
Scientific visualization algorithms

Luigi Calori

Color mapping

Basic idea
• Map each scalar value R at a point to a color via a function c : [0,1] [0,1]3

Color tables
• precompute (sample) c and save results into a table
• index table by normalized scalar values

scalar value f

scalar value range [fmin , fmax]

f is color-mapped to ci

Color mappingColor mapping

input data

determine input range

normalize input to [0,N]

desired color
transfer functioncolor table

f

{ci}i1..N

i N f fmin
fmax fmin

ci c i
N

 c:[0,1] [0,1]3

Colormap design

What makes a good colormap?

• map scalar values to colors intuitively…
• …so we can visually invert the mapping to tell scalar values from colors

Data values mapped to RGB colors via a colormap

Invert mapping:
1.look at some point (x,y) in the image color c
2.locate c in colormap at some position p
3.use the colormap legend to derive data value s from p

x,y

p
blue=0 red=100

answer: s = 90

Rainbow colormap

• probably the most (in)famous in data visualization
• intuitive ‘heat map’ meaning

• cold colors = low values
• warm colors = high values

Gray-value colormap

• brightness = value
• natural in some domains (X-ray, angiography)

2D slice in 3D CT dataset
Scalar value: tissue density

Gray-value colormap
• white = hard tissues (bone)
• gray = soft tissues (flesh)
• black = air

Rainbow colormap
• red = hard tissues (bone)
• blue = air
• other colors = soft tissues

Colormap comparison

2D slice in 3D hydrogen atom potential field

Gray-value colormap
• maxima are highlighted well
• lower values are unclear

Heat colormap
• maxima highlighted well
• lower values better

separable than with
gray-value colormap

Heat colormap
• maxima not prominent
• lower values better
• separable

Which is the better colormap? Depends on the application context!

Colormap comparison

2D slice in 3D pressure field in an engine

A. Gray-value colormap
• maxima highlighted well
• low-contrast

B. Purple-to-green colormap
• maxima highlighted well
• good high-low separation

C. Red-to-green colormap
• luminance not used
• color-blind problems..

D. ‘Random’
• equal-value zones visible
• little use for the rest

Which is the better colormap? Depends on the application context!

Colormap design techniques

We cannot give universal design rules
• but some technical guidelines/tricks still exist

1. Fully use the perceptual spectrum
• colormap entries should differ in more, rather than less, HSV components

2. Colormap should be easily invertible
• avoid colormap entries with

• similar HSV entries
• which are perceived as similar (see color blindness issues)
• which are hard to perceive (e.g. dark or strongly desaturated colors)

scalar value ~ V; H,S not used

scalar value ~ H; S,V not used

scalar value ~ H,V; S not used

Good design guidelines: www.colorbrewer.org

Colormap design techniques

3. Design based on what you need to emphasize
• specific value ranges
• specific values
• value change rate (1st derivative of scalar data)
• … 2D function

Gray-scale colormap
• highlights plateaus
• value transitions hard

to see

Zebra colormap
• highlights value variations (1st derivative)
• dense, thin bands: fast variation
• thick bands: slow variation

f (x,y) e10(x4y4)

www.cs.rug.nl/svcg

Colormap implementation details

Where to apply the colormap?
• per grid-cell vertex

64x64 points 32x32 points 16x16 points

2D periodic high-frequency function

As we decrease the sampling frequency, strong colormapping artifacts appear

www.cs.rug.nl/svcg

Colormap implementation details

Where to apply the colormap?
• per pixel drawn – better results than per-vertex colormapping
• done using 1D textures

64x64 points 32x32 points 16x16 points

2D periodic high-frequency function

Explanation
• per-vertex: f c(f)interpolation(c(f)) color interpolation can fall outside colormap!
• per-pixel: f interpolation(f) c(interpolation(f)) colors always stay in colormap

Contouring

www.cs.rug.nl/svcg

Contours are known for hundreds of years in cartography
• also called isolines (‘lines of equal value’)

hand-drawn contours on
geographical map

computer-generated
contours of temperature map

Contour properties

www.cs.rug.nl/svcg

Definition

Contours are always closed curves (except when they exit D)
• why? Recall that f is C0

