPUs and CUDA BLAS
the code runs slower

Back to the drawing board....
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I/O from historical perspectives

• conventional integral code

� integrals are reused, let’s keep them on disk

• direct integral code

� disks are slow, let’s recompute all integrals

• semidirect integral code

� a hybrid: keep only some integrals on the disk

• Resolution of Identity / Cholesky decomposition

� keep the data, which can be used to reconstruct integrals
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I/O

Problem:

• The amount of integrals and intermediate data can
easily be measured in Gb, or even hundreds of Gb

• Read access is random, or spread
(a result of ’writing by columns and reading by rows)

Solutions:

• Local disks

• Solid State Devices

• Files in Memory
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I/O benchmarks
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Files in Memory

Why FiMs are better than system I/O caching?

• Developer (or user) can choose which files to keep in memory

• Writing to disk (at the end) can be done by large blocks

• No need to save temporary files

• Prepared for future parallelization

Will be a part of Molcas 8.
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GPU and BLAS

A success story: Todd J. Martinez
Hartree-Fock code completely written for GPU.
(With "some" restrictions: everything is in memory,
so basis sets are tiny)

up to 80% of calculations in Molcas is BLAS (or LAPACK) calls
so, can we just
- move data to GPU,
- process it in parallel on GPU,
- return the result to ’CPU’ ?
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What is the proper size?

Multiplication of small matrices is faster on CPU!
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CPU/GPU balance

The critical size (for modern GPUs) is about 128*128
(and it was about 500*500 two years ago).

PARAMETER (NCUDA=128*128)
IF (SIZE_N*SIZE_M .gt. NCUDA) then

Call CuBLASS_DGEMM(..)
ELSE

Call DGEMM(..)
ENDIF
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But let’s profile the code...

Only few calls are large enough!

HPC and QChS – p. 21/28



Amdahl’s law exercise

• 80% of CPU time: calls to DGEMM

• 10% of these calls are executed on GPU
(due to the size)

• expected speed up e.g. 16 times

compute the difference in timing.
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Parallelization

for large calculations: Memory and I/O
are more important than CPU power

BlueGene technology is [now] useless for Molcas.
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How to utilize multicore technology?

• control the usage of resources

• separate computations and I/O

• data packing

• decrease memory consumption (e.g. reuse shared memory)

• use it only for average-sized systems
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Profiling

• developers of QCh software does not profile their code
but they know the cases which works unusually slow

• profiling software does exist and it can find bottlenecks
in computations, in I/O and in memory consumption

• HPC personal should be able to help in profiling
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Software optimization

Compiler optimization can improve the performance,
but it might lead to overoptimization, and
to wrong results.
Tools to handle overoptimization:

• Verification
� ’trusted’ version generates reference values

� large number of tests

� thresholds for each checked value
� verification with various optimizations, compilers

� can work in an automatic way

• divide and conquer search for overoptimized routines
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Some conclusions

• Real applications are different from ’small test cases’

• HPC approach can contribute to ’algorithmic improvements’

� Make profiling of the code
• note that the results will be different for different modules
• note that the results will depend on the system

� "Properly" use hardware
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