
Performance Evaluation

Giovanni Erbacci - g.erbacci@cineca.it

Supercomputing, Applications & Innovation Department - CINECA



Performance Evaluation

Outline

Performance Evaluation

Definition of parallel system

- size of the problem,

- serial execution time

- parallel execution time

G.Erbacci 1

- parallel execution time

Performance indices

- speed-up

- efficiency



Performance Evaluation

Art of Performance evaluation

�Performance evaluation of HPC Systems

• Benchmarks

• Performance models

�Performance evaluation of Aplication Codes

G.Erbacci 2

�Performance evaluation of Aplication Codes

What metrics to adopt



Performance Evaluation

Achieving Efficiency

• Parallel computers allow

– faster solutions to problems

– larger problems to be addressed

• An efficient parallel program

G.Erbacci

• An efficient parallel program

– maximises the amount of work each processor does, and

– minimises the amount of communication between processes

• How the problem is decomposed  is critical

– different ways exist depending on problem

3



Performance Evaluation

Performance Measures

Scientist:

– size of the problem,

– accuracy of the solution, etc. ...

– Number of operations per unit time (flop / s), 

G.Erbacci

Computational scientist: 

– execution time,

– speed-up,

– efficiency.

4



Performance Evaluation

Quantifying  Performance

• Serial computing concerned with complexity

– how execution time varies with problem size N

– adding two arrays (or vectors) is O(N)

– matrix times vector is O(N2), matrix-matrix isO(N3)

• Look for clever algorithms

– naïve sort is O(N2)

G.Erbacci

– divide-and-conquer approaches areO(N log (N))

• Parallel computing also concerned with scaling

– how time varies with number of processors P

– different algorithms can have different scaling behaviour

– but always remember that we are interested in minimum time!

5



Performance Evaluation

Parallel System

A parallel system is the implementation of a parallel algorithm on 

a specific parallel architecture.

"How to scale the parallel system?"

The size of the problem - W - is the number of basic operations 

G.Erbacci 6

The size of the problem - W - is the number of basic operations 

required by the fastest known sequential algorithm to solve the 

problem itself, which is equivalent to the concept of 

computational complexity.



Performance Evaluation

Observations

Sequential algorithm

- computational complexity

- execution time

f (W) (function of the amount of data supplied as input)

Parallel algorithm

G.Erbacci 7

Parallel algorithm

- computational complexity

- execution time

f (W, p, arch)

p = number of processors used

arch = architecture on which the algorithm is implemented,

(topology of the interconnection network)



Performance Evaluation

Execution Time

Serial execution time  - Ts - is the time that elapses between 

the beginning and the end of the program on a single processor.

Parallel execution time - Tp - is the time that elapses between 

the beginning of the parallel execution and the time when the 

G.Erbacci 8

the beginning of the parallel execution and the time when the 

last processor finishes  his execution.

I/O Problem 



Performance Evaluation

Speed-up

Speedup =

Sequential execution time of the 

best sequential algorithm known

Execution time on P processors

G.Erbacci 9

• A more honest measure of performance

• Avoids picking an easily parallelizable algorithm with poor   

sequential execution time



Performance Evaluation

Speed-up

speed-up is defined as:

S(W,p) = Ts(W)  /  Tp(W,p)

- What does it represent?

S
p
e
e
d
u
p

G.Erbacci 10

- What does it represent?

- In which interval varies?

S
p
e
e
d
u
p

P



Performance Evaluation

What Speedup you get?

Linear Speed-up :

– Speed-up = N, with N 

processors

Sub-linear Speed-up : 

– More normal, due to the 

overhead of initialization, 

synchronization, 

S
p
e
e
d
-u
p

Linear

G.Erbacci

synchronization, 

communication, etc..

Speed-up in flexion: 

– Decreases as the number 

of processorsgrows. 

super-linear Speed-up

11

S
p
e
e
d

P

Current



Performance Evaluation

Super Linear  Speed-up

The speed-up is superlinear. when  s> p, 

This behavior is due to the fact that the program uses the memory 

hierarchies (due HW),

- Subparts fit into cache / memory of each node

- Whole problem does not fit in cache / memory of a single node

G.Erbacci

or there is a better code optimization with regard to the scheduling of 

instructions (due SW) or not detrminism eg. in search problems.