Contours never (self-)intersect, thus are nested
• why? Think what would mean if a point belonged to two different contours

Contours cut D into values smaller resp. larger than the isovalue
• why? Think of definition

I (f0) x D f (x) f0

Contour properties

www.cs.rug.nl/svcg

Contours are always orthogonal to the scalar value’s gradient
• why? Recall definitions

contour: since f constant along I

gradient: by definition of gradient

gradient of a scalar field
(drawn with arrows) is
orthogonal to contours

I (f0) x D f (x) f0

f f
x
,
f
y

f
I

 0
f

(f)
max

Basic contouring algorithm

for(each cell c in D)
{
 //no contour-edge cuts
 for(each edge e=(pi,pj) of c)
 {
 if(fi < v < fj) //e cuts contour
 {

 }
 }
 connect points in S with lines to build contour;
}

www.cs.rug.nl/svcg

Works OK but it is
• cumbersome: connecting contour-edge cuts into lines is not trivial to program
• slow: edges intersecting contours are processed twice
Question
• Are contours piecewise-linear? Why (not)?

q
pi (vj v) pj (vvi)

vj vi
S Sq

S

Contouring ambiguity

www.cs.rug.nl/svcg

Each edge of the red cell intersects the contour
• which is the right contour result?

Both answers are equally correct!
• we could discriminate only if we had higher-level information (e.g. topology)
• at cell level, we cannot determine more
• same would happen if we first split quads into triangles (2 splits possible..)

Marching squares

www.cs.rug.nl/svcg

Fast implementation of 2D contouring on quad-cell grids

1. Encode inside/outside state of each vertex w.r.t. contour in a 4-bit code

2. Process all dataset cells
• for each cell, use codes as pointers into a jump-table with 16 cases
• each case has hand-optimized code to

• compute only the existing edge-contour intersections
• automatically create required contour segments (connect intersections)
• reuse already-computed contour segment vertices from previous cells

e.g.
inside: f > f0
outside: f ≤ f0

Note: same can be done for triangles (‘marching triangles’)

Marching cubes

Fast implementation of 3D contouring (isosurfaces) on parallelepiped-cell grids

1. Encode inside/outside state of each vertex w.r.t. contour in a 8-bit code

2. Process all dataset cells
• for each cell, use codes as pointers into a jump-table with 15 cases

(reduce the 28=256 cases to 8 by symmetry considerations)

e.g.
inside: f > f0
outside: f ≤ f0

www.cs.rug.nl/svcg

Invented by Bill Lorensen at GE, one of the authors of VTK from Kitware

Marching cubes (cont’d)

• For each case
• compute the cell-contour intersection triangles, quads, pentagons, hexagons
• triangulate these on-the-fly triangle output only

3. Treat ambiguous cases
• 6 such cases (see bold-coded figures on previous slide)
• harder to solve than in 2D (need to prevent false cracks in the surface)
• see Sec. 5.3 for algorithmic details

4. Compute isosurface normals
• by face-to-vertex normal averaging (see Module 2, Data resampling)
• directly from data

5. Draw resulting surface as a (shaded) unstructured triangle mesh

www.cs.rug.nl/svcg

(gradient is normal to contours, see previous slides)x I, nI (x) f (x)
f (x)

Marching cubes

www.cs.rug.nl/svcg

isosurfaces

scalar CT volume
(tissue density)

isosurface for scalar value
corresponding to skin

• extremely simple to use tool
• insightful results isosurfaces for skin and bone

Isosurface examples

colon (CT dataset) electron density in molecule velocity in 3D fluid flow

velocity in 3D fluid flow magnetic field in sunspots
fuel concentration, colored
by temperature in jet engine

Marching cubes – technical points

www.cs.rug.nl/svcg

overview detail

Does this person have wavy wrinkles on his head’s skin?
• so it looks from the visualization…
• these are so-called ‘ringing artifacts’

• due to the near-tangent orientation of the isosurface w.r.t. finite-resolution
volume grid

isosurface

Marching cubes – technical points
A closer look at ringing artifacts

Two kinds of artifacts
• from data: cannot remove easily
• from algorithm (due to linear

interpolation)

