2lst Summer

f School of
V PARALLEL

COMPUTING

July 2- 13,2012 (Italian)
September 3 - 14, 2012 (English)

Parallel 1/0: Basics and MPI2

Giusy Muscianisi — g.muscianisi@cineca.it
SuperComputing Applications and Innovation Department

N

CINECA

2lst Summer

' School of

, ~a? PARALLEL
Introduction COMPUTING

Reading and Writing data is a problem usually underestimated.

However it can become crucial for:
1. Performance
2. Porting data on different platforms

CINECA

Giusy Muscianisi 2

2lst Summer

' School of

PARALLEL
CINECA 1/0 system configuration COMPUTING

Both IBM BlueGene/Q (FERMI) and PLX Linux Cluster I/O are based on the
General Parallel File System (GPFS)
technology (IBM propretary)

GPFS is:

* High performance

* Scalable

* Reliable

* Ported on many platforms (in particular AIX and Linux)

CINECA

Giusy Muscianisi 3

GPFS architecture

Disks

2lst Summer

f School of

g PARALLEL
COMPUTING

Part of the
computing node
Is dedicated to
the 1/O
management

LB

Computing node

CINECA \

Computing node

LB

Computing node

Giusy Muscianisi 4

2lst Summer

' School of

g PARALLEL
COMPUTING

Blue Gene P psets

(cpu)(cru)|__ [(cpu)(cru)l _ [(cpu)(cpu)
(cpu)(cpu) (cpu)(cPU) (cpu)(cpru)
- e M . _ A -

(Feo=~raosS eeEW— T
(cpu)(cpu)l__((cpu)(cpu)___[(cpu)(cpu)
P C— e N — P —
(cpu)(cru) |(cpu)(cru) |(cu)(cpy)

‘ | (e —
(cpu) Py
(cPu)(cPu)
W A A

—__J/
I/O node (linux p—_—oe —=—4 p—ap-
() (cPu)(cPu) (cPu)(cPU) (cPu)(cPU)

hN

» N — i ~) - = =3 2 \I - ~
compute nodes (CNK) | cpu)(cpu] (cpu)(cpu) (cpu)(cpu) (cpu)(cpu)
S A S . _/j M A N > — -

e S

/0 nodes: each one manages groups of compute nodes

CINECA

Giusy Muscianisi 5

2lst Summer

' School of

~am? PARALLEL
1. Performance COMPUTING

Optimization is platform dependent.
In general: write large amount of data in single shots

For example: avoid looped read/write

do i=1,N
write (10) A(1)
enddo

It's VERY slow

CINECA

Giusy Muscianisi 6

2lst Summer

f School of

e PARALLEL
2. Data portability COMPUTING

This is a subtle problem, which becomes crucial only after all... when you try to
use data on different platforms.

For example: unformatted data written by an IBM system cannot be read by a
Linux/MS Windows PC

CINECA \

Giusy Muscianisi 7

2lst Summer

f School of

g PARALLEL
COMPUTING

2. Data portability: data representat

There are two different representations:

Little Endian <: PC (Windows/Linux)
Byte3 Byte2 Byte1 Byte0

will be arranged in memory as follows:
Base Address+0 ByteO
Base Address+1 Byte1
Base Address+2 Byte2

Base Address+3 Byte3

Big Endian
Byte3 Byte2 Byte1 Byte0

will be arranged in memory as follows:
Base Address+0 Byte3

. Base Address+1 Byte2
Unix (IBM, SGI, SUN...) ::> Base Address+2 Byte1

Base Address+3 Byte0
CINECA \

Giusy Muscianisi 8

2lst Summer

' 4B School of
g PARALLEL
Parallel 1/0 COMPUTING

Goals:
* Improve the performance
* Ensure data consistency
* Avoid communication
* Usability

Possible solutions:
1. Master-Slave
2. Distributed
3. Coordinated
4. MPI 1/O
5. High level libraries

CINECA \
| Giusy Muscianisi 9

2lst Summer

' 4B School of

~eag? PARALLEL
COMPUTING

Parallel 1/0

Solution 1: Master-Slave
Only 1 processor performs 1/O

Goals:

Improve the performance: NO
Ensure data consistency: YES
Avoid communication: NO
Usability: YES

Data File

CINECA \

Giusy Muscianisi 10

2lst Summer

' 4B School of

~eag? PARALLEL
COMPUTING

Parallel 1/0

Solution 2: Distributed I/0

All the processors read/writes their own files

Goals:
Data File 1 Improve the performance: YES
(but be careful)

