
Scientific visualization concepts

Luigi Calori

Slides material from:

Alex Telea, Groningen University: www.cs.rug.nl/svcg
Kitware: www.kitware.com

Sandia National Laboratories
Argonne National Laboratory
Julich supercomputing center

Tuomas Hätinen

http://www.cs.rug.nl/svcg
http://www.kitware.com/
http://www.kitware.com/
http://www.kitware.com/

1. Introduction to Data Visualization

Scientific Visualization: “The use of computers or
techniques for comprehending data or to extract
knowledge from the results of simulations, computations,
or measurements”
[McCormick et al., 1987]

Information Visualization: “Visualization applied to abstract
quantities and relations in order to get insight in the data”
 [Chi, 2000]

What is Data Visualization (for)?

Basics of Visualization

The Visualization Pipeline

• transform raw data into insightful answers
• sequence of steps

• data acquisition (conversion, formatting, cleaning)
• data enrichment (transformation, resampling, filtering)
• data mapping (produce visible shapes from data)
• rendering (draw and interact with the shapes)

When is visualization useful?

1. Too much data:
• do not have time to analyze it all (or read the analysis results)
• show an overview, discover which questions are relevant
• refine search either visually or analytically

2. Qualitative / complex questions:
• cannot capture question compactly/exactly in a query
• question/goal is inherently qualitative: understand what is going on
• show an overview, answer the question by seeing relevant patterns

3. Communication / presentation / decision making:
• transfer results to different (non technical) stakeholders
• learn about a new domain or problem
•Teach / train people who do not already have deep understanding

When is visualization NOT useful?

1. Queries:
• if a question can be answered by a compact, precise query, why visualize?
• “what is the largest value of a set”
• When human perceptual system is not effective
• When there are cheaper substitutes for human perceptual system (google car)

2. Automatic decision-making:
• if a decision can be automated, why use a human in the loop?
• “how to optimize a numerical simulation”

Key thing to remember:
• visualization is mainly a cost vs benefits (or value vs waste) proposal

• cost: effort to create and interpret the images
• benefits: problem solved by interpreting the images

✗ B. Lorensen, On the Death of Visualization, Proc. NIH/NSF Fall Workshop on Visualization Research Challenges, 2004
 ✗ S. Charters, N. Thomas, M. Munro, The end of the line for Software Visualisation? Proc. IEEE VISSOFT, 2003
 ✗ S. Reiss, The paradox of software visualization, Proc. IEEE VISSOFT, 2005

✓ J. J. van Wijk, The Value of Visualization, Proc. IEEE Visualization, 2005

Visualization examples: Fluid flow

mixing of substances
(macro chemistry)

flow on surface
(aircraft design)

flow in volume
(engine design)

wind flow atop geo map
(weather forecast)

particle flow close to surface
(aircraft design 2)

Viz examples: Material/biosciences

atoms in crystal
(crystallography) 3D HIV model

glycine crystal simulation potential field in crystal structure

Viz examples: Medical sciences

surgery planning blood flow in aneurysm

MRI scan - tissues

bone tissue density

bone + skin surfacebrain activity (fMRI)

ocean velocity
and surface temperature

Viz examples: Geosciences

sea level pressure and temperature

wind flow paths over
Earth’s surface

Earth surface and inner temperature

Viz examples: Abstract data

• mapping is not ‘neutral’ or natural, but reflects the problem/question to be solved

data table: classical view data table: parallel coordinates view

source code: classical view graph: bundled viewsource code: dense pixel view graph: adjacency matrix

tree: explorer view tree: cushion treemap view

Scientific Visualization – The Dataset

Dataset

• key notion in visualization (SciVis, InfoVis)
• a dataset captures all relevant characteristics of a data collection

• structure
• data values
• data operations

DatasetDataset

StructureStructure AttributesAttributes

PointsPoints CellsCells ScalarScalar VectorVector TensorTensor

OperationsOperations

ReconstructionReconstruction ……

f : Rm → Rn f : Rm → Rn f : Rm → Rn

f : R2 → Rn

f : R3 → Rn
f : Rm → R f : Rm → R3 f : Rm → R6..9 • piecewise constant

• piecewise linear

f : Rm → Rn

m-dimensional n-variate

Our input: Dataset examples

f : R3 → Rf : R2 → R

f : R2 → R0 f : R2 → R

a planar slice a volume

a surface a surface
with curvature data

Our output: The image

f : R2 → R3

• domain: 2D space (the pixel positions)
• co-domain: the pixel (RGB) colors or grayscale values

f : R2 → R+

color image grayscale image

Functional view on visualization

• input: dataset in high-dimensional space d ⊆ Dm x n

• output: color image i ⊆ R2 x 3 = R5

• visualization: function v : Dm → R5 (from data to images)

• analysis: inverse function v­1 : Dm → R5 (from images to data)

Visualization Challenges

Dimensionality
• input dataset typically of much higher dimensionality than 2D images (m+n••2+3)
• where to put all those dimensions?