Removing algorithm artifacts
• use higher-order interpolants

(e.g. splines)

E. C. LaMar, B. Hamann, K. Joy, High-Quality Rendering of Smooth Isosurfaces, JVCA vol. 10, 1999, 79-90

Height / displacement plots

Displace a given surface S D in the direction of its normal
Displacement value encodes the scalar data f

input surface S displaced surface Sdispl

input surface S displaced surface Sdispl

Height plot
• S = xy plane
• displacement always along z

Displacement plot
• S = any surface in R3

• useful to visualize
3D scalar fields

Sdispl (x) xn(x) f (x), x S

www.cs.rug.nl/svcg

Vector algorithms

1. Scalar derived quantities
• divergence, curl, vorticity

2. 0-dimensional shapes
• hedgehogs and glyphs
• color coding

3. 1-dimensional and 2-dimensional shapes
• displacement plots
• stream objects

4. Image-based algorithms
• image-based flow visualization in 2D, curved surfaces, and 3D

Basic problem

www.cs.rug.nl/svcg

Input data
• vector field v : D Rn

• domain D 2D planar surfaces, 2D surfaces embedded in 3D, 3D volumes
• variables n=2 (fields tangent to 2D surfaces) or n=3 (volumetric fields)

Challenge: comparison with scalar visualization

vx,vy

vx,vy

Scalar visualization
• challenge is to map D to 2D screen
• after that, we have 1 pixel per scalar value

Vector visualization
• challenge is to map D to 2D screen
• after that, we have
• 1 pixel for 2 or 3 scalar values!

www.cs.rug.nl/svcg

First solution: Reuse scalar visualization

• compute derived scalar quantities from vector fields
• use known scalar visualization methods for these

1.Divergence

• think of vector field as encoding a fluid flow
• intuition: amount of mass (air, water) created, or absorbed, at a point in D
• given a field v : R3 R3, div v : R3 R is

equivalent to

source
div v>0

sink
div v<0

laminar flow
div v=0

div v is sometimes denoted as v

www.cs.rug.nl/svcg

Divergence: Reuse scalar visualization

• compute using definition with partial derivatives
• visualize using e.g. color mapping

• gives a good impression of where the flow ‘enters’ and ‘exits’ some domain

source

sink

Curl

2. Curl (also called rotor)
• consider again a vector field as encoding a fluid flow
• intuition: how quickly the flow ‘rotates’ around each point?
• given a field v : R3 R3, rot v : R3 R3 is

• rot v is locally perpendicular to plane of rotation of v
• its magnitude: ‘tightness’ of rotation – also called vorticity

equivalent to

laminar flow
rot v=0

rotational flow
||rot v||>0

rot v

local rotation
plane of v

v

rot v is sometimes denoted as v

www.cs.rug.nl/svcg

Curl

• compute using definition with partial derivatives
• visualize magnitude ||rot v|| using e.g. color mapping

• very useful in practice to find vortices = regions of high vorticity
• these are highly important in flow simulations (aerodynamics, hydrodynamics)

vortex 1

vortex 2

www.cs.rug.nl/svcg

Curl
Example of vorticity
• 2D fluid flow
• simulated by solving Navier-Stokes equations
• visualized using vorticity

• vortices appear at different scales
• ‘pairing’ of vortices spinning in opposite directions

Vector glyphs
Icons, or signs, for visualizing vector fields
• placed by (sub)sampling the dataset domain
• attributes (scale, color, orientation) map vector data at sample points

Simplest glyph: Line segment (hedgehog plots)
• for every sample point x D

• draw line (x, x + kv(x))
• optionally color map ||v|| onto it

MHD simulation
2562 grid

1282 glyph grid 642 glyph grid

Vector glyphs

MHD simulation
2562 grid

322 glyph grid 322 glyph grid, no line scaling

Observations
• trade-offs

• more samples: more data points depicted, but more potential clutter
• less samples: less data points depicted, but higher clarity
• more line scaling: easier to see high-speed areas, but more clutter
• less line scaling: less clutter, but harder to perceive directions

