2lst Summer

f School of
v PARALLEL

COMPUTING

\ July 2 - 13,2012 (Italian)
Septet_nber 3-14, 101 2 (English)
Introduction to Scalasca

Gabriele Fatigati - g.fatigati@cineca.it
SuperComputing Group

N

CINECA

_ _ 2lst Summer
Hybrid programming MPI+OpenMP '- School of
g PARALLEL
COMPUTING

®SCalable performance Analysis of LArge SCale Applications

® Developed by Julich Supercomputer Centre

® Toolset for performance analysis of parallel applications on a large
scale

®Manage programs MPI, OpenMP, MPI+OpenMP

®|_atest releast 1.3

®www.scalasca.org

e N scalasca ¥

Gabriele Fatigati

i ' clst S
Hybrid programming MPI+OpenMP r- Scshoor?fmer
e PARALLEL
COMPUTING

Event tracing
program I

sources
During the
measurement there is G:ofnpiie'r_ instru.ment@
a buffer for each
thread/process o

application + measurement lib
Final collect of the <)D?

unmed
results e R trace 1
Y Y 1' ?

@arallel -t_rT::e analy))))

trace
analysis

v

@alys"is report exami'nE
e N scalasca 9

Gabriele Fatigati

: : 2lst Summer
Hybrid programming MP1+OpenMP '. School of
~am? PARALLEL
COMPUTING
Compilation
Original command: SCALASCA instrumentation command:
mpcc -c foo.c scalasca -instrument mpcc -c foo.c
mpxIf90 -o bar bar.f90 skin mpxIf90 -o bar bar.f90

e N scalasca ¥

Gabriele Fatigati

Hybrid programming MPI+OpenMP r- glc'_:'l'fo?)rgfmer
g PARALLEL
COMPUTING
#!/bin/bash
#

@ job_name = myjob

@ output = myjob.$(jobid)

#@ error = myjob.$(jobid)

@ wall_clock_limit = 0:10:00

@ total _tasks = 8

@ task_affinity=core(1)

@ parallel_threads=1

@ job _type = parallel

@ resources = ConsumableMemory(320Mb)
@ queue

module load profile/advanced
module load qt/4.5.2--x1--10.1
module load scalasca/1.2

scalasca -analyze poe ./c_example

Results analysis:
scalasca -examine epik_...

Gabriele Fatigati

Hybrid programming MPI+OpenMP o glc'-:'go(s):lgfmer
p PARALLEL
COMPUTING
Log

[00000]EPIK: Created new measurement archive ./epik_a
[00000]EPIK: Activated ./epik_a
SWEEP3D - Pipelined Wavefront with Line-Recursion
32 domains — 4 x 8 decomposition
lteration Monitor:
its=1 err=1.000000 fixs=0

its=12 err=5320.611978 fixs=19706584
Balance quantities:

[00000]EPIK: Closing experiment ./epik_a
[00000]EPIK: 42 unique paths
[00000]EPIK: Unifying...done
[00000]EPIK: Collating...done
[00000]EPIK: Closed experiment ./epik_a

B - scalasca 9

Gabriele Fatigati

Hybrid programming MPI+OpenMP

2lst Summer
School of
PARALLEL
COMPUTING

File Wiew Help |—
Metrics Call Tree | Flat Profile | System Tree Topology View |
Absolute w || |Absolute W || |Peer percent b4
- ~= =
—@ 19171146606 Visits ——{ 25.37 MPI_Init
-1 0 Synchronizations 0.01 read parameter
=] 0 Communications 0.01 read_phistress
—+—[@ 58432 Point-to-point 2.61 MPI_Bcast . 0,16)
bl 357 Collective 0.14 MP|_Send ol
=[] 0 Bytes transferred (= 491.62 MPI_Recv g i‘;;
> 13642368 Point-to-point [0.08 read_simfile i
35088 Collective 2.88 write_simba L0,11)
=[] 0.00 Computational imbalance ~>—{l 76.74 MPI_Finalize ,0,10)
—1[d 476.86 Below average 0.43 get name_fromlist .0.9)
——[476.86 Above average 0.21 read_default_fiz v, 8]
0.41 writemis)
[0 0.34 writefiz - ::
@ 7582.41 sunsol_core_ G: 4
—{ 6.36 readout .0.3)
.0,2)
.0,1)
.0,0)
{g- 0, 0)
Ly,
4] I
[8,435 416 (100.0%) | 8.435e+03| [245.762 (2.9%) | B.435e403| [14.457 4/-27.1% 1.759e+01
[[[[[ST T T TS| I RSN T T T DT [DT T T[]