Data size
• input number of data points much higher than screen resolution
• where to draw all those data points?

Analysis
• visualization function not (fully) invertible
• how to go from shapes/colors back to data?

??f : R3 → R color image
v : D4 → R5

a volume

Simple Solutions

planar slice

surface

data volume f : R3 → R

f : R2 → R

f : R2 → R0

filtering

filtering mapping

mapping

extract slice

extract
surface

draw slice
map f to colors

draw surface

More complex cases

f : R3 → Rn>>1Multi-variate data

where to draw all those n data values?

f (x,y,z) = (f1,…, fn)

Multi-dimensional data f : Rm>>3 → R

• where to draw all those m dimensions in a 2D image?

Non-spatial data f : D → C D, C are not subsets of Rk

• graphs, trees, databases, software source code, …
• how to map D, C to image attributes (positions, color)?

Visualization challenges (cont’d)
How to make the visualization function v invertible?

Data values mapped to RGB colors via a colormap

Invert mapping:
1.look at some point (x,y) in the image→ color c
2.locate c in colormap at some position p
3.use the colormap legend to derive data value s from p

x,y

p
blue=0 red=100

answer: s = 90

Problems
•what if we cannot distinguish colors well? (step 1)
•what if we cannot compare colors well? (step 2)
•what if the colormap is bad? (step 3, e.g. more values s1, s2 map to same color c)
•what if there’s no color legend?
•what if there’s no colormap?
•…

Dataset

The Visualization Pipeline - Recall

Input Dataset Filtering Dataset DatasetMapping Rendering Dataset

any kind
of data

formatted
data

filtered
data

spatial
data

2D
image

1. Input data
• your primary “raw” source of information
• can be anything (measurements, simulations, databases, …)

2. Formatted data
• converted to points, cells, attributes (discussed next in this module)
• Ready to use for visualization algorithms

3. Filtered data
• eliminates the unneeded data, adds the needed information
• read and written by visualization algorithms

4. Spatial (mapped) data
• has spatial embedding → can be drawn

5. 2D Image
• final image you look at to get your answers

 interpolation: Cells

Recall the interpolation formula

This becomes very inefficient if
•N is very large and we have to evaluate φi at all these N points
•φi have complicated expressions

Practical basis functions

•are non-zero over small spatial ‘pieces’ of D only (limited support)
•have the same simple formula at all sample points pi

We will discretize our spatial domain D into cells

Cells: 1D example

Remarks
•interpolation & reconstruction goes cell-by-cell
•only need sample points at a cell vertices to interpolate over that cell
•reconstruction is C 1 because φi are C 1 and interpolation formula is are C ∞

2D cells: Quads

Same as in 1D case, but
•we have to decide on different cells; say we take quads
•quads → 4 vertices, 4 basis functions
•particular case: square cells = pixels

Bilinear basis functions Bilinear transforms

2D cells: Quads
Bilinear interpolation

• 4 functions, one per vertex
• result: C 0 but never C 1 (why?)
• good for vertex-based samples

Constant interpolation

• 1 functions per whole cell
• result: not even C 0

• good for cell-based samples

Visual effects of interpolation options

Flat shading Gouraud shading

What is the difference between flat and Gouraud (smooth) shading?

• surface: bilinear interpolation
• colors: constant interpolation

• surface: bilinear interpolation
• colors: bilinear interpolation

2D cells: Triangles

Remarks
•triangles and quads offers largely same pro’s and con’s
•quad basis functions are not planes (they are bilinear)
•in graphics/visualization, triangles used more often than quads

• easier to cover complex shapes with triangles than quads
• same computational complexity

3D cells: Tetrahedra

Remarks
•counterparts of triangles in 3D
•interpolate volumetric functions f : R3 → R
•three parametric coordinates r, s, t
•trilinear interpolation

3D cells: Hexahedra

Remarks
•counterparts of quads in 3D
•interpolate volumetric functions f : R3 → R
•trilinear interpolation
•particular case: cubic cells or voxels