Vector glyphs

MHD simulation
2562 grid

Variants
• cones, arrows, …

• show orientation better than lines
• but take more space to render
• shading: good visual cue to separate (overlapping) glyphs

3D cone glyphs 3D arrow glyphs

Vector glyphs

www.cs.rug.nl/svcg

samples on a rotated grid random samples, quasi-uniform density

How to choose sample points
• avoid uniform grids! (why? See sampling theory, ‘beating artifacts’)
• random sampling: generally OK

3D vector glyphs

www.cs.rug.nl/svcg

• same idea/technique as 2D vector glyphs
• 3D additional problems

• more data, same screen space
• occlusion
• perspective foreshortening
• viewpoint selection

128x85x42 volume field
456960 data points

100K subsamples 10K subsamples

3D vector glyphs

www.cs.rug.nl/svcg

Alpha blending
• extremely simple and powerful tool
• reduce perceived occlusion

• low-speed zones: highly transparent
• high-speed zones: opaque and highly coherent (why?)

128x85x42 volume field
456960 data points

100K subsamples 10K subsamples100K subsamples =0.1 100K subsamples =0.1
no color mapping

Glyph problem revisited

www.cs.rug.nl/svcg

Recall the ‘inverse mapping’ proposal
• we render something…
• …so we can visually map it to some data/phenomenon

Glyph problems
• no interpolation in glyph space (unlike for scalar plots with color mapping!)
• a glyph takes more space than a pixel
• we (humans) aren’t good at visually interpolating arrows…
• scalar plots are dense; glyph plots are sparse

• this is why glyph positioning (sampling) is extra important

scalar plot
interpolation

s1 s2

s3 s4

v1 v2

v3 v4

Vector glyphs on 3D surfaces

www.cs.rug.nl/svcg

Trade-off between vector glyphs in 2D planes and in full 3D
• find interesting surface

• e.g. isosurface of flow velocity
• plot 3D vector glyphs on it
• in our example, we don’t use color-mapping of velocity

Vector color coding

www.cs.rug.nl/svcg

color = angle between vector field
and normal of some given surface

See if vectors are tangent to some given surface
• color-code angle between vector and surface normal
• easily spot

• tangent regions (flow stays on surface, green)
• inflow regions (flow enters surface, red)
• outflow regions (flow exits surface, blue)

Displacement plots (also called warp plots)

www.cs.rug.nl/svcg

Show motion of a ‘probe’ surface in the field
• define probe surface S D
• create displaced surface

two displacement surfaces
orthogonal to x axis

two displacement surfaces
orthogonal to y axis

• analogy: think of a flexible sheet bent into the wind
• color can map additional scalar
• robust extension:

• removes tangential displacements

Sdispl xv(x)t, x S

Sdispl x v(x)n(x) n(x)t, x S

Stream objects

www.cs.rug.nl/svcg

Main idea
• think of the vector field v : D as a flow field
• choose some ‘seed’ points s D
• move the seed points s in v
• show the trajectories

Stream lines
• assume that v is not changing in time (stationary field)
• for each seed po D

• the streamline S seeded at po is given by

• if v is time dependent v=v(t), streamlines are called particle traces

integrate po in vector field v for time T

Stream objects

Practical construction
• numerically integrate

• discretizing time yields

• recall our discussion on interpolation and basis functions
• Euler integration explained

• we consider v constant between two sample points pi and pi+1

• we compute v(p) by linear interpolation within the cell containing p
• variant: use v(p)/||v(p)|| instead of v(p) in integral (why better?)
• S will be a polyline, S = {pi}

• stop when =T or v(p)=0 or p D
• what does =T mean when we use v(p)/||v(p)|| ?

(simple Euler integration)

www.cs.rug.nl/svcg

Stream objects

better than vector glyphs

• less intersections than for hedgehog plots as streamlines do not intersect
• the image more continuous: pixel continuity along lines

streamlines: seeds from regular grid; use un-normalized v for integration; color by ||v||

www.cs.rug.nl/svcg

Good stream objects design

Coverage
• each dataset point should be close to a stream object
• why?

• because we need to easily do the inverse mapping at any dataset point

Uniformity
• stream object density should be quasi-uniform
• why?