Data File 2 Ensure data consistency: YES
Avoid communication: YES

Data File 3 Usability: NO

Data File O

Warning: avoid to parametrize with

processors!!!
Giusy Muscianisi 11

Parallel 1/0

2lst Summer

' 4B School of

~eag? PARALLEL
COMPUTING

Solution 3: Distributed I/0 on single file
All the processors read/writes on a single ACCESS = DIRECT file

Pel m—)

Pe2 —)

Data File

CINECA \

Goals:

Improve the performance: YES for read,
NO for write

Ensure data consistency: NO

Avoid communication: YES

Usability: YES (portable)

Giusy Muscianisi 12

2lst Summer

' 4B School of

~eag? PARALLEL
COMPUTING

Parallel 1/0

Solution 4: MPI2 |/O

MPI functions performs the 1/0. Asyncronous /O is supported.

Goals:
Pel

Improve the performance: YES
(strongly!!l)

Pe2

Dt Al Ensure data consistency: NO

Avoid communication: YES
Usability: YES

SRR

CINECA \

Giusy Muscianisi 13

2lst Summer

' 4B School of
~a? PARALLEL
Parallel 1/0 COMPUTING

Solution 5: High level libraries

HDF5
NetCDF

CINECA

Giusy Muscianisi 14

2lst Summer

@ School of

Tame?d PARALLEL
.~ COMPUTING

MPI 2 - 1/0O

CINECA

Giusy Muscianisi 15

2lst Summer

' 4B School of

MPI 2 - I/O = COMPUTING

* Defines parallel operations for reading and writing files
— 1/O to only one file and/or to many files
— Contiguous and non-contiguous I/O
— Individual and collective 1/0
— Asynchronous 1/O
 Portable programming interface
* Potentially good performance
« Easy to use

— It blends into syntax and semantic scheme of point-to-point and collective
communication of MPI.

— Writing to a file is like sending data to another process.

« Used as the backbone of many parallel I/O libraries such as parallel NetCDF
and parallel HDF5

CINECA

Giusy Muscianisi 16

2lst Summer

' 4B School of

L. v PARALLEL
Some definitions 1/3 COMPUTING

1
File

An MPI file is an ordered collection of typed data items.

MPI supports random or sequential access to any integral set of these items.
MPI standard does not add anything to the file. It is not a file format.
Files written with MPI I/O can be read from any non MPI application.

Displacement

A file displacement is an absolute byte position relative to the beginning of a file.
The displacement defines the location where a view begins.

Offset

An offset is a position in the file relative to the current view.
It os expressed as a count of elementary type.
Holes in the view's filetype are skipped when calculating this position.

CINECA

Giusy Muscianisi 17

2lst Summer

' 4B School of

~eag? PARALLEL
COMPUTING

Some definitions 2/3

Etype (elemntary type)
An etype is unit of data access and positioning.
It must be the same on all processes with the same file handle.
It can be any MPI predefined or derived datatype.

Filetype
The filetype describes the access pattern of the processes on the file.
It defines what parts of the file are accessible by a specific process.
The processes may have different file types to access different parts of a file.

File View

Part of the file which is visible to a process. Each process has its own view of the file,
defined by a displacement, an elementary type, and a filetype.

File view enables efficient noncontiguous access to file.

CINECA \

Giusy Muscianisi

2lst Summer

' 4B School of

L. v PARALLEL
Some definitions 3/3 COMPUTING

File pointer
Position in the file where to read or write.
— Individual file pointers: local to each process that opened the file.
— Shared file pointer: it is shared by the group of processes that opened the file.

File handle

A file handle is an opaque object created by MPI_FILE_OPEN and freed by
MPI_FILE _CLOSE.

All operations on an open file reference the file through the file handle.

File size and end of file

The size of an MPI file is measured in bytes from the beginning of the file. A newly
created file has a size of zero bytes. Using the size as an absolute displacement
gives the position of the byte immediately following the last byte in the file.

For any given view, the end of the file is the offset of the first etype accessible in the
current view starting after the last byte in the file.

CINECA

Giusy Muscianisi 19

2lst Summer

' 4B School of
V PARALLEL
Open/close a file 1/3 COMPUTING

MPI FILE OPEN(comm, filename, amode, info, fh)
IN comm: communicator (handle)
IN filename: name of file to open (string)
IN amode: file access mode (integer)
IN info: info object (handle)
OUT fh: new file handle (handle)

* Collective operations across processes within a communicator.
* Filename must reference the same file on all processes.
* Process-local files can be opened with MPI_COMM SELF.

* Initially, all processes view the file as a linear byte stream, and each process views
data in its own native representation. The file view can be changed via the
MPI_FILE SET VIEW routine.

