
Hybrid programming MPI+OpenMP

Gabriele Fatigati - g.fatigati@cineca.it

Supercomputing Group

Hybrid programming MPI+OpenMP

The hybrid model

�Multi-node SMP (Symmetric Multiprocessor)
connected by and interconnection network.

�Each node is mapped (at least) one process MPI and �Each node is mapped (at least) one process MPI and
OpenMP threads more.

Gabriele Fatigati

Hybrid programming MPI+OpenMP

MPI vs. OpenMP

� Pure MPI Pro:

�High scalability

High portability

Pure OpenMP Pro:

Easy to deploy (often)

Low latency�High portability

�No false sharing

�Scalability out-of-node

� Pure MPI Con:

�Hard to develop and debug.

�Explicit communications

�Coarse granularity

Low latency

Implicit communications

Coarse and fine granularity

Dynamic Load balancing

Pure OpenMP Con:

Only on shared memory machines

Intranode scalability

Possible long waits for unlocking data

Gabriele Fatigati

�Hard to ensure load balancing Possible long waits for unlocking data

Undefined thread ordering

3

Hybrid programming MPI+OpenMP

Why hybrid?

� MPI+OpenMP hybrid paradigm is the trend for clusters with
SMP architecture.

Elegant in concept: use OpenMP within the node and MPI Elegant in concept: use OpenMP within the node and MPI
between nodes, in order to have a good use of shared
resources.

� Avoid additional communication within the MPI node.

� OpenMP introduces fine-granularity.

� The two-level parallelism introduces other problems

� Some problems can be reduced by lowering MPI procs

Gabriele Fatigati

� Some problems can be reduced by lowering MPI procs
number

� If the problem is suitable, the hybrid approach can have better
performance than pure MPI or OpenMP codes.

4

Hybrid programming MPI+OpenMP

Each MPI process needs to allocate some extra memory to manage

communications and MPI enviroment.

Optimizing the memory usage

Threads uses less memory than process. No extra memory => shared memory

Example: one node having 8 cores and 32 GB. Two ways:

Pure MPI: 8 MPI process, 4 GB for each

Pure MPI: 1 MPI process, 32 GB

Hybrid: 1 MPI process, 8 threads. 32 GB shared per process, 4 GB per

Gabriele Fatigati 5

thread.

Hybrid programming MPI+OpenMP

Why mixing MPI and OpenMP code can be
slower?

� OpenMP has lower scalability because of locking resources � OpenMP has lower scalability because of locking resources
while MPI has not potential scalability limits.

� All threads are idle except ones during an MPI communication

�Need overlap computation and communication to improve
performance

�Critical section for shared variables

� Overhead of thread creation

Gabriele Fatigati

� Cache coherency and false sharing.

� Pure OpenMP code is generally slower than pure MPI code

� Few optimizations by OpenMP compilers compared to MPI

6

Hybrid programming MPI+OpenMP

False sharing in OpenMP

#pragma omp parallel for

shared(a) schedule(static,1)

for (int i=0; i<n; i++)

Suppose that each cache line consist of 4

elements and you are using 4 threads
for (int i=0; i<n; i++)

a[i] = i; Each thread store:

Thread ID Stores

0 a[0]

1 a[1]

2 a[2]

3 a[3]

Gabriele Fatigati 7

0 a[4]

... ...

Assuming that a[0] is the beginning of the cache line,

we have 4 false sharing

The same for a[4]...,a[7]

Hybrid programming MPI+OpenMP

� The cache uses the principle of data spatial proximity

� Concurrent updates to individual elements of the same threads

from different cache line invalidate the entire cache line.from different cache line invalidate the entire cache line.

� Once the cache line is marked as invalid, subsequent threads

are forced to fetch the data from main memory, to ensure cache

coherency.