Cell types for constant/linear basis functions

0D
•point
1D
•line
2D
•triangle, quad, rectangle
3D
•tetrahedron, parallelepiped,
box, pyramid, prism, …

From cells to grids

Cells
•provide interpolation over a small, simple-shapedspatial region
Grids
•partition our complex data domain D into cells
•allow applying per-cell interpolation (as described so far)

Given a domain D…

A grid G = {ci} is a set of cells such that

The dimension of the domain D constrains which cell types we can use: see next

no two cells overlap

the cells cover all our domain

Uniform grids

image volume

• all cells have identical size and type (typically, square or cubic)
• cannot model non-axis-aligned domains

Storage requirements
• m integers for the #cells along each of the m dimensions of D (e.g. m=2 or 3)

Rectilinear grids

• all cells have same type
• cells can have different dimensions but share them along axes
• cannot model non-axis-aligned domains

Storage requirements

floats (coordinates of vertices along each of the m axes of D)

Structured grids

•all cells have same type
•cell vertex coordinates are freely (explicitly) specifiable…
•…as long as cells assemble in a matrix-like structure
•can approximate more complex shapes than rectilinear/uniform grids

Storage requirements

floats (coordinates of all vertices)

Unstructured grids

Consider the domain D: a square with a hole in the middle

We cannot cover such a domain with a structured grid (why?)
•it’s not of genus 0, so cannot be covered with a matrix-like distribution of cells

Unstructured grids

•different cell types can be mixed (though it’s not usual)
•both vertex coordinates and cell themselves are freely (explicitly) specifiable
•implementation

vertex set
cell set

•most flexible, but most complex/expensive grid type

Storage requirements

for a m-dimensional grid with cells having s vertices each

VTK and Paraview Data Types

Uniform Rectilinear
(vtkImageData)

Non-Uniform Rectilinear
(vtkRectilinearData)

Curvilinear
(vtkStructuredData)

Polygonal
(vtkPolyData)

Unstructured Grid
(vtkUnstructuredGrid)

Multi-block
Hierarchical Adaptive

Mesh Refinement
(AMR)

Hierarchical Uniform
AMR

Octree

Data attributes

f : Rm → Rn

• n=0 no attributes (we model a shape only e.g. a surface)
• n=1 scalars (e.g. temperature, pressure, curvature, density)
• n=2 2D vectors
• n=3 3D vectors (e.g. velocity, gradients, normals, colors)
• n=6 symmetric tensors (e.g. diffusion, stress/strain – Modules 5..6)
• n=9 assymetric general tensors (not very common)

Remarks

• an attribute is usually specified for all sample points in a dataset (why?)
• different measurements will generate different attributes
• each attribute is interpolated separately
• different visualization methods for each n (see Module 3 next)

Data attributes: Color

• complex topic (measurement, perception, representation)
• we’ll mainly focus on representation and a bit on perception

RGB color system

• three floating-point components in [0,1]
• additive system (add, or mix, components to obtain result)

• perfect for synthesis (e.g. in the graphics card)
• unintuitive for humans, who think easier in hues

slice along plane
orthogonal
to main diagonal

color cube color hexagon

HSV color system

•three floating-point components in [0,1]

•hue: tint of the color (red, green, blue, yellow, cyan, magenta, yellow, …)
•saturation: strong color (s=1), grayish color (0<s<1) or gray (s=0)
•value: luminance; white (v=1), dark (0<v<1), or black (v=0)

•HSV widgets: typically specify h and s in a 2D canvas and v separately (slider)
•show a ‘surface slice’ in the RGB cube

v=0

v=1

s=0

s=1

h

color wheel
color wheel
stretched onto
a square

Data representation issues

Data resampling

• consider building a Gouraud-shaded surface plot

• how to compute vertex attributes (normals) when we have cell attributes?
Flat shading Gouraud shading

• normals computed per cell • normals required per vertex

??

Data resampling: cell data to vertex data

Resampling a signal over some target domain D’ should yield a ‘similar’ signal

•this is the classical area-weighted normal averaging used in Gouraud shading

Resampling vertex data to cell data (same reasoning as above)

•this is the classical averaging of vertex values to compute cell values

see Sec. 3.9.1

Data super/subsampling

• we have data on some grid
• we want data on a ‘similar’ grid having more or less cells
• the interpolation functions stay the same (unlike in resampling)

unstructured grid
36000 vertices

unstructured grid
3510 vertices

subsampling

supersampling