* Additional information can be passed to MPI environment vie the MPI_Info handle.
The info argument is used to provide extra information on the file access patterns.
The constant MPI _INFO NULL can be specified as a value for this argument.

CINECA

Giusy Muscianisi 20

2lst Summer

' 4B School of

~eag? PARALLEL
COMPUTING

Open/close a file 2/3

Each process within the communicator must specify the same filename and access mode

(amode):
MPI_MODE_RDONLY read only
MPI_MODE_RDWR reading and writing
MPI_MODE_WRONLY write only
MPI_MODE_CREATE create the file if it does not exist
MPI_MODE_EXCL error if creating file that already exists
MPI_MODE_DELETE_ON_CLOSE delete file on close
MPI_MODE_UNIQUE_OPEN file will not be concurrently opened elsewhere
MPI_MODE_SEQUENTIAL file will only be accessed sequentially
MPI_MODE_APPEND set initial position of all file pointers to end of file

CINECA \

Giusy Muscianisi 21

2lst Summer

' 4B School of
- PARALLEL
Open/close a file 3/3 COMPUTING

MPI_FILE CLOSE (fh)
INOUT fh: file handle (handle)

* Collective operation

* This function is called when the file access is finished, to free the file
handle.

CINECA

Giusy Muscianisi 22

2lst Summer

' 4B School of

V PARALLEL
Data Access 1/3 COMPUTING

MPI-2 provides a large number of routines to read and write data from a file.
There are three properties which differentiate the different data access routines.

Positioning. Users can either specify the offset in the file at which the data access
takes place or they can use MPI file pointers.

— Individual file pointers

* Each process has its own file pointer that is only altered on accesses of
that specific process

— Shared file pointer

* This file pointer is shared among all processes in the communicator used
to open the file

* Itis modified by any shared file pointer access of any process

* Shared file pointers can only be used if file type gives each process
access to the whole file!

— Explicit offset
* No file pointer is used or modified
* An explicit offset is given to determine access position
* This can not be used with MPI MODE SEQUENTIAL!

CINECA

Giusy Muscianisi 23

2lst Summer

' 4B School of

V PARALLEL
Data Access 2/3 COMPUTING

Synchronisation. MPI-2 supports both blocking and non-blocking I/O routines.
— A blocking I/O call will not return until the 1/0O request is completed.

— A nonblocking I/O call initiates an 1/O operation, but not wait for its completition. It
also provides 'split collective routines' which are a restricted form of non-blocking
routines for collective data access.

Coordination. Data access can either take place from individual processes or
collectively across a group of processes:

— collective: MPI coordinates the reads and writes of processes
— independent: no coordination by MPI

CINECA

Giusy Muscianisi 24

2lst Summer

" 4 School of
g PARALLEL
Data Access 3/3 CONPLELING
Posioning Synchromsaton Coordination
Noweollective Colleative
Esplicit Blocking WPI_FILE EEAD AT WPl _FILE REEAD AT ALL
offsets MFI FILE WEITE AT WPl FILE WEITE AT ALL
MNow—blocking & WPI_FILE IREAD AT WPl _FILE READ AT ALL BEGIN
gplir collective MPI FILE EEAL AT ALL END
MPI_FILE TWRITE AT MPI_FILE WEITE_AT ALL BEGIM
WPl FILE WEITE_AT ALL EMD
Tndividuc Blocking MPI_FILE REATD WPl _FILE READ ALL
Sile pointers MFI_FILE_WEITE WPl _FILE WEITE_ALL
MNon—blocking & MFI_FILE IREAD WPl FILE EEAD ALL BEGIM
split collective MPI FILE READ ALL END
MFI_FILE I'WERITE MPI FILE WEITE _ALL BEGIM
WPl _FILE WEITE_ALL EMD
Shered Blocking MFI_FILE EEAD SHAFED WPl FILE READ CRLDEEEL
Sile pointer WPI_FILE WEITE SHAREL: WPl _FILE WEITE CRLCERED
MNon—blocking & MFI_FILE IREAD SHARED Pl FILE FEAD GRDEEED BEGIM
split collective WPl _FILE READ ORDEEED EMD
WPI_FILE IWEITE SHARED WPI_FILE WEITE COEDERED BEGIM
MPI FILE WEITE ORDEEED EMD

CINECA

Giusy Muscianisi

25

2lst Summer

' 4B School of

.. . . . g PARALLEL
Individual file pointers - Write COMPUTING

MPI FILE WRITE (fh, buf, count, datatype, status)
INOUT fh: file handle (handle)
IN buf: initial address of buffer (choice)
IN count: number of elements in buffer (integer)
IN datatype: datatype of each buffer elemnt (handle)
OUT status: status object (status)