Gabriele Fatigati 8

Hybrid programming MPI+OpenMP

� This happens because the cache coherence is cache line
based, not on individual itembased, not on individual item

� A cache that load a single element would not apply spatial
locality, and therefore, any new data would require fetch from
the main memory

� Read-only data does not have this problem

Gabriele Fatigati 9

Hybrid programming MPI+OpenMP

Pseudo hybrid code

call MPI_INIT (ierr)
call MPI_COMM_RANK (H)call MPI_COMM_RANK (H)
call MPI_COMM_SIZE (H)
H some computation and MPI communication
call OMP_SET_NUM_THREADS(4)

!$OMP PARALLEL
!$OMP DO

do i=1,n
H computation

enddo
!$OMP END DO

Gabriele Fatigati 10

!$OMP END DO
!$OMP END PARALLEL
H some computation and MPI communication

call MPI_FINALIZE (ierr)

Hybrid programming MPI+OpenMP

MPI_INIT_THREAD (required, provided, ierr)
� IN: required, desider level of thread support (integer).

MPI_INIT_Thread support (MPI-2)

� OUT: provided, provided level (integer).

� provided may be less than required.

Four levels are supported:
� MPI_THREAD_SINGLE: Only one thread will runs. Equals to MPI_INIT.

� MPI_THREAD_FUNNELED: processes may be multithreaded, but only the main
thread can make MPI calls (MPI calls are delegated to main thread)

� MPI_THREAD_SERIALIZED: processes could be multithreaded. More than one
thread can make MPI calls, but only one at a time.

� MPI_THREAD_MULTIPLE: multiple threads can make MPI calls, with no

Gabriele Fatigati

� MPI_THREAD_MULTIPLE: multiple threads can make MPI calls, with no
restrictions.

11

Hybrid programming MPI+OpenMP

MPI_THREAD_SINGLE

Hot to implement:

!$OMP PARALLEL DO

do i=1,10000

#pragma omp parallel for

for (i=0; i<10000; i++)do i=1,10000

a(i)=b(i)+f*d(i)

enddo

!$OMP END PARALLEL DO

call MPI_Xxx(...)

!$OMP PARALLEL DO

do i=1,10000

x(i)=a(i)+f*b(i)

enddo

!$OMP END PARALLEL DO

for (i=0; i<10000; i++)

{ a[i]=b[i]+f*d[i];

}

/* end omp parallel for */

MPI_Xxx(...);

#pragma omp parallel for

for (i=0; i<10000; i++)

{ x[i]=a[i]+f*b[i];

}

/* end omp parallel for */

Gabriele Fatigati 12

!$OMP END PARALLEL DO /* end omp parallel for */

Hybrid programming MPI+OpenMP

MPI_THREAD_FUNNELED

Only the main thread can do MPI communications. Obviously,
there is a main thread for each node

Gabriele Fatigati 13

Hybrid programming MPI+OpenMP

MPI_THREAD_FUNNELED

MPI calls outside the parallel region.

Inside the parallel region with “omp master”.

!$OMP BARRIER

!$OMP MASTER

call MPI_Xxx(...)

!$OMP END MASTER

!$OMP BARRIER

#pragma omp barrier

#pragma omp master

MPI_Xxx(...);

#pragma omp barrier

Gabriele Fatigati 14

There are no synchronizations with “omp master”, thus needs a barrier

before and after, to ensure that data and buffers are availabe before

and/or after MPI calls

Hybrid programming MPI+OpenMP

MPI_THREAD_SERIALIZED

MPI calls are made “concurrently” by two (or more) different
threads (all MPI calls are serialized)

Gabriele Fatigati 15

Hybrid programming MPI+OpenMP

MPI_THREAD_SERIALIZED

� Outside the parallel region

� Inside the parallel region with ”omp master”

� Inside the parallel region with “omp single”� Inside the parallel region with “omp single”

!$OMP BARRIER

!$OMP SINGLE

call MPI_Xxx(...)

#pragma omp barrier

#pragma omp single

MPI_Xxx(...);

Gabriele Fatigati 16

call MPI_Xxx(...)

