

Scientific visualization concepts

Luigi Calori

Slides material from:

Alex Telea, Groningen University: <u>www.cs.rug.nl/svcg</u> Kitware: <u>www.kitware.com</u> Sandia National Laboratories Argonne National Laboratory Julich supercomputing center Tuomas Hätinen

1. Introduction to Data Visualization

What is Data Visualization (for)?

Scientific Visualization: "The use of computers or techniques for comprehending data or to extract knowledge from the results of simulations, computations, or measurements" [McCormick *et al.*, 1987]

Information Visualization: "Visualization applied to abstract quantities and relations in order to get insight in the data" [Chi, 2000]

Basics of Visualization

0265640	132304	133732	032051	037334	024721	015013	052226	001662	
0265660	025537	064663	054606	043244	074076	124153	135216	126614	
0265700	144210	056426	044700	042650	165230	137037	003655	006254	
0265720	134453	124327	176005	027034	107614	170774	073702	067274	
0265740	072451	007735	147620	061064	157435	113057	155356	114603	
0265760	107204	102316	171451	046040	120223	001774	030477	046673	
0266000	171317	116055	155117	134444	167210	041405	147127	050505	
0266020	004137	046472	124015	134360	173550	053517	044635	021135	
0266040	070176	047705	113754	175477	105532	076515	177366	056333	
0266060	041023	074017	127113	003214	037026	037640	066171	123424	
0266100	067701	037406	140000	165341	072410	100032	125455	056646	
0266120	006716	071402	055672	132571	105645	170073	050376	072117	
0266140	024451	007424	114200	077733	024434	012546	172404	102345	
0266160	040223	050170	055164	164634	047154	126525	112514	032315	
0266200	016041	176055	042766	025015	176314	017234	110060	014515	
0266220	117156	030746	154234	125001	151144	163706	136237	164376	
0266240	137055	062276	161755	115466	005322	132567	073216	002655	
0266260	171466	126161	117155	065763	016177	014460	112765	055527	
0266300	003767	175367	104754	036436	172172	150750	043643	145410	
0266320	072074	000007	040627	070652	173011	002151	125132	140214	
0266340	060115	014356	015164	067027	120206	070242	033065	131334	
0266360	170601	170106	040437	127277	124446	136631	041462	116321	
0266400	020243	005602	004146	121574	124651	006634	071331	102070	
0266420	157504	160307	166330	074251	024520	114433	167273	030635	
0266440	133614	106171	144160	010652	007365	026416	160716	100413	
0266460	026630	007210	000630	121224	076033	140764	000737	003276	
0266500	114060	042647	104475	110537	066716	104754	075447	112254	
0266520	030374	144251	077734	015157	002513	173526	035531	150003	
0266540	146207	015135	024446	130101	072457	040764	165513	156412	
0266560	166410	067251	156160	106406	136770	030516	064740	022032	
0266600	142166	123707	175121	071170	076357	037233	031136	015232	
0266620	075074	016744	044055	102230	110063	033350	052765	172463	

The Visualization Pipeline

- transform raw data into insightful answers
- sequence of **steps**
 - data acquisition (conversion, formatting, cleaning)
 - data enrichment (transformation, resampling, filtering)
 - data mapping (produce visible shapes from data)
 - rendering (draw and interact with the shapes)

When is visualization useful?

1. Too much data:

- do not have time to analyze it all (or read the analysis results)
- show an overview, discover which questions are relevant
- refine search either visually or analytically

2. Qualitative / complex questions:

- cannot capture question compactly/exactly in a query
- question/goal is inherently qualitative: understand what is going on
- show an overview, answer the question by seeing relevant patterns
- 3. Communication / presentation / decision making:
 - transfer results to different (non technical) stakeholders
 - learn about a new domain or problem
 - •Teach / train people who do not already have deep understanding

When is visualization NOT useful?

