
CINECA, 14 May 2012 OpenMP Marco Comparato

OpenMP

Application Program Interface

CINECA, 14 May 2012 OpenMP Marco Comparato

Introduction

Shared-memory parallelism in C, C++ and Fortran

● compiler directives

● library routines

● environment variables

CINECA, 14 May 2012 OpenMP Marco Comparato

Directives

● single program multiple data (SPMD) constructs

● tasking constructs

● worksharing constructs

● synchronization constructs

● with support for sharing and privatizing data

CINECA, 14 May 2012 OpenMP Marco Comparato

Compiler Support

Command line option to the compiler that activates and
allows interpretation of OpenMP directives (-fopenmp for gcc)

#include <stdio.h>

int main()
{
 printf("ciao\n");

 return 0;
}

CINECA, 14 May 2012 OpenMP Marco Comparato

Conditional Compilation

In implementations that support a preprocessor, the _OPENMP
macro name is defined to have the decimal value yyyymm where
yyyy and mm are the year and month designations of the version
of the OpenMP API that the implementation supports

int main()
{
#ifdef _OPENMP
 printf("OpenMP­compliant implementation.\n");
#endif

 return 0;
}

CINECA, 14 May 2012 OpenMP Marco Comparato

Conditional Compilation

Fortran
● Sentinels recognized in Fixed Form sources:

!$ | c$ | *$

● Sentinels recognized in Free Form sources:

!$

CINECA, 14 May 2012 OpenMP Marco Comparato

Threading Concepts

● thread: An execution entity with a stack
and associated static memory, called
threadprivate memory

● thread-safe routine: A routine that performs
the intended function even when executed
concurrently (by more than one thread)

CINECA, 14 May 2012 OpenMP Marco Comparato

Directives

C/C++
● OpenMP directives are specified by using the #pragma mechanism

provided by the C and C++ standards

Fortran
● OpenMP directives are specified by using special comments that

are identified by unique sentinels. Also, a special comment form is
available for conditional compilation

● Compilers can therefore ignore OpenMP directives and
conditionally compiled code if support of the OpenMP API is not
provided or enabled

CINECA, 14 May 2012 OpenMP Marco Comparato

Directive Format

C/C++
● OpenMP directives for C/C++ are specified with the pragma

preprocessing directive

#pragma omp directive­name [clause[[,] clause]...]

● Directives are case-sensitive
● An OpenMP executable directive applies to at most one succeeding

statement, which must be a structured block

CINECA, 14 May 2012 OpenMP Marco Comparato

Directive Format

Fortran
● OpenMP directives for Fortran are specified as follows:

sentinel directive­name [clause[[,] clause]...]

● Directives are case insensitive
● Directives cannot be embedded between statements
● Sentinels recognized in Fixed Form sources:

!$omp | c$omp | *$omp

● Sentinels recognized in Free Form sources:

!$omp

CINECA, 14 May 2012 OpenMP Marco Comparato

parallel Construct

● starts parallel execution
● the syntax of the parallel construct is as follows:

C/C++

#pragma omp parallel
structured­block

Fortran

!$omp parallel
structured­block
!$omp end parallel

CINECA, 14 May 2012 OpenMP Marco Comparato

parallel Construct

● When a thread encounters a parallel
construct, a team of threads is created
to execute the parallel region

● The thread that encountered the
parallel construct becomes the master
thread of the new team

● All threads in the new team, including
the master thread, execute the region

● There is an implied barrier at the end
of a parallel region

● After the end of a parallel region, only
the master thread of the team
resumes execution of the enclosing
task region

int main()
{
#pragma omp parallel
 printf("ciao\n");

 return 0;
}

CINECA, 14 May 2012 OpenMP Marco Comparato

WRONG

int main()
{
 int i;

#pragma omp parallel
{
 for(i = 0; i < 10; ++i)
 printf("iteration %d\n", i);
}

 return 0;
}

CINECA, 14 May 2012 OpenMP Marco Comparato

Worksharing Constructs

● distribute the execution of the associated region among the members of
the team that encounters it

● have no barrier on entry
● an implied barrier exists at the end of the worksharing region, unless a

nowait clause is specified
● If a nowait clause is present threads that finish early may proceed straight

to the instructions following the worksharing region without waiting for the
other members of the team to finish the worksharing region