CINECA

Gabriele Fatigati

CINECA

Topoelagy contrals taslbar
{enable via ‘Topology” menul

Hybrid programming MPI+OpenMP

What kind of

performance problem?

Whare is it In the
Soufce code?
in what context?

< . 2lst Summer

School of
PARALLEL

COMPUTING
T—

Howi Is it distributed
acrnss the system?
{graphical or tree-based view)

LUb e d ool cpik Smigdian b las LIS i Sulig
B Risoay Topoody 380
b I i § =] RET TS T
i IEEE EEE I e 2 |
b DT g0t DErCERG (e WbetTIC sebeckon perTETL |+ Paerpero=T I=
/"_J wwiE Pan | G | Askctew | | Fememitre= Tooologs G| Rpeicey |
- [&L coo Time o] T 06 o HYPTIF_Son st e =11 =
Select different B [4% S Fear.man 1 O REE e SR e
display modes [R He L 119,00 rypre. ShuctariCesmoy
=m Il!laI E&Eﬂﬁ:fﬂl'-lh'l = TLIE Py a_ S P T I ATy
nankatio O 0.4 Faqore_Suciig e’
.5.15 crr L =11 000 Fapre ectoriz)
I~ kor E-TT 0 Fyped S nacnunsennad
_FII:'IEII BB AdChpAT] 0.0 rypee M CReEsSsFegsasceRaik
¥ o --':':'_-ﬂ ecte =01 288 mypre. CRelastothis
» —i'l i IS R T P P e T
— M) st] 006 rypre 4 CRER:
" =] 0]
¥ |- 5.-'1_C:'J~!:|'Hd Colaooe 8 = _]0an SN ReaEerin
] -l L0000 VisEs = = WA s SMLEuual
i B LA e ranicn &ehadcn sodiness e EMGEche =
=] uu.?rcr;jrﬁciﬂ Exoaqd ol O G0 Feere - Sfracsiabrsin sk
30 P rR e nr e G !
El Ll ol e Lk Aubiny oo ;Ir:_zgj;ﬁ.;g‘:ia
Colour coding according | ;L | & 0D Estastansfet Exnandargesk 10001 e ST CoVRer T
ks fiy -- I Y| ST,
to severity valee and fF = HT}__“:‘::::“ Do beih 1 0000 fregore_ M St e
o [fea] r2 SMGAsaEetastar
display mode | il L0030 Comatatinn Fra Hes = 4 =
Clear founa tems epre_SMGRe s
e 5l <3 mnere SMGAesdis
- W& 5 e SermiaasTor g
orine desorebicn BT e Seririep
/— L 600 Frepre St coioqy
o T 000K Prgpera_SMTaspy
Context menus via o1 10,23 mepre_SMGSetSauchecboiCarst
right mouse buttan o E- Bl 1.97 bypre . SMCRESCLEL -l =
2 < I L By e S BT ol =] =
1l 03 o Y oo] 1l Ll
¥ iy 262 :LQJ.-Jql 2.0 s R 1000 |E] e 00U 160 0

S

P

Hierarchy minirmum

[sebected modefabsolute)

Selected value
[selocted modeiabsolute

{selecbed modefabsalute)

Hierarchy total

percentage of hierarchy total)

Gabriele Fatigati

Hybrid programming MPI+OpenMP = g‘;—’ﬁo(s):lgfmer
e PARALLEL
. COMPUTING
Topology view

®Hardware (only on some systems, like Blue Gene)
® MPI topology (eg: MPI_Cart_Create)
®\/isual topology user-defined (next releases)