1. Queries:

- if a question can be answered by a compact, precise query, why visualize?
- "what is the largest value of a set"
- When human perceptual system is not effective
- When there are cheaper substitutes for human perceptual system (google car)

2. Automatic decision-making:

- if a decision can be automated, why use a human in the loop?
- "how to optimize a numerical simulation"

Key thing to remember:

- visualization is mainly a cost vs benefits (or value vs waste) proposal
 - cost: effort to create and interpret the images
 - benefits: problem solved by interpreting the images
- X B. Lorensen, On the Death of Visualization, Proc. NIH/NSF Fall Workshop on Visualization Research Challenges, 2004
- X S. Charters, N. Thomas, M. Munro, The end of the line for Software Visualisation? Proc. IEEE VISSOFT, 2003
- ✗ S. Reiss, The paradox of software visualization, Proc. IEEE VISSOFT, 2005
- ✓ J. J. van Wijk, The Value of Visualization, Proc. IEEE Visualization, 2005

Visualization examples: Fluid flow

mixing of substances (macro chemistry)

flow on surface (aircraft design)

flow in volume (engine design)

wind flow atop geo map (weather forecast)

particle flow close to surface (aircraft design 2)

Viz examples: Material/biosciences

3D HIV model

glycine crystal simulation

potential field in crystal structure

Viz examples: Medical sciences

surgery planning

blood flow in aneurysm

bone tissue density

brain activity (fMRI)

MRI scan - tissues

bone + skin surface

ΔΙ

ocean velocity and surface temperature

sea level pressure and temperature

wind flow paths over Earth's surface

Viz examples: Abstract data

mapping is not 'neutral' or natural, but reflects the problem/question to be set

SuperComputing Applications and Innovation

99111

data table: classical view

data table: parallel coordinates view

tree: explorer view

tree: cushion treemap view

source code: classical view

source code: dense pixel view

Scientific Visualization – The Dataset

Dataset

- key notion in visualization (SciVis, InfoVis)
- a dataset captures all relevant characteristics of a data collection
 - structure
 - data values

Our input: Dataset examples

$$f\colon \mathbf{R}^2 \to \mathbf{R}$$

a planar slice

Our output: The image

- domain: 2D space (the pixel positions)
- co-domain: the pixel (RGB) colors or grayscale values

 $f \colon \mathbf{R}^2 \to \mathbf{R}^+$

Functional view on visualization

- input: dataset in high-dimensional space $d \subseteq \mathbf{D}^{m \times n}$
- output: color image $i \subseteq \mathbb{R}^{2 \times 3} = \mathbb{R}^5$
- visualization: function $v : \mathbf{D}^m \rightarrow \mathbf{R}^5$ (from data to images)
- analysis: inverse function v^{-1} : $\mathbf{D}^{m} \rightarrow \mathbf{R}^{5}$

(from images to data) * * *

Visualization Challenges

Dimensionality

- input dataset typically of much higher dimensionality than 2D images $(m+n)^{-3}$
- where to put all those dimensions?

Data size

- input number of data points much higher than screen resolution
- where to draw all those data points?

Analysis

- visualization function not (fully) invertible
- how to go from shapes/colors back to data?

Simple Solutions

planar slice

 $f: \mathbf{R}^2 \to \mathbf{R}$

filtering

extract slice

data volume $f: \mathbf{R}^3 \rightarrow \mathbf{R}$

mapping

draw slice

map *f* to colors

Multi-variate data

More complex cases

 $f: \mathbf{R}^3 \rightarrow \mathbf{R}^{\mathbf{n} >> \mathbf{1}}$

where to draw all those *n* data values?

$f(x,y,z) = (f_1,...,f_n)$

Multi-dimensional data $f: \mathbb{R}^{m>>3} \rightarrow \mathbb{R}$

• where to draw all those *m* dimensions in a 2D image?

Non-spatial data

 $f: \mathbf{D} \to \mathbf{C}$ **D**, **C** are not subsets of \mathbf{R}^k

- graphs, trees, databases, software source code, ...
- how to map D, C to image attributes (positions, color)?

Visualization challenges (cont'd)

How to make the visualization function v invertible?

Problems

- •what if we cannot distinguish colors well? (step 1)
- •what if we cannot compare colors well? (step 2)
- •what if the colormap is bad? (step 3, *e.g.* more values s_1 , s_2 map to same color *c*)
- •what if there's no color legend?
- •what if there's no colormap?

1. Input data

- your primary "raw" source of information
- can be anything (measurements, simulations, databases, ...)
- 2. Formatted data
 - converted to points, cells, attributes (discussed next in this module)
 - Ready to use for visualization algorithms
- 3. Filtered data
 - eliminates the unneeded data, adds the needed information
 - read and written by visualization algorithms
- 4. Spatial (mapped) data
 - has spatial embedding \rightarrow can be **drawn**
- 5. 2D Image
 - final image you look at to get your answers

interpolation: Cells

Recall the interpolation formula

 $\tilde{f} = \sum_{i=1}^N f_i \phi_i$

This becomes very inefficient if

- •*N* is very large and we have to evaluate φ_i at all these *N* points
- • $\boldsymbol{\varphi}_{i}$ have complicated expressions