— Write count elements of datatype from memory starting at buf to the file
— Starts writing at the current position of the file pointer
— status will indicate how many bytes have been written
— Updates position of file pointer after writing
— Blocking, independent.
— Individual file pointers are used:
Each processor has its own pointer to the file
Pointer on a processor is not influenced by any other processor

CINECA

Giusy Muscianisi 26

2lst Summer

' 4B School of

.. . . g PARALLEL
Individual file pointers - Read COMPUTING

MPI FILE READ (fh, buf, count, datatype, status)
INOUT fh: file handle (handle)
OUT buf: initial address of buffer (choice)
IN count: number of elements in buffer (integer)
IN datatype: datatype of each buffer element (handle)
OUT status: status object (status)

— Read count element of datatype from the file to memory starting at buf
— Starts reading at the current position of the file pointer
— status will indicate how many bytes have been read
— Updates position of file pointer after writing
— Blocking, independent.
— Individual file pointers are used:
Each processor has its own pointer to the file
Pointer on a processor is not influenced by any other processor

CINECA

Giusy Muscianisi 27

2lst Summer

' 4B School of

, . o ~eam? PARALLEL
Seeking to a file position COMPUTING

MPI FILE SEEK (fh, offset, whence)
INOUT fh: file handle (handle)
IN offset: file offset in byte (integer)
IN whence: update mode (state)

— Updates the individual file pointer according to whence, which can heve the following
values:

— MPI_SEEK_ SET: the pointer is setto offset
— MPI_SEEK_ CUR: the pointer is set to the current pointer position plus offset
— MPI_SEEK END: the pointer is set to the end of the file plus offset

— offset can be negative, which allows seeking backwards

— It is erroneous to seek to a negative position in the view

CINECA

Giusy Muscianisi 28

2lst Summer

" School of

g PARALLEL
ter~ COMPUTING

Querying the position of the file p

MPI FILE GET POSITION (fh, offset)
IN fh: file handle (handle)
OUT offset: offset of the individual file pointer (integer)

— Returns the current position of the individual file pointer in of fset

— The value can be used to return to this position or calculate a displacement
— Do not forget to convert from offset to byte displacement if needed

CINECA \

Giusy Muscianisi 29

Read from a common file using individual 2lst Summer

file pointers ' School of
: by s w S PARALLEL
#include “mpi.h COMPUTING

#define FILESIZE(1024%1024) ;

int main(int argc, char **argv)/{

int *buf, rank, nprocs, nints, bufsize;
MPI File fh; MPI Status status; File offset
determined by
MPI Init(&argc, &argv); “APL_F“e_Seek
MPI Comm rank(MPI COMM WORLD, &rank);

MPI Comm size(MPI COMM WORLD, &nprocs);

bufsize = FILESIZE/nprocs;

nints =bufsize/sizeof(int);

buf = (int*) malloc(nints);

MPI_File open(MPI_COMM WORLD, “/pfs/datafile”, MPI_MODE_RDONLY,
MPI_INFO NULL,&fh);

MPI File seek(fh, rank*bufsize,MPI SEEK SET);
MPI File read(fh, buf, nints, MPI_INT, &status);
MPI File close(&fh);

free(buf);

MPI Finalize();

return 0; }

CINECA

Giusy Muscianisi 30

Write in a common file using individual 2lst Summer

file pointers ' ggrlk?ll_l?efL
PROGRAM Output COMPUTING

USE MPI |

IMPLICIT NONE

INTEGER :: err, i, myid, file, intsize File offset

INTEGER :: status(MPI_STATUS SIZE) determined by

INTEGER, PARAMETER :: count=100 :

’ MPI File seek
INTEGER DIMENSION(count) :: buf — —
INTEGER, INTEGER(KIND=MPI OFFSET KIND) :: disp

CALL MPI INIT(err)
CALL MPI_COMM RANK(MPI COMM WORLD, myid,err)
DO i = 1, count
buf(i) = myid * count + i
END DO

CALL MPI_FILE OPEN(MPI_COMM WORLD, 'test', MPI MODE WRONLY + &
MPI_MODE_CREATE, MPI INFO NULL, file, err)

CALL MPI TYPE STZE(MPI_ INTEGER, intsize,err)
disp = myid * count * intsize
CALL MPI_FILE SEEK(file, disp, MPI_SEEK SET, err)
CALL MPI_FILE WRITE(file, buf, count, MPI_ INTEGER, status, err)
CALL MPI FILE CLOSE(file, err)
CALL MPI FINALIZE(err)
CINENDP PROGRAM,Output

Giusy Muscianisi 31

2lst Summer

' 4B School of
.. . V PARALLEL
Explicit offset - Write COMPUTING

int MPI File write at (MPI File fh, MPI Offset offset,
void *buf, int count, MPI Datatype datatype, MPI_ Status
*status)

— An explicit offset is given to determine access position

— The file pointer is neither used or incremented or modified
— Blocking, independent.