Currently supports cartesian topologies 1D,2D,3D

e N scalasca ¥

Gabriele Fatigati

Hybrid programming MPI+OpenMP clst Summer

' 4B School of
e PARALLEL
Display modes COMPUTING
Absolute
Absolute value in seconds/number of occurrences

Root Percent
Percentage relative to the root ot the hierachy

External percent
Similar to “root percent”, but for a different dataset

e N scalasca 9

Gabriele Fatigati

Hybrid programming MPI+OpenMP

—= Time
— Execution
> Overhead

— Visits

~Hardware counters

CINECA

2lst Summer

" School of

COMPUTING

Total CPU allocation time

Execution time without overhead

Time spent in activities related to
measurement (not including dilation
per instrumented routine/region!)

Number of times a routine/region
was executed

Aggregated counter values for each
routine/region

scalasca ¥

Gabriele Fatigati

2lst Summer

Hybrid programming MPI+OpenMP '- School of
PARALLEL
COMPUTIN(i
Time
Execution
MPI
Communication
Collective
> Point-to-point
* Synchronization
Collective
File I/0O
Init/Exit
Overhead
scalasca (9

CINECA

Gabriele Fatigati

2lst Summer

_Hybrid prciqramming MPI1+OpenMP] ’ = School of
e PARALLEL
COMPUTING
- o
Time Total CPU allocation time
Execution Execution time without overhead
Overhead Time spent in tasks related to measurement

(not including dilation from instrumentation!)

MPI Time spent in pre-instrumented MPI functions

Communication | Time spent in MPI communication calls,
subdivided into collective and point-to-point

Synchronization | Time spent in calls to MPI Barrier()

File 11O Time spent in MPI file I/O functions

Init/Exit Time spent in MPI Init() and MPI Finalize()

CINEC; SC a I a Sca ,

Gabriele Fatigati

2lst Summer

Hybrid programming MPI+OpenMP " 4B School of
COMPUTING
= d
Communications
> Collective
Exchange
> As Source
» As Destination

Point-to-point

> Sends

Receives

w

» Provides the number of calls to an MPI communication function
of the corresponding class

- Zero-sized message transfers are considered synchronization!

CINEC;-A S scalasca ,

Gabriele Fatigati ‘

2lst Summer

' School of

e PARALLEL
COMPUTING

Hybrid programming MPI+OpenMP

Synchronizations
Collective
Point-to-point
Sends
Receives

+ Provides the number of calls to an MPI synchronization function
of the corresponding class

» MPI synchronizations include zero-sized message transfers!

e N scalasca O3

Gabriele Fatigati

2lst Summer

' 4B School of

PARALLEL
= COMPUTING

Hybrid programming MP1+OpenMP

Bytes transferred
Collective
Outgoing
Incoming
Point-to-point
Sent
Received

+ Provides the number of bytes transferred by an MPI communication
function of the corresponding class

i - scalasca 9

Gabriele Fatigati

MPI

Hybrid programming MP1+OpenMP

MPI collective synchronization time

L

Communication

» Synchronization

Collective

MPI I/O

Init/Exit

CINECA \

2lst Summer

r School of

e PARALLEL
COMPUTING

scalasca '3

Gabriele Fatigati

: : 2lst Summer
Hybrid programming MPI+OpenMP (School of

e PARALLEL
COMPUTING

MPI=Barrier

MPI=Barrier
MPI Barrier

location

MPI Barrier

time

- Time spent waiting in front of a barrier call until the last process
reaches the barrier operation
+ Appliesto: MPI Barrier()

e NG scalasca ¥

Gabriele Fatigati

2lst Summer
’ School of
V PARALLEL
COMPUTING

Hybrid programming MP1+OpenMP

MPI=Barrier

location

MPI Barrier

MPI Barrier

=
@

MPI Barrier

time

- Time spent in barrier after the first process has left the operation
« Appliesto: MPI Barrier()

i - scalasca 9

Gabriele Fatigati

Hybrid programming MP1+OpenMP

MPI

Communication

Collective

-+ Point-to-point

¥

Synchronization

2lst Summer

9 . School of

e PARALLEL
. COMPUTING

scalasca '3

CINECA \

Gabriele Fatigati

CINECA

Hybrid programming MPI+OpenMP

2lst Summer
' School of
— e PARALLEL
COMPUTING

MPI Allreduce

location

< -

MPI Allreduce

S

MPI Allreduce

<4 >

MPI Allreduce

time

Time spent waiting in front of a synchronizing collective operation call
until the last process reaches the operation