Practical basis functions

•are non-zero over small spatial 'pieces' of D only (limited support) •have the same simple formula at all sample points p_i

We will discretize our spatial domain D into cells

Cells: 1D example

Remarks

reference bases Φ_j

•interpolation & reconstruction goes cell-by-cell

•only need sample points at a cell vertices to interpolate over that cell

-reconstruction is C _1 because $\phi_{_i}$ are C _1 and interpolation formula is are C $^{\circ}$

2D cells: Quads

Same as in 1D case, but

•we have to decide on different cells; say we take quads
•quads → 4 vertices, 4 basis functions
•particular case: square cells = pixels

$$egin{aligned} \Phi_1^1(r,s) &= (1-r)(1-s), \ \Phi_2^1(r,s) &= r(1-s), \ \Phi_3^1(r,s) &= rs, \ \Phi_4^1(r,s) &= (1-r)s; \end{aligned}$$

Bilinear interpolation

2D cells: Quads

Constant interpolation

- $egin{aligned} \Phi^1_1(r,s) &= (1-r)(1-s), \ \Phi^1_2(r,s) &= r(1-s), \ \Phi^1_3(r,s) &= rs, \ \Phi^1_4(r,s) &= (1-r)s; \end{aligned}$
- 4 functions, one per vertex
- result: C ⁰ but never C ¹ (why?)
- good for vertex-based samples

- 1 functions per whole cell
- result: not even C ^o
- good for cell-based samples

Visual effects of interpolation options

What is the difference between flat and Gouraud (smooth) shading?

- surface: bilinear interpolation
- colors: constant interpolation
- surface: bilinear interpolation
- colors: bilinear interpolation

2D cells: Triangles

$$egin{aligned} \Phi^1_1(r,s) &= 1-r-s, \ \Phi^1_2(r,s) &= r, \ \Phi^1_3(r,s) &= s. \end{aligned}$$

Remarks

triangles and quads offers largely same pro's and con's
quad basis functions are not planes (they are bilinear)
in graphics/visualization, triangles used more often than quads

- · easier to cover complex shapes with triangles than quads
- same computational complexity

3D cells: Tetrahedra

$$egin{aligned} \Phi^1_1(r,s,t) &= 1-r-s-t, \ \Phi^1_2(r,s,t) &= r, \ \Phi^1_3(r,s,t) &= s, \ \Phi^1_4(r,s,t) &= t. \end{aligned}$$

Remarks

•counterparts of triangles in 3D •interpolate volumetric functions $f: \mathbb{R}^3 \rightarrow \mathbb{R}$ •three parametric coordinates r, s, t•trilinear interpolation

3D cells: Hexahedra

$$\begin{split} \Phi_1^1(r,s,t) &= (1-r)(1-s)(1-t), \\ \Phi_2^1(r,s,t) &= r(1-s)(1-t), \\ \Phi_3^1(r,s,t) &= rs(1-t), \\ \Phi_4^1(r,s,t) &= (1-r)s(1-t), \\ \Phi_5^1(r,s,t) &= (1-r)(1-s)t, \\ \Phi_6^1(r,s,t) &= r(1-s)t, \\ \Phi_7^1(r,s,t) &= rst, \\ \Phi_8^1(r,s,t) &= (1-r)st. \end{split}$$

Remarks

•counterparts of quads in 3D
•interpolate volumetric functions *f* : **R**³ → **R**•trilinear interpolation
•particular case: cubic cells or voxels

Cell types for constant/linear basis functions

SuperComputing Applications and Innovation

0D

•point

1D

•line

2D

triangle, quad, rectangle3D

•tetrahedron, parallelepiped, box, pyramid, prism, ...

Figure 3.5. Cell types in world and reference coordinate systems.

From cells to grids

Cells

provide interpolation over a small, simple-shapedspatial region
 Grids

partition our complex data domain D into cells
allow applying per-cell interpolation (as described so far)

Given a domain D...

A grid G = {ci} is a set of cells such that

 $c_i \cap c_j = \emptyset, \forall i \neq j$ no two cells overlap $\bigcup_i c_i = D$ the cells cover all our domain

The dimension of the domain D constrains which cell types we can use: see next

Uniform grids

Figure 3.7. Uniform grids. 2D rectangular domain (left) and 3D box domain (right).

image

volume

- all cells have identical size and type (typically, square or cubic)
- cannot model non-axis-aligned domains

Storage requirements

• *m* integers for the #cells along each of the *m* dimensions of *D* (e.g. *m*=2 or 3)

Rectilinear grids

Figure 3.8. Rectilinear grids. 2D rectangular domain (left) and 3D box domain (right).

