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Data Parallelism vs Model Parallelism



Hardware and Libraries

● It is not only a matter of computational power:
○ CPU (MKL-DNN)
○ GPU (cuDNN)
○ FGPA
○ TPU

● Input/Output matter 
○ SSD
○ Parallel file system (if you run parallel algorithm)

● Communication and interconnection too, if you are running in 
distributed mode

○ MPI
○ gRPC +verbs (RDMA)
○ NCCL



Install TensorFlow from Source

[~]$ wget https://github.com/.../bazel-0.15.2-installer-linux-x86_64.sh

[~]$ ./bazel-0.15.2-installer-linux-x86_64.sh --prefix=...

[~]$ wget https://github.com/tensorflow/tensorflow/archive/v1.10.0.tar.gz

...

[~]$ python3 -m venv $TF_INSTALL_DIR

[~]$ source $TF_INSTALL_DIR/bin/activate

[~]$ pip3 install numpy wheel

[~]$ ./configure

...

[~]$ bazel build --config=mkl/cuda \ 
//tensorflow/tools/pip_package:build_pip_package

[~]$ bazel-bin/tensorflow/tools/pip_package/build_pip_package $WHEELREPO

[~]$ pip3 install $WHEELREPO/$WHL --ignore-installed

[~]$ pip3 install keras horovod ...

https://github.com/tensorflow/tensorflow/archive/v1.10.0.tar.gz


Input pipeline

If using accelerators like GPU, pipeline tha data load exploiting the CPU with 
the computation on GPU

The tf.data API  helps to build flexible and efficient input pipelines

https://www.tensorflow.org/api_docs/python/tf/data


Optimizing for CPU

● Built from source with all of the instructions supported by the target CPU 
and the MKL-DNN option for Intel® CPU.

● Adjust thread pools
○ intra_op_parallelism_threads: Nodes that can use multiple threads to 

parallelize their execution will schedule the individual pieces into this pool. 
(OMP_NUM_THREADS)

○ inter_op_parallelism_threads: All ready nodes are scheduled in this pool
config = tf.ConfigProto()
config.intra_op_parallelism_threads = 44
config.inter_op_parallelism_threads = 44
tf.session(config=config)

● The MKL is optimized for NCHW (default NHWC) data format and use 
the following variables to tune performance: KMP_BLOCKTIME, 
KMP_AFFINITY, OMP_NUM_THREADS

https://www.tensorflow.org/install/source


Synchronous and asynchronous data parallel training

TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems, 2016

http://arxiv.org/abs/1603.04467


Distributed Tensorflow

#create a cluster from the parameter server and worker hosts.

cluster = tf.train.ClusterSpec({"ps": ps_hosts, "worker": worker_hosts})

#create a PS task

server = tf.train.Server(cluster, job_name="ps", task_index=0)

server.join()

#create a worker task

server = tf.train.Server(cluster, job_name="worker", task_index=0)

#build graph

with tf.device(“/job:ps/task:0/cpu:0”):

W = tf.Variable(...)
    opt = tf.train.GradientDescentOptimizer(.0001).minimize(loss)

    ...

With tf.device(“/job:worker/task:0/gpu:0”):

sess.run(opt)



Distributed Tensorflow with MPI + uber/horovod

import tensorflow as tf
import horovod.tensorflow as hvd

hvd.init() # Initialize Horovod

# Pin GPU to be used to process local rank (one GPU per process)
config = tf.ConfigProto()
config.gpu_options.visible_device_list =str( hvd.local_rank())

# Build model...
loss = ...
opt = tf.train.AdagradOptimizer(0.01 * hvd.size())

# Add Horovod Distributed Optimizer
opt = hvd.DistributedOptimizer(opt)

# Add hook to broadcast variables from rank 0 to all other processes 
during
# initialization.
hooks = [hvd.BroadcastGlobalVariablesHook(0)]



Distributed Tensorflow with MPI + uber/horovod

# Make training operation
train_op = opt.minimize(loss)

# Save checkpoints only on worker 0 to prevent other workers from 
#corrupting them.
checkpoint_dir = '/tmp/train_logs' if hvd.rank() == 0 else None

# The MonitoredTrainingSession takes care of session initialization,
# restoring from a checkpoint, saving to a checkpoint, and closing when 
#done or an error occurs.
with tf.train.MonitoredTrainingSession(checkpoint_dir=checkpoint_dir,
                                       config=config,
                                       hooks=hooks) as mon_sess:
  while not mon_sess.should_stop():
    # Perform synchronous training.
    mon_sess.run(train_op)



● To analyze Horovod performance:
[~]$ export HOROVOD_TIMELINE=/path/to/timeline.json 

● To tune the fusion buffer size: 
[~]$ export HOROVOD_FUSION_THRESHOLD=33554432

● To run: [~]$ srun -n $NUM_GPUS python train.py
● To visualize open the timeline.json  in chrome://tracing/

Run and Analyze Horovod Performance



- 22000 classes 11M labeled image examples 
- Reduced to 1000 classes and 1.4M images by taxonomy
- The smaller dataset has both fine and coarse-grained classes
- Synthetic version keeps size intact (224x224) but randomizes the content. Useful for 

benchmarking platforms and frameworks. Lifts I/O constraints.



Resnet50

● Doesn’t have “evil” pooling layers
● Uses batch normalisation
● Better pose information
● Higher accuracy models with less parameters 

than previously (let’s say VGG)
● Good scaling behavior since it can be 

stochasticly trained
● State-of-the-art accuracy on ImageNet-1K: 

75.3%



Horovod on Marconi



Horovod on DAVIDE



gRPC on DAVIDE
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