• because we want to avoid high-clutter areas and no-information areas

Continuity
• long stream objects preferable to short ones
• why?

• because we can easier follow few, long, objects than many short ones

Note:
• all above can be seen as an optimization process on the seeds and integration time
• however, efficient and robust solutions of this optimizations are generally hard

www.cs.rug.nl/svcg

Stream tubes

Like stream objects, but 3D
• compute 1D stream objects (e.g. streamlines)
• sweep (circular) cross-section along these
• visualize result with shading

• in 2D they are a nicer option than hedgehog/glyph plots

www.cs.rug.nl/svcg

stream tubes, forward integration stream tubes, backward integration

Stream tubes

Variations
• modulate tube thickness by

• data (we’ll see this later in Module 5 – hyperstreamlines)
• integration time – we obtain nice tapered arrows

www.cs.rug.nl/svcg

stream tubes – radius and opacity decrease with integration time

Stream lines in 3D

Tough problem
• more lines, so increased occlusion/clutter

www.cs.rug.nl/svcg

undersampling 10x10x10, opacity=1
• not too much occlusion
• but little insight in the flow field

undersampling 3x3x3, opacity=1
• more local insight (better coverage)
• but too much occlusion

Stream lines in 3D
Variations
• play with opacity, seeding density, integration time

www.cs.rug.nl/svcg

undersampling 3x3x3, opacity=0.1
• less occlusion (see through)
• good coverage

undersampling 3x3x3, shorter time
• more local insight (better coverage)
• even less occlusion
• but less continuity

Stream tubes in 3D

• even higher occlusion problem than for 3D streamlines
• must reduce number of seeds

www.cs.rug.nl/svcg

stream tubes traced from inlet to outlet
• show where incoming flow arrives at
• color by flow velocity
• shade for extra occlusion cues

Image-based vector field visualization
So far
• we had discrete visualizations (glyphs, streamlines, stream ribbons, warp plots)
Now
• we want a dense, pixel-filling, continuous, vector field visualization
Principle

• take each pixel p of the screen image
• trace a streamline from p upstream and downstream (as usual)
• blend all streamlines, pixel-wise

• multiplied by a random-grayscale value at p
• with opacity decreasing (exponentially) on distance-along-streamline from p

• identical to blurring (convolving) noise along the streamlines of v

www.cs.rug.nl/svcg

gray value at pixel p
N = noise texture

Image-based vector field visualization

noise texture line integral convolution (LIC)

Line integral convolution
• highly coherent images along streamlines (why? because of v-oriented blurring)
• highly contrasting images across streamlines (why? because of random noise)
• easy to interpret images

www.cs.rug.nl/svcg

Image-based animated flow visualization

Main idea
• extend LIC with animation
• dynamics help seeing orientation and speed (not shown by LIC)

Algorithm

• consider a time-and-space dependent property (e.g. gray value)
• advect I in time over D

• …and also inject some noise at each point of D

advected term injected noise term

balance between advection
and noise injection

www.cs.rug.nl/svcg

I :DR R

Image-based flow visualization (IBFV)

www.cs.rug.nl/svcg

IBFV, velocity color-coded IBFV, with user-placed colored ink seeds
and luminance-coded velocity magnitude

Implementation
• sounds complex, but it’s really easy (200 LOC C with OpenGL)

• see next slide for details
• real-time (hundreds of frames per second) even for modest graphics cards
• naturally handles time-dependent vector fields

Image-based flow visualization (IBFV)

www.cs.rug.nl/svcg

Implementation

• define grid on 2D flow domain D
• warp grid D along v into Dwarp

• forever
• read current frame buffer into I
• draw Dwarp textured with I (advection) with opacity 1
• blend noise texture N’ atop of I (injection) with opacity

Image-based flow visualization (IBFV)

www.cs.rug.nl/svcg

Variants on 3D curved surfaces and 3D volumes

Curved surfaces
• basically same as in planar 2D, just some implementation details different

3D volumes
• must do something to ‘see through’ the volume
• use an ‘opacity noise’ (similarly injected as grayvalue noise)
• effect: similar to snowflakes drifting in wind on a black background

