
HPC view at
Quantum Chemistry Software

Valera Veryazov

Valera.Veryazov@teokem.lu.se

Department of Theoretical Chemistry

Lund University

Sweden

HPC and QChS – p. 1/28

Overview: HPC and QChS

• What a HPC person should know about QChS?

• Why a HPC person should aware of QChS?

• How HPC experience can be used in QChS?

HPC and QChS – p. 2/28

Quantum Chemistry in 2-3 slides

ĤΨ = EΨ

Looks rather simple...

Hamiltonian describes interactions between particles,
so we can solve Schrödinger equation,
and use wavefunction Ψ to compute various properties:

< Ψ|X̂|Ψ >

HPC and QChS – p. 3/28

A simple example

Let’s have an example: 26 particles,
in a cubic box 10x10x10

Classical mechanics: particles are independent
wavefuction can be described by 26*10*10*10 ’combinations’

HPC and QChS – p. 4/28

.. is not so simple

In Quantum mechanics: particles are not independent

Ψ(x1, y1, z1, x2, y2, z2,xn, yn, zn)
So, instead of 26000, we have 10*10*...10=1078

The Sun contains [only] 1058 protons

And 26 particles it is :

Approximations are mandatory

HPC and QChS – p. 5/28

Quality vs. time

Basis set is used, so the problem is converted into matrix problem
Larger basis sets means larger size of matrices, and longer time

Hamiltonian quality:

Time

Semiempirical
methods

Hartree-Fock

DFT
CASSCF CASPT2

Full CI
Right

Wrong

CCSD(T)

Precise methods need more time!

HPC and QChS – p. 6/28

Just some nice pictures

HPC and QChS – p. 7/28

Quantum chemical software

• Established software packages (10-20 years of development)

• ’no experience is required’

• Substitution for ’wet chemistry’

� prediction of new materials

� understanding of chemical reactions

• occupies near 30% of computational resources

HPC and QChS – p. 8/28

MOLCAS

• developed in Lund since 90-es

• with emphasis to multiconfigurational approach, and precise
calculations

• non-profitable University based project

• 33 Mb of the source code (Fortran 77 + C)

• runs on all platforms

• best use: PC with a lot of memory, Linux clusters

• www.molcas.org

HPC and QChS – p. 9/28

MOLCAS modules

• computational tasks are very different:

� Computing of integrals (with possible packing)
• CPU, I/O (writing)

� Optimizing wavefunction
• CPU (BLAS), memory (large matrices), I/O

� Optimizing geometry (numerical)
• parallelization by task (low communication)

HPC and QChS – p. 10/28

"Theoretical" progress

HPC and QChS – p. 11/28

So, why it "doesn’t work" for QCh?

• very long development cycle

• code demands not only CPU power, but memory and I/O

• not obvious parallelization

HPC and QChS – p. 12/28

Some sad stories..

...told by Molcas users and SysAdmins.

• multicore CPUs
Parallel run can be slower (!) than serial

• advanced network file system
code uses CPU only by 3− 5%

• GPUs and CUDA BLAS
the code runs slower

Back to the drawing board....

HPC and QChS – p. 13/28

I/O from historical perspectives

• conventional integral code

� integrals are reused, let’s keep them on disk

• direct integral code

� disks are slow, let’s recompute all integrals

• semidirect integral code

� a hybrid: keep only some integrals on the disk

• Resolution of Identity / Cholesky decomposition

� keep the data, which can be used to reconstruct integrals

HPC and QChS – p. 14/28

I/O

Problem:

• The amount of integrals and intermediate data can
easily be measured in Gb, or even hundreds of Gb

• Read access is random, or spread
(a result of ’writing by columns and reading by rows)

Solutions:

• Local disks

• Solid State Devices

• Files in Memory

HPC and QChS – p. 15/28

I/O benchmarks

HPC and QChS – p. 16/28

Files in Memory

Why FiMs are better than system I/O caching?

• Developer (or user) can choose which files to keep in memory

• Writing to disk (at the end) can be done by large blocks

• No need to save temporary files

• Prepared for future parallelization

Will be a part of Molcas 8.

HPC and QChS – p. 17/28

GPU and BLAS

A success story: Todd J. Martinez
Hartree-Fock code completely written for GPU.
(With "some" restrictions: everything is in memory,
so basis sets are tiny)

up to 80% of calculations in Molcas is BLAS (or LAPACK) calls
so, can we just
- move data to GPU,
- process it in parallel on GPU,
- return the result to ’CPU’ ?

HPC and QChS – p. 18/28

What is the proper size?

Multiplication of small matrices is faster on CPU!

HPC and QChS – p. 19/28

CPU/GPU balance

The critical size (for modern GPUs) is about 128*128
(and it was about 500*500 two years ago).

PARAMETER (NCUDA=128*128)
IF (SIZE_N*SIZE_M .gt. NCUDA) then

Call CuBLASS_DGEMM(..)
ELSE

Call DGEMM(..)
ENDIF

HPC and QChS – p. 20/28

But let’s profile the code...

Only few calls are large enough!

HPC and QChS – p. 21/28

Amdahl’s law exercise

• 80% of CPU time: calls to DGEMM

• 10% of these calls are executed on GPU
(due to the size)

• expected speed up e.g. 16 times

compute the difference in timing.

HPC and QChS – p. 22/28

Parallelization

for large calculations: Memory and I/O
are more important than CPU power

BlueGene technology is [now] useless for Molcas.

HPC and QChS – p. 23/28

How to utilize multicore technology?

• control the usage of resources

• separate computations and I/O

• data packing

• decrease memory consumption (e.g. reuse shared memory)

• use it only for average-sized systems

HPC and QChS – p. 24/28

Profiling

• developers of QCh software does not profile their code
but they know the cases which works unusually slow

• profiling software does exist and it can find bottlenecks
in computations, in I/O and in memory consumption

• HPC personal should be able to help in profiling

HPC and QChS – p. 25/28

Software optimization

Compiler optimization can improve the performance,
but it might lead to overoptimization, and
to wrong results.
Tools to handle overoptimization:

• Verification
� ’trusted’ version generates reference values

� large number of tests

� thresholds for each checked value
� verification with various optimizations, compilers

� can work in an automatic way

• divide and conquer search for overoptimized routines

HPC and QChS – p. 26/28

Some conclusions

• Real applications are different from ’small test cases’

• HPC approach can contribute to ’algorithmic improvements’

� Make profiling of the code
• note that the results will be different for different modules
• note that the results will depend on the system

� "Properly" use hardware

HPC and QChS – p. 27/28

Acknowledgements

• Molcas team

• Victor Vysotskiy and Steven Vancoillie

• CINECA

HPC and QChS – p. 28/28

	Overview: HPC and QChS
	Quantum Chemistry in 2-3 slides
	A simple example
	.. is not so simple
	Quality vs. time
	Just some nice pictures
	Quantum chemical software
	MOLCAS
	MOLCAS modules
	"Theoretical" progress
	So, why it "doesn't work" for QCh?
	Some sad stories..
	I/O from historical perspectives
	I/O
	I/O benchmarks
	Files in Memory
	GPU and BLAS
	What is the proper size?
	CPU/GPU balance
	But let's profile the code...
	Amdahl's law exercise
	Parallelization
	How to utilize multicore technology?
	Profiling
	Software optimization
	Some conclusions
	Acknowledgements