The following restrictions apply to worksharing constructs:
● Each worksharing region must be encountered by all threads in a team or

by none at all
● The sequence of worksharing regions and barrier regions encountered

must be the same for every thread in a team

CINECA, 14 May 2012 OpenMP Marco Comparato

Worksharing Constructs

The OpenMP API defines the following worksharing constructs:

● loop construct

● sections construct

● single construct

● workshare construct

CINECA, 14 May 2012 OpenMP Marco Comparato

loop Construct

● The loop construct specifies that the iterations of the
associated loop will be executed in parallel by threads
in the team

● The iterations are distributed across threads that
already exist in the team executing the parallel region

#pragma omp for
for(init­expr; test­expr; incr­expr)
structured­block

CINECA, 14 May 2012 OpenMP Marco Comparato

loop Construct

● Keep init-expr, test-expr, incr-
expr as simple as possible to
avoid surprices!

● The iteration variable:
● if shared, is implicitly made

private in the loop construct
● must not be modified during the

execution of the for-loop other
than in incr-expr

● its value after the loop is
unspecified

int main()
{
 int i;

#pragma omp parallel
{
#pragma omp for
 for(i = 0; i < 10; ++i)
 printf("%d\n", i);
}

 return 0;
}

CINECA, 14 May 2012 OpenMP Marco Comparato

loop Construct

Fortran

● The syntax of the loop construct is as follows:

!$omp do
do­loops
!$omp end do

CINECA, 14 May 2012 OpenMP Marco Comparato

WRONG

SUBROUTINE DO_WRONG
 INTEGER I, J

 DO 100 I = 1,10
 !$OMP DO
 DO 100 J = 1,10
 CALL WORK(I,J)
 100 CONTINUE
 !$OMP ENDDO
END SUBROUTINE DO_WRONG

CINECA, 14 May 2012 OpenMP Marco Comparato

loop Construct

● There is an implicit barrier at the end of a loop construct
● The only loop that is associated with the loop construct is

the one that immediately follows the loop directive
● The schedule clause specifies how iterations of the

associated loops are divided into contiguous non-empty
subsets, called chunks, and how these chunks are
distributed among threads of the team

CINECA, 14 May 2012 OpenMP Marco Comparato

schedule kind

#pragma omp directive­name [clause [[,] clause]...]

#pragma omp for [clause [[,] clause]...]

#pragma omp for schedule(kind)

The schedule kind can be one of the following:
● schedule(static, chunk_size)
● schedule(dynamic, chunk_size)
● schedule(guided, chunk_size)
● schedule(auto)
● schedule(runtime)

CINECA, 14 May 2012 OpenMP Marco Comparato

schedule static

● schedule(static, chunk_size)

● iterations are divided into chunks of size chunk_size, and
the chunks are assigned to the threads in the team in a
round-robin fashion in the order of the thread number

● When no chunk_size is specified, the iteration space is
divided into chunks that are approximately equal in size,
and at most one chunk is distributed to each thread

CINECA, 14 May 2012 OpenMP Marco Comparato

schedule dynamic

● schedule(dynamic, chunk_size)

● the iterations are distributed to threads in the team in
chunks as the threads request them. Each thread executes
a chunk of iterations, then requests another chunk, until no
chunks remain to be distributed

● Each chunk contains chunk_size iterations
● when no chunk_size is specified, it defaults to 1

CINECA, 14 May 2012 OpenMP Marco Comparato

schedule guided

● schedule(guided, chunk_size)
● the iterations are assigned to threads in the team in chunks as the

executing threads request them. Each thread executes a chunk of
iterations, then requests another chunk, until no chunks remain to
be assigned

● for a chunk_size of 1, the size of each chunk is proportional to the
number of unassigned iterations divided by the number of threads
in the team, decreasing to 1

● for a chunk_size with value k, the size of each chunk is determined
in the same way, with the restriction that the chunks do not contain
fewer than k iterations

● When no chunk_size is specified, it defaults to 1

CINECA, 14 May 2012 OpenMP Marco Comparato

loop Construct

● Different loop regions with the same schedule and
iteration count, even if they occur in the same parallel
region, can distribute iterations among threads differently

● Programs that depend on which thread executes a
particular iteration under any other circumstances are
non-conforming

CINECA, 14 May 2012 OpenMP Marco Comparato

sections Construct
● The sections construct is a noniterative worksharing construct that

contains a set of structured blocks that are to be distributed among and
executed by the threads in a team