IBFV on curved surfaces IBFV in 3D volumes

Volume visualization: Motivation

www.cs.rug.nl/svcg

Scalar volume s : R3 R

How to visualize this?

direct color mapping

• see only outer surface

slicing

• all details on slice
• no info outside slice

contouring

• all details on contour
• no info outside contour

How to visualize this so we see through the volume

www.cs.rug.nl/svcg

Seeing through a volume

Idea
• use known techniques (slices and contours)
• use transparency

First try

• draw several contours Ci for several values si

• transparency i proportional to scalar value s

We start seeing a little bit
through the volume…

…But this won’t work for
too many contours

www.cs.rug.nl/svcg

Seeing through a volume

Second try

• draw several parallel slices Si

• transparency i inversely proportional to number of slices

axis-aligned slices
• not OK if we view volume

across slicing direction

view direction-aligned slices
• any viewing direction OK
• must reslice when changing viewpoint

i 1

||S ||

www.cs.rug.nl/svcg

Volume rendering basics
Main idea
• consider a scalar signal s : D R to be drawn on the screen image I
• for each pixel p I

• construct a ray r orthogonal to I passing through p
• compute intersection points p0 and p1of r with D

• express I(p) as function of s along r between p0 and p1

1. Parameterize ray

1. Compute pixel color

ray function
transfer function

p(t) (1 t)p0 tp1, t [0,1]

I (p) f (F(s(t)), t [0,1]

www.cs.rug.nl/svcg

Volume rendering

Define a ray function

The ray function ’aggregates’ all scalar values along a ray

Next, define a transfer function

• same concept as color mapping (see Module 2)

Idea
• ray function: says how to combine all scalar values along a ray into a single value
• transfer function: says how to map a single scalar value to a color
• The process of computing all rays for an image I is called ray casting

all scalar values along ray a single resulting scalar value

a single scalar value an RGBA color

F : {s(t) | t [0,1]}R

f :R [0,1]4

www.cs.rug.nl/svcg

Maximum intensity projection (MIP)

First example of ray function
• find maximum scalar along ray, then apply transfer function to its value

• useful to emphasize high-value points in the volume

Example
MIP of human head CT

• white = low density (air)
• black = high density (bone)

OK, but gives no depth cues

Average intensity projection
Second example of ray function
• compute average scalar along ray, then map it to color

• useful to emphasize average tissue type (e.g. density in a CT scan)

maximum intensity projection average intensity projection

Example
Human torso CT

• black = low density (air)
• white = high density (bone)

Average intensity projection
is equivalent to an X-ray

www.cs.rug.nl/svcg

Distance to value function
Third example of ray function
• compute distance along ray until a specific scalar value

• useful to emphasize depth where some specific tissue is located

Example
Human head CT

• black = low distance
• white = high distance

distance to value 20 distance to value 50

Isosurface function
Fourth example of ray function
• compute whether a given isovalue exists along ray

• produces same result as marching cubes, but with a higher accuracy

isosurface
(marching cubes)

isosurface
(software ray casting)

isosurface
(hardware ray casting)

Composite function

Fifth example of ray function

• compute a color at each point along the ray (apply transfer function first)
• blend (compose) all colors to get the final pixel color (ray function=alpha blending)

• transfer function: controls color+transparency of all material types
• ray function: blends together all material colors+transparencies along ray
• most powerful (but most computationally expensive) ray function
• allows huge range of effects (depending on type of transfer function)
• designing ‘good’ transfer functions is however non-trivial:
• let the user change it interactively

ray function (blends all colors produced by transfer function along ray)

transfer function (applied to all pixels along ray)

I (p) F({ f (s(t) | t [0,1]})

Implementation issues

Sampling density
• recall the ray parameterization
• we need to sample along the ray (e.g. integrate, compute min/max, etc)
• how small should we take the sampling step =dt?

Human head CT, four different values

• smaller : more accuracy
• too small : slow rendering

Practical guideline

• should never exceed a voxel size
(otherwise we skip voxels while
 traversing the ray…)

q(t) (1 t)q0 tq1, t [0,1]