One thread finds near-optimal solution very quickly => leads to drastic 

pruning of search space

12



Performance Evaluation

Efficiency

Efficiency is defined as

E (W, p) = S (W, p) / p

is the ratio between the sequential execution time and the 

execution time on p processors, multiplied by p

G.Erbacci 13

execution time on p processors, multiplied by p

What amount is?

What does it represent?

In whichi nterval varies?



Performance Evaluation

Scalability of Parallel computers 

There is no precise definition of scalability

An Architecture is scalable  if it continues to have the same performance per 
processor when the number of processors and the size of the computational problem 
to be solved increse.

Scalable MPP systems are designed in such a way that larger versions of the same 
machine (systems with a greater number of nodes) can be constructed or extended 
from the same design.

G.Erbacci

from the same design.

A program scales for a number of processors P, if moving  from p-1 to p processors 
an improvement in terms of speed-up is observed .

Improving load balance / algorithm increases the turn-over to a higher 
numbers of PEs

better scaling = ability to utilise larger computers

14



Performance Evaluation

Sources of overhead

The efficiency of real parallel systems often (unless trivial  parallel 

algorithms, embarrassingly parallel) is not maximum because in a 

parallel system appears sources of overhead such as:

- extra computations for the parallel algorithm compared to the  

best sequential algorithm,

G.Erbacci 15

best sequential algorithm,

- need for interprocessor communications,

- workload imbalance and more.



Performance Evaluation

Granularity

How long does it take to communicate?  Relevant network 

metrics:

– Bandwidth: number of bits per second that can be transmitted 

through the network

– Latency: time to make a message transfer through the network

Message-passing parallel programs can minimize communication 

delays by partitioning the program into processes and  

G.Erbacci

delays by partitioning the program into processes and  

considering the granularity of the process on the machine.

16

ioncommunicat

ncomputatio

t

t
ygranularit =



Performance Evaluation

Serial and  parallel fraction

The serial fraction of a program, fs , is the ratio between the time 

spent in the code inherently sequential and Ts(W).

We define  parallel fraction of a program, fp, the ratio between the 

time spent in the code parallelizable and  Ts(W).

G.Erbacci 17

time spent in the code parallelizable and  Ts(W).

Obviously fs = (1 - fp ).



Performance Evaluation

Sequential vs. Parallel

Sequential execution time: t seconds

Start-up overhead of parallel execution: t_st seconds (depends on architecture)

Parallel execution time (ideal): t/p + t_st

If t/p + t_st > t,  no gain!

G.Erbacci 18



Performance Evaluation

The Serial Component

• Amdahl’s law

“the performance improvement to be gained by parallelisation is 

limited by the proportion of the code which is serial”

Gene Amdahl, 1967

G.Erbacci 19

1

1

1 2             4             8     Processors

1              1,33        1,6         1,8   Speed-up



Performance Evaluation

Amdahl’s Law
• Assume a fraction fs is completely serial

– time is sum of serial and potentially parallel

• Parallel time

– parallel part 100% efficient

Tp(W,p)=Ts (W) fs + ( Ts(W) fp / p )

• Parallel speedup S(W,p) = Ts(W)  /  Tp(W,p)  = 

= Ts(W) /(fs x Ts(W) + (1- fs ) x Ts(W) /p)

G.Erbacci

= Ts(W) /(fs x Ts(W) + (1- fs ) x Ts(W) /p)

= p / (1 +(p-1) x fs )

S(W,p) � 1 / fs per p� ∞

– for fs = 0, S= P as expected (ie E= 100%)

– otherwise, speedup limited by 1/ fs for any P

– Eg. if 5% of the code is sequential, the speed-up will never exceed 20 even 

with an infinite number of processors.

– the performance improvement to be gained by parallelisation is limited by the 

proportion of the code which is serial 

– impossible to effectively utilise large parallel machines?

20



Performance Evaluation

Amdahl Law confutation

Sometimes even a limited speed-up can be a very important milestone

for certain applications.

In addition, applications can scale as the number of processors increases:

– a system with a larger number of processors in general allows to solve the 

biggest problems in a reasonable time

G.Erbacci

biggest problems in a reasonable time

– instead of assuming  fixed the size of the problem we assume that the parallel 

execution time is fixed 

– Gustafson's Law.