— Explicit seek can be avoided...

— Writes COUNT elements of DATATYPE from memory BUF to the file
— Starts writing at OFFSET units of etype from begin of view

— The sequence of basic datatypes of DATATYPE (= signature of DATATYPE) must match
contiguous copies of the etype of the current view

CINECA

Giusy Muscianisi 32

2lst Summer

' 4B School of
.. . V PARALLEL
Explicit offset - Write COMPUTING

int MPI File write at (MPI File fh, MPI Offset offset,
void *buf, int count, MPI Datatype datatype, MPI_ Status
*status)

— An explicit offset is given to determine access position

— The file pointer is neither used or incremented or modified
— Blocking, independent.

— Explicit seek can be avoided...

— Writes COUNT elements of DATATYPE from memory BUF to the file
— Starts writing at OFFSET units of etype from begin of view

— The sequence of basic datatypes of DATATYPE (= signature of DATATYPE) must match
contiguous copies of the etype of the current view

CINECA

Giusy Muscianisi 33

2lst Summer

' 4B School of
.. a? PARALLEL
Explicit offset - Read COMPUTING

int MPI File read at (MPI _File fh, MPI Offset offset, void
*buf, int count, MPI Datatype datatype, MPI Status
*status)

— An explicit offset is given to determine access position

— The file pointer is neither used or incremented or modified
— Blocking, independent.

— Explicit seek can be avoided...

— Reads COUNT elements of DATATYPE from the file into memory
— DATATYPE defines where the data is placed in memory
— EOF is reaches when elements read is different from COUNT

— The sequence of basic datatypes of DATATYPE (= signature of DATATYPE) must match
contiguous copies of the etype of the current view

CINECA

Giusy Muscianisi 34

Read from a common file using explicit offsets

PROGRAM main
include 'mpif.h'

parameter (FILESIZE=1048576, MAX BUFSIZE=1048576, INTSIZE=4)

-

integer buf(MAX BUFSIZE), rank, ierr, fh, nprocs, nints

integer status(MPI_STATUS SIZE), count
integer (kind=MPI OFFSET KIND) offset

call MPI INIT(ierr)

call MPI_COMM RANK(MPI COMM WORLD, rank, ierr)
call MPI COMM SIZE(MPI COMM WORLD, nprocs, ierr)

2lst Summer

School of
PARALLEL
COMPUTING

call MPI_FILE OPEN(MPI_COMM WORLD, '/pfs/datafile', MPI_MODE_RDONLY,

MPI_INFO NULL, &
fh, ierr)
nints = FILESIZE/ (nprocs*INTSIZE)
offset = rank * nints * INTSIZE

call MPI FILE READ AT(fh, offset, buf, nints, MPI INTEGER, status, ierr)

call MPI FILE CLOSE(fh, ierr)
call MPI FINALIZE(ierr)

END“PROGRAM main
CINECA

Giusy Muscianisi

35

2lst Summer

' 4B School of

g PARALLEL
Shared file pointer - Write, Read COMPUTING

int MPI File write shared (MPI_File fh, void *buf, int
count, MPI Datatype datatype, MPI_ Status *status)

int MPI File read shared (MPI File fh, void *buf, int
count, MPI Datatype datatype, MPI_ Status *status)

— Blocking, independent write/read using the shared file pointer
— Only the shared file pointer will be advanced accordingly
— DATATYPE is used as the access pattern to BUF

— Middleware will serialize accesses to the shared file pointer to ensure collision-free file
access

CINECA

Giusy Muscianisi 36

2lst Summer

' 4B School of
Seeking and quering the S’ EgagbtﬁhG
shared file pointer position *

int MPI File seek shared(MPI File fh, MPI Offset offset, int whence)

— Updates the individual file pointer according to WHENCE (MP|_SEEK_SET,
MPI_SEEK CUR, MPI_SEEK END)

— OFFSET can be negative, which allows seeking backwards
— It is erroneous to seek to a negative position in the view
— The call is collective : all processes with the file handle have to participate

int MPI File get position shared(MPI File fh, MPI Offset* offset)

— Returns the current position of the individual file pointer in OFFSET

— The value can be used to return to this position or calculate a displacement
— Do not forget to convert from offset to byte displacement if needed

— Call is not collective

CINECA

Giusy Muscianisi 37

2lst Summer

' 4B School of

g PARALLEL
File view COMPUTING
|

« A file view defines which portion of a file is “visible” to a process
* File view defines also the type of the data in the file (byte, integer, float, ...)

