

Neural Network concurrency

Tal Ben-Nun and Torsten Hoefler, Demystifying Parallel and Distributed Deep Learning: An In-Depth
Concurrency Analysis, 2018,

http://arxiv.org/abs/1802.09941
http://arxiv.org/abs/1802.09941

Data Parallelism vs Model Parallelism

Hardware and Libraries

● It is not only a matter of computational power:
○ CPU (MKL-DNN)
○ GPU (cuDNN)
○ FGPA
○ TPU

● Input/Output matter
○ SSD
○ Parallel file system (if you run parallel algorithm)

● Communication and interconnection too, if you are running in
distributed mode

○ MPI
○ gRPC +verbs (RDMA)
○ NCCL

Install TensorFlow from Source

[~]$ wget https://github.com/.../bazel-0.15.2-installer-linux-x86_64.sh

[~]$./bazel-0.15.2-installer-linux-x86_64.sh --prefix=...

[~]$ wget https://github.com/tensorflow/tensorflow/archive/v1.10.0.tar.gz

...

[~]$ python3 -m venv $TF_INSTALL_DIR

[~]$ source $TF_INSTALL_DIR/bin/activate

[~]$ pip3 install numpy wheel

[~]$./configure

...

[~]$ bazel build --config=mkl/cuda \
//tensorflow/tools/pip_package:build_pip_package

[~]$ bazel-bin/tensorflow/tools/pip_package/build_pip_package $WHEELREPO

[~]$ pip3 install $WHEELREPO/$WHL --ignore-installed

[~]$ pip3 install keras horovod ...

https://github.com/tensorflow/tensorflow/archive/v1.10.0.tar.gz

Input pipeline

If using accelerators like GPU, pipeline tha data load exploiting the CPU with
the computation on GPU

The tf.data API helps to build flexible and efficient input pipelines

https://www.tensorflow.org/api_docs/python/tf/data

Optimizing for CPU

● Built from source with all of the instructions supported by the target CPU
and the MKL-DNN option for Intel® CPU.

● Adjust thread pools
○ intra_op_parallelism_threads: Nodes that can use multiple threads to

parallelize their execution will schedule the individual pieces into this pool.
(OMP_NUM_THREADS)

○ inter_op_parallelism_threads: All ready nodes are scheduled in this pool
config = tf.ConfigProto()
config.intra_op_parallelism_threads = 44
config.inter_op_parallelism_threads = 44
tf.session(config=config)

● The MKL is optimized for NCHW (default NHWC) data format and use
the following variables to tune performance: KMP_BLOCKTIME,
KMP_AFFINITY, OMP_NUM_THREADS

https://www.tensorflow.org/install/source

Synchronous and asynchronous data parallel training

TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems, 2016

http://arxiv.org/abs/1603.04467

Distributed Tensorflow

#create a cluster from the parameter server and worker hosts.

cluster = tf.train.ClusterSpec({"ps": ps_hosts, "worker": worker_hosts})

#create a PS task

server = tf.train.Server(cluster, job_name="ps", task_index=0)

server.join()

#create a worker task

server = tf.train.Server(cluster, job_name="worker", task_index=0)

#build graph

with tf.device(“/job:ps/task:0/cpu:0”):

W = tf.Variable(...)
 opt = tf.train.GradientDescentOptimizer(.0001).minimize(loss)

 ...

With tf.device(“/job:worker/task:0/gpu:0”):

sess.run(opt)

Distributed Tensorflow with MPI + uber/horovod

import tensorflow as tf
import horovod.tensorflow as hvd

hvd.init() # Initialize Horovod

Pin GPU to be used to process local rank (one GPU per process)
config = tf.ConfigProto()
config.gpu_options.visible_device_list =str(hvd.local_rank())

Build model...
loss = ...
opt = tf.train.AdagradOptimizer(0.01 * hvd.size())

Add Horovod Distributed Optimizer
opt = hvd.DistributedOptimizer(opt)

Add hook to broadcast variables from rank 0 to all other processes
during
initialization.
hooks = [hvd.BroadcastGlobalVariablesHook(0)]

Distributed Tensorflow with MPI + uber/horovod

Make training operation
train_op = opt.minimize(loss)

Save checkpoints only on worker 0 to prevent other workers from
#corrupting them.
checkpoint_dir = '/tmp/train_logs' if hvd.rank() == 0 else None

The MonitoredTrainingSession takes care of session initialization,
restoring from a checkpoint, saving to a checkpoint, and closing when
#done or an error occurs.
with tf.train.MonitoredTrainingSession(checkpoint_dir=checkpoint_dir,
 config=config,
 hooks=hooks) as mon_sess:
 while not mon_sess.should_stop():
 # Perform synchronous training.
 mon_sess.run(train_op)

● To analyze Horovod performance:
[~]$ export HOROVOD_TIMELINE=/path/to/timeline.json

● To tune the fusion buffer size:
[~]$ export HOROVOD_FUSION_THRESHOLD=33554432

● To run: [~]$ srun -n $NUM_GPUS python train.py
● To visualize open the timeline.json in chrome://tracing/

Run and Analyze Horovod Performance

- 22000 classes 11M labeled image examples
- Reduced to 1000 classes and 1.4M images by taxonomy
- The smaller dataset has both fine and coarse-grained classes
- Synthetic version keeps size intact (224x224) but randomizes the content. Useful for

benchmarking platforms and frameworks. Lifts I/O constraints.

Resnet50

● Doesn’t have “evil” pooling layers
● Uses batch normalisation
● Better pose information
● Higher accuracy models with less parameters

than previously (let’s say VGG)
● Good scaling behavior since it can be

stochasticly trained
● State-of-the-art accuracy on ImageNet-1K:

75.3%

Horovod on Marconi

Horovod on DAVIDE

gRPC on DAVIDE

Q & A