Applies to: MPI Allreduce(), MPI Alltoall(), MPI Alltoallv(),
MPI Allgather(), MPI Allgatherv(), MPI Reduce scatter()

scalasca &9

Gabriele Fatigati

2lst Summer
" School of
PARALLEL

Hybrid programming MPI+OpenMP
COMPUTING

MPI Allreduce

location

®

MPI Allreduce

MPI Allreduce

=
&

MPI Allreduce

time

- Time spent in synchronizing collective operations after the first process

has left the operation
« Appliesto: MPI Allreduce(), MPI Alltoall(), MPI Alltoallv(),
MPI Allgather(), MPI Allgatherv(), MPI Reduce scatter()

e N scalasca &9

Gabriele Fatigati

CINECA

Hybrid programming MPI+OpenMP

2lst Summer
(School of
— NS ‘ PARALLEL
COMPUTING

location

MPI Bcast
< >
MPI Bcast (root)
MPI Bcast
e
MPI Bcast

time

Waiting times of the destination processes of a collective 1-to-N
communication operation which enter the operation earlier than the

source process (root)
- Late Broadcast by source = Early Broadcast by destinations

Applies to: MPTI Bcast(), MPI Scatter(), MPI Scatterv()

scalasca &9

Gabriele Fatigati

2lst Summer

' School of

e PARALLEL
COMPUTING

Hybrid programming MPI+OpenMP

MPI Reduce

location

MPI Reduce

MPI Reduce (root)

4 >

MPI Reduce

time

« Waiting time if the destination process (root) of a collective N-to-1
communication operation enters the operation earlier than its sending
counterparts

« Applies to: MPI Reduce(), MPI Gather(), MPI Gatherv()

e N scalasca &9

Gabriele Fatigati

2lst Summer

' School of

e PARALLEL
COMPUTING

Hybrid programming MPI+OpenMP

=

=] 0
2 MPI=Scan

8

MPI=Scan 1
S C—

MPI Scan 2
MPI Scan 3

time

« Waiting time if process n enters a prefix reduction operation earlier
than its sending counterparts (i.e., ranks 0..n-1)

- Applies to: MPI Scan()

e N scalasca O3

Gabriele Fatigati

Hybrid programming MP1+OpenMP

MPI

=

Communication

Collective

Point-to-point

v

Synchronization

CINECA \

2lst Summer

' 4B . School of

e PARALLEL
- COMPUTING

scalasca '3

Gabriele Fatigati

2lst Summer

' School of

e PARALLEL
COMPUTING

Hybrid programming MPI+OpenMP

£ MPI_Send MPI_Send ——
8 ~ ~
MPI Recv MPI IrecvH MPI Wait —
T N
. time
% MPI Isend— MPI Wait MPI Isend— MPI Wait
g : \ : \
MPI_ Recv MPI Irecvr MPI Wait e
- - - . o
time

« Waiting time caused by a blocking receive operation posted earlier
than the corresponding send operation

« Applies to blocking as well as non-blocking communication

e N scalasca (9

Gabriele Fatigati

2lst Summer
" School of

PARALLEL
COMPUTING

Hybrid programming MPI+OpenMP

location
"