» By default, file is treated as consisting of bytes, and process can access (read
or write) any byte in the file
* Afile view consists of three components
— displacement : number of bytes to skip from the beginning of file
— etype : type of data accessed, defines unit for offsets

— filetype : portion of file visible to process same as etype or MPI derived type
consisting of etypes

* Adefault view for each participating process is defined implicitly while
opening the file
— No displacement
— The file has no specific structure (The elementary type is MPI BYTE)
— All processes have access to the complete file (The file type is MPI BYTE)

CINECA

Giusy Muscianisi 38

File view

etype [|

filetype [JI [1]
(T

holes

tiling a file with the filetype:

7

jlsp]aclzmen‘tx—— accessible data

CINECA \

2lst Summer

' 4B School of

~eag? PARALLEL
COMPUTING

Etype

An etype is unit of data access and
positioning.

Filetype

The filetype describes the access
pattern of the processes on the file.

etype
process 0 filetype

process 1 filetype
File View

Part of the file which
is visible to a process.

process 2 filetype

displacement

L]

_EEEEN
[T[]

tiling a file with the filetypes:

Giusy Muscianisi

2lst Summer

' 4B School of

- PARALLEL
Fi le View COMPUTING

MPI FILE SET VIEW(fh, disp, etype, filetype, datarep, info)
INOUT fh: file handle (handle)
IN disp: displacement from the start of the file, in bytes
(integer)

IN etype: elementary datatype. It can be either a pre-defined or
a derived datatype but it must have the same value on each
process. (handle)

IN filetype: datatype describing each processes view of the
file. (handle)

IN datarep: data representation (string)
IN info: info object (handle)

— It is used by each process to describe the layout of the data in the file.

— MPI provides functions for creating datatypes for subarrays which can be used in the
filetype argument.

CINECA

Giusy Muscianisi 40

2lst Summer

f School of

g PARALLEL
COMPUTING

Data representation in the file vie

native: highest performance — data are written as they are in memory

internal: implementation-defined. If necessary data are converted — useful for
heterogeneous distributed computing platforms

external32: highest portability: All floating point values are in big-endian 32-bit
IEEE format

CINECA \

Giusy Muscianisi 41

2lst Summer

f School of

~eag? PARALLEL
COMPUTING

1le view for non-contiguous
data: filetype

- EE BN §N= =

File written per row

2D-array distributed
column-wise

» Each process has to access small pieces of data scattered throughout a file
* Very expensive if implemented with separate reads/writes
 Use file type to implement the non-contiguous access

CINECA \

Giusy Muscianisi 42

CINECA \

2lst Summer

f School of

g PARALLEL
COMPUTING

1le view for non-contiguous
data: filetype

= I N NEN NS S

File written per row

2D-array distributed
column-wise

INTEGER :: count = 4

INTEGER, DIMENSION(count) :: buf

CALL MPI_TYPE VECTOR(4, 1, 4, MPI_INTEGER, filetype, err)

CALL MPI_TYPE COMMIT(filetype, err)

disp = myid * intsize

CALL MPI FILE SET VIEW(file, disp, MPI INTEGER, filetype, “native”,
MPI_INFO NULL, err)

CALL MPI FILE WRITE(file, buf, count, MPI INTEGER, status, err)

Giusy Muscianisi 43

2lst Summer

' 4B School of

PARALLEL
Collective, blocking 1/0 = compuTiNg

I/0 can be performed collectively by all processes in a communicator

Same parameters as in independent I/O functions (MPIl_File_read etc)
— MPI_File_read_all
— MPI_File_write_all

— MPI_File_read_at_all
— MPI_File_write_at_all

— MPI_File_read_oredered
— MPI_File_write _ordered

All processes in communicator that opened file must call function

Performance potentially better than for individual functions
— Even if each processor reads a non-contiguous segment, in total the read is

CINECA eentiguous

Giusy Muscianisi 44

2lst Summer

' 4B School of

PARALLEL
Collective, blocking 1/0 = compuTiNg

int MPI File write all(MPI File fh, void *buf, int count,
MPI Datatype datatype, MPI_ Status *status)

int MPI File read all(MPI File mpi fh, void *buf, int
count, MPI Datatype datatype, MPI Status *status)