- all cells have same type
- cells can have different dimensions but share them along axes
- cannot model non-axis-aligned domains

Storage requirements

Structured grids

•all cells have same type

•cell vertex coordinates are freely (explicitly) specifiable...

•...as long as cells assemble in a matrix-like structure

•can approximate more complex shapes than rectilinear/uniform grids

Storage requirements

 $\prod_{i=1} d_i \text{ floats (coordinates of all vertices)}$

Unstructured grids

Consider the domain *D*: a square with a hole in the middle

We cannot cover such a domain with a structured grid (why?) •it's not of genus 0, so cannot be covered with a matrix-like distribution of cells

•different cell types can be mixed (though it's not usual)

both vertex coordinates and cell themselves are freely (explicitly) specifiable
implementation

vertex set $V = \{v_i\}$ cell set $C = \{c_i = (indices of vertices in V)\}$ •most flexible, but most complex/expensive grid type

Storage requirements

 $m \|V\| + s \|C\|$ for a *m*-dimensional grid with cells having *s* vertices each \sim

VTK and Paraview Data Types

Uniform Rectilinear (vtkImageData)

Unstructured Grid (vtkUnstructuredGrid)

Curvilinear (vtkStructuredData)

Multi-block

Hierarchical Adaptive Mesh Refinement (AMR) Hierarchical Uniform AMR

Polygonal (vtkPolyData)

Data attributes

$f: \mathbf{R}^{\mathrm{m}} \rightarrow \mathbf{R}^{\mathrm{n}}$

- *n*=0 no attributes (we model a shape only e.g. a surface)
- *n*=1 scalars (e.g. temperature, pressure, curvature, density)
- *n*=2 2D vectors
- *n*=3 3D vectors (e.g. velocity, gradients, normals, colors)
- *n*=6 symmetric tensors (e.g. diffusion, stress/strain Modules 5..6)
- *n*=9 assymetric general tensors (not very common)

Remarks

- an attribute is usually specified for all sample points in a dataset (why?)
- different measurements will generate different attributes
- each attribute is interpolated separately
- different visualization methods for each n (see Module 3 next)

Data attributes: Color

- complex topic (measurement, perception, representation)
- we'll mainly focus on representation and a bit on perception

RGB color system

 $c = (c_R, c_G, c_B) \in [0, 1]^3$

- three floating-point components in [0,1]
- additive system (add, or mix, components to obtain result)

- perfect for synthesis (e.g. in the graphics card)
- unintuitive for humans, who think easier in hues

HSV color system

•three floating-point components in [0,1]

 $c = (h, s, v) \in [0, 1]^3$

•hue:tint of the color (red, green, blue, yellow, cyan, magenta, yellow, ...)•saturation:strong color (s=1), grayish color (0 < s < 1) or gray (s=0)•value:luminance; white (v=1), dark (0 < v < 1), or black (v=0)

•HSV widgets: typically specify h and s in a 2D canvas and v separately (slider)
 •show a 'surface slice' in the RGB cube

Data representation issues

Data resampling

•

• consider building a Gouraud-shaded surface plot

- normals computed per cell
- normals required per vertex

Data resampling: cell data to vertex data

Figure 3.16. Converting cell to vertex attributes. The vertex value f'_i equals $\frac{A_1f_1+A_2f_2}{A_1+A_2}$, the area-weighted average of the cell values using vertex i. Resampling a signal \oint over some target domain D' should yield a 'similar' signal \oint $\int_{c'_i} \tilde{f}' ds \approx \int_{c'_i} \tilde{f} ds$, \forall cells $c'_i \in \mathcal{D}'$ see Sec. 3.9.1 $f'_i = \frac{\sum_{c_j \in \text{ cells}(p_i)} A(c_j) f_j}{\sum_{c_i \in \text{ cells}(p_i)} A(c_j)}$

•this is the classical area-weighted normal averaging used in Gouraud shading

Resampling vertex data to cell data (same reasoning as above)

$$f_i = \frac{\sum_{p_j \in \text{ points}(c_i)} f'_j}{C}$$

•this is the classical averaging of vertex values to compute cell values

Data super/subsampling

- we have data on some grid
- we want data on a 'similar' grid having more or less cells
- the interpolation functions stay the **same** (unlike in resampling)