MPI=Send \

T~

MPI Waitall

< P

MPI Irecv

time

While waiting for several messages, the maximum waiting time

Is accounted
Applies to: MPT Waitall(), MPI Waitsome()

scalasca &9

Gabriele Fatigati

2lst Summer

' School of

e PARALLEL
COMPUTING

Hybrid programming MPI+OpenMP

MPI Send

HMPI Send[—{MPI Send MPISE%
MPI Recv MPI Recv MPI Recv MPI Recv }

S — S —

location

timer
- Refers to Late Sender situations which are caused by messages
received in wrong order
- Early receive of message out of order
« Comes in two flavours:
+ Messages sent from same source location
+ Messages sent from different source locations

scalasca &9

Gabriele Fatigati

CINECA

Hybrid programming MPI+OpenMP

MPI=Send

X’

location

MPI=Send

g PARALLEL

2lst Summer
School of

COMPUTING

ﬁhﬁhﬁu‘__

MPI Irecv

MPI=REEV
—

MPI Wait

<

>

time

+ Waiting time caused by a blocking send operation posted earlier than
the corresponding receive operation

- Does not apply to non-blocking sends

“7

scalasca '3

Gabriele Fatigati

Hybrid programming MP1+OpenMP

Time

2lst Summer

CINECA \

' 4B School of
e PARALLEL
COMPUTING
Execution
MPI
OpenMP
» Synchronization
Fork
Flush
Idle Threads
Overhead
scalasca O3

Gabriele Fatigati

Hybrid programming MP1+OpenMP

OpenMP

Synchronization

Fork

Flush

Idle Threads

“7

2lst Summer

' School of

e PARALLEL
COMPUTING

Time spent for all OpenMP-related tasks

Time spent synchronizing OpenMP threads

Time spent by master thread to create thread teams
Time spent in OpenMP flush directives

Time spent idle on CPUs reserved for slave threads

scalasca '3

Gabriele Fatigati

Hybrid programming MP1+OpenMP

2lst Summer

r School of
T PARALLEL
- COMPUTING
OpenMP
» Synchronization
Barrier
> Explicit
Implicit
» Lock Competition

scalasca '3

CINECA \

Gabriele Fatigati

2lst Summer
' School of
V PARALLEL
COMPUTING

Hybrid programming MP1+OpenMP

OpenMP barrier

< >
OpenMP barrier
OpenMP barrier

Gy

location

OpenMP barrier

time

Time threads spend waiting in front of a barrier call until the last thread
reaches the barrier operation
+ Applies to: Implicit/explicit barriers

.

i - scalasca 9
Gabriele Fatigati

' i clst S
Hybrid programming MPI+OpenMP o Scshoor?fmer
e PARALLEL
COMPUTING

Acquire Lock Release Lock

location

Release Lock—

Acquire Lock

">

Time a thread spends waiting for a lock that is held by other threads
until it is released and can be acquired by this thread

- Applies to: critical sections, OpenMP lock API

time

L]

e NG scalasca ¥

Gabriele Fatigati

Hybrid programming MP1+OpenMP

Code instrumentation

C/C++:
#include "epik_user.h"

void foo() {

}

CINECA \

// local declarations
// more declarations
EPIK_FUNC_START () ;
... [/ executable statements
if (L. A
EPIK_FUNC_END();
return;
} else {
EPIK_USER_REG(r_name, "region");
EPIK_USER_START (r_name) ;

EPTK_USER_END (r_name);
// executable statements

EPIK_FUNC_END();
return;y

Fortran:
#include "epik_user.inc"

subroutine bar()
EPIK_FUNC_REG ("bar™")
! local declarations

2lst Summer

' 4B School of
~~a? PARALLEL
COMPUTING
C4+:
$include "epik_user.h"
i..
EPIK_TRACER ("name");
}

EPIK_FUNC_START ()

. ! executable statements
if (...)

then
EPTIK_FUNC_END ()
return
else

EPIK_USER_REG (r_name, "region")
EPIK_USER_START (r_name)

EPIK_USER_END (r_name)
endif
. ! executable statements
EPIK_FUNC_END ()
return
end subroutine bar

scalasca '3

Gabriele Fatigati

i ' clst S
Hybrid programming MPI+OpenMP r- Scshoor?fmer
e PARALLEL
COMPUTING

OEPIK_FUNC_START, EPIK_FUNC_END mark the entry and exit
from the piece of code

® The regions should be initialized with EPIK_USER_REG
®Each exit/break/continue/return must have EPIK_FUNC_END

®Need -user flag to decode instrumentations

e N scalasca ¥

Gabriele Fatigati