With collective 1/0O ALL the processors defined in a communicator execute the
|/O operation

This permits to optimize the read/write procedure

It is particularly effective for non atomic operations

CINECA

Giusy Muscianisi 45

Non-contiguous access with a single collective I/0

function 1/2

#include “mpi.h”
#define FILESIZE 1048576
#define INTS PER BLK 16

int main(int argc, char **argv){
int *buf, rank, nprocs, nints, bufsize;
MPI File fh;
MPI Datatype filetype;

MPI Init(&argc, &argv);
MPI Comm rank(MPI_ COMM WORLD, &rank);
MPI Comm size(MPI_COMM WORLD, &nprocs);

bufsize = FILESIZE/nprocs;
buf = (int *) malloc(bufsize);

nints = bufsize/sizeof(int);

2lst Summer
School of
PARALLEL
COMPUTING

MPI_File open(MPI_COMM WORLD, “/pfs/datafile”, MPI_MODE RDONLY, MPI_ INFO NULL, &fh);
MPI_Type_vector(nints/INT_PER BLK, INTS PER BLK, INTS PER _BLK*nprocs, MPI_INT,

&filetype);
MPI Type commit(&filetype);

CINECA

Giusy Muscianisi

46

Non-contiguous access with a single collective I/0 2lst Summer

function 2/2 '. School of

#include “mpi.h”
#define FILESIZE 1048576

g PARALLEL
COMPUTING

#define INTS PER BLK 16

int main(int argc, char **argv){

}

CINECA \

/* declaration part */
/* MPI initialization */

/* settings of buf size */

MPI File open(...);
MPI Type vector(filetype); MPI Type commit(&filetype);

MPI File set view(fh, INTS PER BLK*sizeof(int)*rank, MPI INT, filetype,
“native”, MPI_INFO NULL);

MPI_File read _all(fh, buf, nints, MPI_INT, MPI_STATUS_ IGNORE);

MPI File close(&fh);

MPI Type free(&filetype);

free(buf);

MPI Finalize();

return 0;

Giusy Muscianisi 47

CINECA \

2lst Summer

f School of

g PARALLEL
COMPUTING

Storing multidimensional arrays

- HNEEEYENE NN =N

File written per row

Domain decomposiztion
for 2D-array

INTEGER :: sizes = (/4, 4/)
INTEGER :: subsizes = (/2, 2/)
INTEGER, DIMENSION(2,2) :: buf

MPI CART COORDS(MPI COMM WORLD, myid, 2, starts, err)

CALL MPI_TYPE CREATE SUBARRAY (2, sizes, subsizes, starts, MPI_INTEGER, &
MPI _ORDER C, filetype, err)

CALL MPI TYPE COMMIT(filetype)

CALL MPI FILE SET VIEW(file, 0, MPI_ INTEGER, filetype, “native”, &
MPI_INFO NULL, err)

CALL MPI FILE WRITE(file, buf, count, MPI INTEGER, status, err)

Giusy Muscianisi 48

Storing multidimensional arrays:

Collective I/0

Domain decomposiztion

for 2D-array

INTEGER :: sizes = (/4, 4/)
INTEGER :: subsizes = (/2, 2/)
INTEGER, DIMENSION(2,2) :: buf

2lst Summer

f School of

g PARALLEL
COMPUTING

- HNEEEYENE NN =N

File written per row

Collective write can be over hundred
times faster than the individual for
large arrays!

CALL MPI_CART COORDS(MPI_COMM WORLD, myid, 2, starts, err)
CALL MPI_TYPE_CREATE_SUBARRAY(2, sizes, subsizes, starts, MPI_INTEGER, &

MPI ORDER C, filetype, err)

CALL MPI TYPE COMMIT(filetype)
CALL MPI FILE SET VIEW(file, 0, MPI INTEGER, filetype,&

‘native’, MPI_ INFO NULL, err)

CALL MPI FILE WRITE ALL(file, buf, count, MPI_INTEGER, status, err)

CINE(..’A;. \

Giusy Muscianisi 49

2lst Summer

' 4B School of

~eag? PARALLEL
COMPUTING

Darray and collective 1/0 1/2

/* int MPI Type create darray (int size, int rank, int ndims, int
array of gsizes[], int array of distribs[], int array of dargs[], int
array of psizes[], int order, MPI Datatype oldtype, MPI Datatype
*newtype) */

int gsizes[2], distribs[2], dargs[2], psizes[2];

gsizes[0] = m; /* no. of rows in global array */
gsizes[l] = n; /* no. of columns in global array*/
distribs[0] = MPI DISTRIBUTE BLOCK;

distribs[1] = MPI DISTRIBUTE BLOCK;

dargs[0] = MPI DISTRIBUTE DFLT DARG;
dargs[l] = MPI DISTRIBUTE DFLT DARG; :