● Each structured block is executed once by one of the threads in the team

The syntax of the sections construct is as follows:

C/C++

#pragma omp sections
{
[#pragma omp section]
 structured­block
[#pragma omp section
 structured­block]
 ...
}

CINECA, 14 May 2012 OpenMP Marco Comparato

sections Construct

Fortran

!$omp sections [clause[[,] clause]...]
 [!$omp section]
 structured­block
 [!$omp section
 structured­block]
 ...
!$omp end sections [nowait]

CINECA, 14 May 2012 OpenMP Marco Comparato

sections Construct

#pragma omp parallel
{
#pragma omp sections
 {
#pragma omp section
 printf("section 1\n");
#pragma omp section
 printf("section 2\n");
 }
}

CINECA, 14 May 2012 OpenMP Marco Comparato

single Construct

The single construct specifies that the associated structured
block is executed by only one of the threads in the team

The syntax of the single construct is as follows:

C/C++

#pragma omp single
structured­block

Fortran

!$omp single
structured­block
!$omp end single

#pragma omp parallel
{
#pragma omp single
 printf("ciao\n");
}

CINECA, 14 May 2012 OpenMP Marco Comparato

Combined Parallel Worksharing

Shortcuts for specifying a worksharing construct
nested immediately inside a parallel construct

#pragma omp parallel for

#pragma omp parallel sections

!$omp parallel workshare
structured­block
!$omp end parallel workshare

CINECA, 14 May 2012 OpenMP Marco Comparato

Master and Synchronization

● master

● critical
● barrier
● atomic
● ordered

CINECA, 14 May 2012 OpenMP Marco Comparato

master Construct

● The master construct specifies a structured
block that is executed by the master thread

● There is no implied barrier either on entry
to, or exit from, the master construct

#pragma omp parallel
{
#pragma omp master
 printf("ciao\n");
}

CINECA, 14 May 2012 OpenMP Marco Comparato

critical Construct

#pragma omp critical[(name)]
structured­block

● The critical construct restricts execution of the associated
structured block to a single thread at a time

● Region execution is restricted to a single thread at a time
among all the threads in the program, without regard to
the team(s) to which the threads belong

● An optional name may be used to identify the critical
construct. All critical constructs without a name are
considered to have the same unspecified name

CINECA, 14 May 2012 OpenMP Marco Comparato

critical Construct

#pragma omp parallel
{

#pragma omp
critical(long_and_strange_critical_name)
 doSomeCriticalWork_1();

#pragma omp critical
 doSomeCriticalWork_2();

#pragma omp critical
 doSomeCriticalWork_3();

}

CINECA, 14 May 2012 OpenMP Marco Comparato

barrier Construct

Specifies an explicit barrier at the point at which the construct appears

int counter = 0;

#pragma omp parallel
{
#pragma omp master
 counter = 1;

#pragma omp barrier

 printf("%d\n", counter);
}

CINECA, 14 May 2012 OpenMP Marco Comparato

atomic Construct

The atomic construct ensures that a specific storage location is accessed
atomically, rather than exposing it to the possibility of multiple, simultaneous
reading and writing threads that may result in indeterminate values

#pragma omp atomic
expression-stmt

where expression-stmt is an expression statement with one of the following forms:

x++;
x--;
++x;
--x;
x binop= expr;
x = x binop expr;

where binop is one of +, *, -, /, &, !^, |, <<, or >>

CINECA, 14 May 2012 OpenMP Marco Comparato

atomic Construct
● atomic regions enforce exclusive access with respect to other atomic regions that access

the same storage location x among all the threads in the program without regard to the
teams to which the threads belong

● Only the read and write of the location designated by x are performed mutually atomically

int counter = 0;

#pragma omp parallel
{
#pragma omp atomic
 ++counter;

#pragma omp barrier

 printf("%d\n", counter);
}

CINECA, 14 May 2012 OpenMP Marco Comparato

ordered Construct

● The ordered construct specifies a structured block in a loop
region that will be executed in the order of the loop iterations

● This sequentializes and orders the code within an ordered
region while allowing code outside the region to run in parallel

● The loop region to which an ordered region binds must have an
ordered clause specified on the corresponding loop (or parallel
loop) construct