21



Performance Evaluation

Gustafson’s  Law

• Need larger problems for larger numbers of CPUs

• to maintain constant efficiency we need to scale the problem size with the 

number of CPUs

1 serial

G.Erbacci 22

8

1 2             4             8        Processors

1              1,8          3,0          4,5     Speed-up

parallel



Performance Evaluation

Performance Models

Fixed-size model: to find the best parallel system by fixing 

W and varying p.

Fixed-time model: identify on the curve of the execution 

G.Erbacci 23

Fixed-time model: identify on the curve of the execution 

time, the pairs (W, p) keeping fixed Tp(W,p).

Fixed-memory model: we always work with all available 

memory.



Performance Evaluation

References

Ian Foster, Designing and Building Parallel Programs.

http://www-unix.mcs.anl.gov/dbpp/

Geoffrey C. Fox, Roy D. Williams, Paul C. Messina. Parallel Computing Works.

http://www.netlib.org/utk/papers/mpi-book/mpi-book.html

Marc Snir, Steve Otto, Steven Huss-Lederman, David Walker, Jack Dongarra. MPI: The Complete 

Reference.

http://www.netlib.org/utk/papers/mpi-book/mpi-book.html

G.Erbacci 24

http://www.netlib.org/utk/papers/mpi-book/mpi-book.html

Message Passing Interface (MPI)

http://www-unix.mcs.anl.gov/mpi/

contiene informazioni sull’implementazione dello standard MPI. Inoltre fornisce link a 

papers, libri e tutorials.

Beginner's guide to MPI.

http://www.jics.utk.edu/MPI/MPIguide/MPIguide.html

Fornisce una breve referenza per le funzioni MPI più usate.  

E’ un buon punto di partenza , ma non fornisce molti dettagli.  



Performance Evaluation

Books

A. Tanenbaum, Structured Computer Organization, Prentice Hall, Inc. (4th ed.), 1999, 

(Cap 8: Architettura dei computer paralleli)

B. Wilkinson, M. Allen, Parallel Programming: Techniques and Applications Using Networked 

Workstation and Parallel Computers. Prentice-Hall, 1999. 

W. Gropp, E. Lusk, A. Skjellum, Using MPI: Portable Parallel Programming with the Message-

G.Erbacci 25

W. Gropp, E. Lusk, A. Skjellum, Using MPI: Portable Parallel Programming with the Message-

Passing Interface (2nd ed.), The MIT Press, 1996.

R.Chandra, L. Dagum, D. Kohr, D. Maydan, J. Mc Donald, R. Menon, Parallel Programming in 

OpenMP, Academic Press, 2000.

J. Dongarra, I. Foster, G. Fox, W. Gropp, K. Kennedy, L. Torkson, A. White, Sourcebook of Parallel 

Computing, Morgan Kaufmann Publ., 2003.

I. Foster, C.Kesselman, The GRID: Blueprint for a New Computing Infrastructure, Morgan Kaufmann 

Publ., 1998.



Performance Evaluation

Books / 1

K. Dowd, C. R. Severance, High Performance Computing, O’Reilly, (2nd ed.), 1998. 

M. J. Quinn, Parallel Computing: Theory and Practice, McGraw-Hill, 1995. 

Vipin Kumar, George Karypis, Ananth Grama, Anshul Gupta. Introduction to Parall Computing: 

Design and Analysis of Algorithms. 

G.Erbacci 26

Design and Analysis of Algorithms. 

Joseph Jaja. An Introduction to Parallel Algorithms.

L. Ridgway Scott, Terry Clark, Babak Bagheri Scientific paralell computing, Princeton University 

press, 2005



Performance Evaluation

Archives

Bibliographies on Parallel Processing.
http://liinwww.ira.uka.de/bibliography/Parallel/index.html

Internet Parallel Computing Archive.
http://wotug.ukc.ac.uk/parallel/index.html

Web-pages with links to parallel-processing resources

G.Erbacci 27

Parallel Processing Information.

http://www.jics.utk.edu/ParallelInfo/

Nan Schaller's Parallel Computing Page.

http://www.cs.rit.edu/~ncs/parallel.html

An extensive collection of links to parallel processing standards, 
languages, research groups, courses, and companies. Some of the links 
are broken,     quite old