!$OMP END SINGLE
MPI_Xxx(...);

Hybrid programming MPI+OpenMP

MPI_THREAD_MULTIPLE

Eacxh thread can make communications at any times. Less
restrictive and very flexible, but the application becomes very
hard to manage

Gabriele Fatigati 17

Hybrid programming MPI+OpenMP

A little example
#include <mpi.h>

#include <omp.h>

#include <stdio.h>

int main(int argc, char *argv[]){int main(int argc, char *argv[]){

int rank,omp_rank,mpisupport;

MPI_Init_thread(&argc,&argv,MPI_THREAD_FUNNELED, &mpisupport);

MPI_Comm_rank(MPI_COMM_WORLD,&rank);

omp_set_num_threads(atoi(argv[1]));

#pragma omp parallel private(omp_rank)

{

omp_rank=omp_get_thread_num();

printf("%d %d \n",rank,omp_rank);

}

0 0

0 2

0 1

0 3

Output-->

Gabriele Fatigati 18

}

MPI_Finalize();

}

1 0

1 2

1 1

1 3

Hybrid programming MPI+OpenMP

Overlap communications
and computation

� Need at least MPI_THREAD_FUNNELED.

� While the master or the single thread is making MPI calls, � While the master or the single thread is making MPI calls,
other threads are doing computations.

� It's difficult to separate code that can run before or after the
exchanged data are available

!$OMP PARALLEL
if (thread_id==0) then

call MPI_xxx(�)
else

Gabriele Fatigati 19

else
do some computation

endif
!$OMP END PARALLEL

Hybrid programming MPI+OpenMP

THREAD FUNNELED/SERIALIZED
vs. Pure MPI

� FUNNELED/SERIALIZED:
� All other threads are sleeping while just one thread is communicating.� All other threads are sleeping while just one thread is communicating.

� Only one thread may not be able to lead up max internode bandwidth

� Pure MPI:
� Each CPU communication can lead up max internode bandwidth

� Overlap communications and computations.

Gabriele Fatigati 20

Hybrid programming MPI+OpenMP

� The various implementations differs in levels of thread-safety

�� IfIf youryour applicationapplication allowallow multiple multiple threadsthreads toto makemake MPI MPI callscalls
simultaneouslysimultaneously, , whitoutwhitout MPI_THREAD_MULTIPLE, MPI_THREAD_MULTIPLE, isis notnotsimultaneouslysimultaneously, , whitoutwhitout MPI_THREAD_MULTIPLE, MPI_THREAD_MULTIPLE, isis notnot
threadthread--safesafe

�� In In OpenMPIOpenMPI, , youyou havehave toto useuse ––enableenable--mpimpi--threadsthreads at compile at compile
timetime toto activateactivate allall levelslevels..

�� HigherHigher levellevel correspondscorresponds higherhigher threadthread--safetysafety. . UseUse the the requiredrequired
safetysafety needsneeds..

Gabriele Fatigati 21

Hybrid programming MPI+OpenMP

� Collective operations are often
bottlenecks

� All-to-all communications

� Point-to-point can be faster

� Hybrid implementation:
� For all-to-all communications, the number of

transfers decrease by a factor #threads^2

� The length of messages increases by a
factor #threads

� Allow to overlap communication and
computation.

Gabriele Fatigati 22

Hybrid programming MPI+OpenMP

� Collective operations are often
bottlenecks

� All-to-all communications� All-to-all communications

� Point-to-point can be faster

� Hybrid implementation:
� For all-to-all communications, the number of

transfers decrease by a factor #threads^2

� The length of messages increases by a
factor #threads

� Allow to overlap communication and

Gabriele Fatigati 23

computation.

Hybrid programming MPI+OpenMP

� Collective operations are often
bottlenecks

� All-to-all communications� All-to-all communications

� Point-to-point can be faster

� Hybrid implementation:
� For all-to-all communications, the number of

transfers decrease by a factor #threads^2

� The length of messages increases by a
factor #threads

� Allow to overlap communication and

Gabriele Fatigati 24

computation.

Hybrid programming MPI+OpenMP

Domain decomposition

� In MPI implementation, each process
has to exchange ghost-cell

� This even two different processes are
within the same node. This is because
two different process do not share the
same memory

Gabriele Fatigati 25

Hybrid programming MPI+OpenMP

� The hybrid approach allows you to share
the memory area where ghost-cell are
stored

Domain decomposition

� Each thread has not to do communication
within the node, since it already has
available data.

� Communication decreases, and as in the
previous case, increases MPI message

Gabriele Fatigati

previous case, increases MPI message
size.

26