CINECA, 14 May 2012 OpenMP Marco Comparato

ordered Construct
void work(int k)
{
#pragma omp ordered
 printf(" %d\n", k);
}

void ordered_example(int lb, int ub, int stride)
{
 int i;

#pragma omp parallel for ordered schedule(dynamic)
 for(i = lb; i < ub; i += stride)
 work(i);
}

int main()
{
 ordered_example(0, 100, 5);

 return 0;
}

CINECA, 14 May 2012 OpenMP Marco Comparato

Data-Sharing Attribute Rules

C/C++
● Variables with automatic storage duration that are declared in a

scope inside the construct are private
● Objects with dynamic storage duration are shared
● Variables with static storage duration that are declared in a scope

inside the construct are shared
● Formal arguments of called routines in the region that are passed

by reference inherit the data-sharing attributes of the associated
actual argument

● Other variables declared in called routines in the region are private
● The loop iteration variable in the associated for-loop of a for or

parallel for construct is private

CINECA, 14 May 2012 OpenMP Marco Comparato

Data-Sharing Attribute Rules

int h;

int main()
{
 int i;
 int c;
 void *d;

#pragma omp parallel
{
#pragma omp single
 d = malloc(10);

 work(1, d, &c);

#pragma omp for
 for(i = 0; i < 9; ++i);
}

 free(d);

 return 0;
}

void work(int a, void *p, int *g)
{
 static int f;
 int b;
 void *e = malloc(2);

 free(e);
}

CINECA, 14 May 2012 OpenMP Marco Comparato

Data-Sharing Attribute Rules

Fortran

● Variables and common blocks appearing in threadprivate directives are threadprivate
● The loop iteration variable(s) in the associated do-loop(s) of a do or parallel do

construct is(are) private
● A loop iteration variable for a sequential loop in a parallel construct is private in the

innermost such construct that encloses the loop
● Assumed-size arrays are shared
● Local variables declared in called routines in the region and that have the save

attribute, or that are data initialized, are shared unless they appear in a threadprivate
directive

● Variables belonging to common blocks, or declared in modules, and referenced in
called routines in the region are shared unless they appear in a threadprivate directive

● Dummy arguments of called routines in the region that are passed by reference inherit
the data-sharing attributes of the associated actual argument

● Implied-do indices and other local variables declared in called routines in the region are
private.

CINECA, 14 May 2012 OpenMP Marco Comparato

Data-Sharing Attribute Clauses

#pragma omp directive­name [clause[[,] clause]...]

● Several constructs accept clauses that allow a user to control the
data-sharing attributes of variables referenced in the construct

● Not all of the clauses listed in this section are valid on all directives
● Most of the clauses accept a comma-separated list of list items

CINECA, 14 May 2012 OpenMP Marco Comparato

default/shared/private Clause
default(none)
● The default(none) clause requires that each variable that is referenced in the

construct must have its data-sharing attribute explicitly determined by being
listed in a data-sharing attribute clause

valid on: parallel

shared(list)
● The shared clause declares one or more list items to be shared

valid on: parallel

private(list)
● The private clause declares one or more list items to be private
● A new list item of the same type is allocated for the construct
● The new list item has an undefined initial value

valid on: parallel, for, sections, single

CINECA, 14 May 2012 OpenMP Marco Comparato

default/shared/private Clause

int q;
int w;

#pragma omp parallel default(none) private(q) shared(w)
{
 q = 0;

#pragma omp single
 w = 0;

#pragma omp critical(stupid_application_stdout_critical)
 printf("%d %d\n", q, w);
}

CINECA, 14 May 2012 OpenMP Marco Comparato

firstprivate Clause

Declares one or more list items to be private to a task, and initializes each of them with
the value that the corresponding original item has when the construct is encountered

valid on: parallel, for, sections, single

int q = 3;
int w;

#pragma omp parallel default(none) firstprivate(q) shared(w)
{
#pragma omp single
 w = 0;

#pragma omp critical(stupid_application_stdout)
 printf("%d %d\n", q, w);
}

CINECA, 14 May 2012 OpenMP Marco Comparato

lastprivate Clauses

When a lastprivate clause appears on the directive that identifies a worksharing construct,
the value of each new list item from the sequentially last iteration of the associated loops,
or the lexically last section construct, is assigned to the original list item

valid on: for, sections

void lastpriv(int n, float *a, float *b)
{
 int i;