B4 R s
psizes[0] = 2; /* no. of processes in vertical dimension

of process grid */

izes[1l] = 3; /* no. of processes in horizontal dimension
c_|NE:f\ of process grid * /

Giusy Muscianisi 50

2lst Summer

" School of

g PARALLEL
COMPUTING

Darray and collective 1/0 2/2

MPI Comm rank(MPI COMM WORLD, &rank);

MPI Type create darray(6, rank, 2, gsizes, distribs, dargs,
psizes, MPI_ORDER C, MPI_FLOAT, &filetype);

MPI Type commit(&filetype);

MPI File open(MPI_COMM WORLD, "/pfs/datafile",
MPI_MODE_CREATE | MPI_MODE WRONLY,
MPI INFO NULL, &fh);
MPI File set view(fh, 0, MPI FLOAT, filetype, "native",
MPI_ INFO NULL);

local array size = num local rows * num local cols;
MPI_File write_all(fh, local_array, local_array size, _
MPI FLOAT, &status); I

MPI File close(&fh); OO R

CINECA \

| A R B R R e

Giusy Muscianisi 51

2lst Summer

f School of

g PARALLEL
COMPUTING

Independent, nonblocking I/0

This is just like non blocking communication.

Same parameters as in blocking I/O functions (MPI_File _read etc)

— MPI_File_iread

— MPI_File_iwrite

— MPI_File_iread_at

— MPI_File_iwrite_at

— MPI_File_iread_shared
— MPI_File_iwrite_shared

MPI1_Wait must be used for syncronization.

Can be used to overlap I/0O with computation

CINECA \

Giusy Muscianisi 52

2lst Summer

' School of
V PARALLEL

Collective, nonblocking 1/0 COMPUTING
For collective 1/O only a restricted form of nonblocking 1/O is supported, called Split
Collective.

MPI File read all begin(MPI File mpi fh, void *buf, int count,
MPI Datatype datatype)

..computation..

MPI File read all end(MPI File mpi fh, void *buf, MPI Status
*status);

— Collective operations may be split into two parts

— Only one active (pending) split or regular collective operation per file handle at any time
— Split collective operations do not match the corresponding regular collective operation
— Same BUF argument in _begin and _end calls

CINECA

Giusy Muscianisi 53

2lst Summer

" School of

a? PARALLEL
Use cases COMPUTING
i

1. Each process has to read in the complete file
* Solution: MPI_FILE_ READ ALL

. Collective with individual file pointers, same view (displacement, etype,
filetype) on all processes
. Internally: read in once from disk by several processes (striped), then

distributed broadcast

2. The file contains a list of tasks, each task requires a different amount
of computing time
* Solution: MPI_FILE_READ_SHARED

. Non-collective with a shared file pointer
Same view on all processes (mandatory)

CINECA

Giusy Muscianisi 54

2lst Summer

' 4B School of

g PARALLEL
Use cases COMPUTING

3. The file contains a list of tasks, each task requires the same amount of
computing time

Solution A: MPI_FILE_ READ_ORDERED
Collective with a shared file pointer
. Same view on all processes (mandatory)

Solution B : MPI_FILE_ READ _ALL
Collective with individual file pointers
Different views: filetype with MPI_TYPE_CREATE_SUBARRAY

Internally: both may be implemented in the same way.

CINECA

Giusy Muscianisi 55

Use cases

2lst Summer

" School of
V PARALLEL

COMPUTING

4. The file contains a matrix, distributed block partitioning, each process

reads a block

Solution: generate different filetypes with MPI_TYPE_CREATE_DARRAY

The view of each process represents the block that is to be read by this
process

MPI_FILE_READ_AT_ALL with OFFSET=0
Collective with explicit offset
Reads the whole matrix collectively

Internally: contiguous blocks read in by several processes (striped), then
distributed with all-to-all.

5. Each process has to read the complete file
Solution: MPI_FILE_READ ALL_BEGIN/END

CINECA

Collective with individual file pointers
Same view (displacement, etype, filetype) on all processes

Internally: asynchronous read by several processes (striped) started,
data distributed with bcast when striped reading has finished

Giusy Muscianisi 56

2lst Summer

@ School of

g PARALLEL
| - COMPUTING

QUESTIONS 7?77

CINECA

Giusy Muscianisi 57

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