#pragma omp parallel
{
#pragma omp for lastprivate(i)
 for(i = 0; i < (n­1); ++i)
 a[i] = b[i] + b[i + 1];
}

 a[i] = b[i];
}

CINECA, 14 May 2012 OpenMP Marco Comparato

reduction Clause

● Specifies an operator and one or more list items
● For each list item, a private copy is created
● Each list item is initialized appropriately for the operator
● After the end of the region, the original list item is updated with

the values of the private copies using the specified operator

reduction(operator:list)

valid on: parallel, for, sections

CINECA, 14 May 2012 OpenMP Marco Comparato

reduction Clause

int i;
int a = 5;

#pragma omp parallel
{
#pragma omp for reduction(+:a)
 for(i = 0; i < 10; ++i)
 ++a;
}

printf("%d\n", a);

CINECA, 14 May 2012 OpenMP Marco Comparato

reduction Clause
Fortran

reduction({operator | intrinsic_procedure_name}:list)

Example:

SUBROUTINE REDUCTION(A, B, C, D, X, Y, N)
 REAL :: X(*), A, D
 INTEGER :: Y(*), N, B, C
 INTEGER :: I
 A = 0
 B = 0
 C = Y(1)
 D = X(1)
 !$OMP PARALLEL DO PRIVATE(I) SHARED(X, Y, N) REDUCTION(+:A) &
 !$OMP& REDUCTION(IEOR:B) REDUCTION(MIN:C) REDUCTION(MAX:D)
 DO I=1,N
 A = A + X(I)
 B = IEOR(B, Y(I))
 C = MIN(C, Y(I))
 IF (D < X(I)) D = X(I)
 END DO
END SUBROUTINE REDUCTION

CINECA, 14 May 2012 OpenMP Marco Comparato

reduction Clause

Be afraid of Fortran features:

PROGRAM REDUCTION_WRONG
 MAX = HUGE(0)
 M = 0
 !$OMP PARALLEL DO REDUCTION(MAX: M)
 ! MAX is no longer the intrinsic so this is non­conforming
 DO I = 1, 100
 CALL SUB(M,I)
 END DO
END PROGRAM REDUCTION_WRONG

SUBROUTINE SUB(M,I)
 M = MAX(M,I)
END SUBROUTINE SUB

CINECA, 14 May 2012 OpenMP Marco Comparato

copyprivate Clause

Provides a mechanism to use a private variable to
broadcast a value from the data environment of
one implicit task to the data environments of the
other implicit tasks belonging to the parallel region

valid on: single

CINECA, 14 May 2012 OpenMP Marco Comparato

copyprivate Clause
float read_next()
{
 float * tmp;
 float return_val;

#pragma omp single copyprivate(tmp)
{
 tmp = (float *) malloc(sizeof(float));
} /* copies the pointer only */

#pragma omp master
{
 scanf("%f", tmp);
}

#pragma omp barrier
 return_val = *tmp;
#pragma omp barrier

#pragma omp single nowait
{
 free(tmp);
}
 return return_val;
}

CINECA, 14 May 2012 OpenMP Marco Comparato

Runtime Library Routines
● Prototypes for the C/C++ runtime library routines are provided in a header file named omp.h
● Interface declarations for the OpenMP Fortran runtime library routines are provided in the form

of a Fortran include file named omp_lib.h or a Fortran 90 module named omp_lib

● int omp_get_num_threads(void);

returns the number of threads in the current team

● int omp_get_thread_num(void);

returns the thread number, within the current team, of the calling thread

● double omp_get_wtime(void);

returns a value equal to the elapsed wall clock time in seconds since some "time in the past"

CINECA, 14 May 2012 OpenMP Marco Comparato

Environment Variables
● OMP_SCHEDULE: controls the schedule type and chunk size of all loop directives that have the

schedule type runtime
● OMP_NUM_THREADS: sets the number of threads to use for parallel regions
● OMP_DYNAMIC: controls dynamic adjustment of the number of threads to use for executing parallel

regions
● OMP_NESTED: controls nested parallelism
● OMP_STACKSIZE: controls the size of the stack for threads created by the OpenMP implementation

● bash

export OMP_SCHEDULE="dynamic"

● csh

setenv OMP_SCHEDULE "dynamic"

● DOS

set OMP_SCHEDULE=dynamic

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

