"""" - SCAI

Scientific visualization algorithmS%s

Luigi Calori

Fﬁ#ﬂ[ CINECA



CINECA SCAI

Color mapping

Basic idea
« Map each scalar value f &R at a point to a color via a function ¢ : [0,1] — [0,1]°

Color tables
* precompute (sample) ¢ and save results into a table {q}izl..N
* index table by normalized scalar values

input data scalar value f
determine input range scalar value range [f.... f....]
. . / f m1n
normalize input to [O,N] | =
fmax fmin

C = C(L%« c:[0,1]-[0,1T
N |
desired color

ool g color table transfer functioh
f1s color-mapped to c, PRACE CINECA




SCAI Colormap design

What makes a good colormap? 9

* map scalar values to colors intuitively...
* ...s0 we can visually invert the mapping to tell scalar values from colors

Data values mapped to RGB colors via a colormap

Invert mapping:

1.look at some point (x,y) in the image — color ¢
2.locate ¢ in colormap at some position p

3.use the colormap legend to derive data value s from p

v
blue=0 I M red=100
P

> answer: s =90

FEJ{.’! CINECA



SCAI Rainbow colormap

* probably the most (in)famous in data visualization
* intuitive ‘heat map’ meaning

* cold colors = low values

* warm colors = high values

A transfer
functions
R.G.B
B G R
l/: ; -
0 ! 1 2 3 4 S ' B scalar
- value g

dx -..d
m Il "

void c(float f,float& R, floaté G, floatd B)

{
const float dx = 0.8;
f = (f<0)? O : (f>1)7 1 : f; J//fclamp f in [0,1]
g = (6—2+dx)=f + dx; //scale f to [dz,6 — dx|
R = max(0,(3—fabs(g—4)—-fabs(g—5))/2);
G = max(0,(4—fabs(g—2)-fabs(g—-4))/2);
B = max(0,(3—fabs(g—1)-fabs(g—2))/2);
}

PRACE
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SCAI Gray-value colormap

o gt T BT

* Dbrightness = value
* natural in some domains (X-ray, angiography)

2D slice in 3D CT dataset
Scalar value: tissue density

Gray-value colormap Rainbow colormap
* white = hard tissues (bone) * red = hard tissues (bone)
* gray = soft tissues (flesh) * Dblue = air

*  black = air +  other colors = soft tissUBGALF ~ C'NEEA
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SCAI Colormap comparison

SuperComputing Applicalions and Innosvation

2D slice in 3D hydrogen atom potential field

Heat colormap Heat colormap Gray-value colormap

* maxima highlighted well * maxima not prominent * maxima are highlighted well

* lower values better * lower values better * lower values are unclear
separable than with * separable

gray-value colormap

Which is the better colormap? Depends on the application Conte)sﬂﬂ.‘éf CINECA
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,,M‘_,!Dmparison

2D slice in 3D pressure field in an engine

A. Gray-value colormap
* maxima highlighted well
* |ow-contrast

B. Purple-to-green colormap
* maxima highlighted well
* good high-low separation

D. ‘Random’
* equal-value zones visible
* little use for the rest

C. Red-to-green colormap
* luminance not used
* color-blind problems..

Which is the better colormap? Depends on the application Contewﬂm’! CINECA



SCAI Colormap design techniques

* but some technical guidelines/tricks still exist

* colormap entries should differ in more, rather than less, HSV components

B scalar value ~ V; H,S not used

I | scalar value ~ H; S,V not used
. I lith scalar value ~ H,V; S not used

* similar HSV entries
* which are perceived as similar (see color blindness issues)
* which are hard to perceive (e.g. dark or strongly desaturated colors)

F)Y#&"[ CINECA
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SCAI Colormap design techniques

3. Design based on what you need to emphasize
* specific value ranges

specific values

value change rate (15t derivative of scalar data)

2D function (X ¥)= g0y

—1.D .
'ED

1.0

0.0

Gray-scale colormap Zebra colormap
* highlights plateaus * highlights value variations (1st derivative)
* value transitions hard * dense, thin bands: fast variation

to see * thick bands: slow variation

F)Y#&'[ CINECA
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plementation details

SuperComputing Applicalions and Innosvation

Where to apply the colormap?

* per grid-cell vertex

2D periodic high frequency function

64x64 points

32x32 points

16x16 points

As we decrease the sampling frequency, strong colormapping artifacts appear

www.cs.rug.nl/svcg %

university of
groningen
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SCAI Colormap implementation details

SuperComputing Applcalions and Innosatio =
Where to apply the colormap? e

* per pixel drawn — better results than per-vertex colormapping
* done using 1D textures

2D periodic high-frequency function

64x64 points 32x32 points 16x16 points

Explanation
* per-vertex: f — c( f) — interpolation(c( f)) color interpolation can fall outside colormap!
* per-pixel: f— interpolation( f')— c(interpolation( f')) colors always stay in colormap

Fﬂ‘ﬂf CINECA

BEroningen

www.cs.rug.nl/svcg % univeraity of



CINECA SCAI Contouring

arComputing Applcalions and Innosvation

Contours are known for hundreds of years in cartography
* also called isolines (‘lines of equal value’)

Y Pozition

10
X Poszition

hand drawn contours on computer-generated
contours of temperature map

geographical map

.Fﬂﬂﬂf CINECA

-\3% university of
www.cs.rug.nl/svcg L%“ e



CINECA ! l AI
superLompubng Appecalons and Innovalson

Contour properties

Definition

I(f,)={xe D|f(x)=f}

Contours are always closed curves (except when they exit D)
* why? Recall that fis C°

Contours never (self-)intersect, thus are nested
* why? Think what would mean if a point belonged to two different contours

Contours cut D into values smaller resp. larger than the isovalue
* why? Think of definition

FEJ{.’! CINECA

W/ universityof
www.cs.rug.nl/svcg %ﬁ / university o
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= SCA Contour properties

SuperComputing Applicalions and Innosvation

Contours are always orthogonal to the scalar value’s gradient
* why? Recall definitions

I(f)={xe D‘f(X): f,}  contour: g:O since f constant along I

Vf = of afl gradient: B(anf) =max by definition of gradient

= o F # F & & g4 @&

rrrrrr
--------
rrrrrrrr
---------
-------

---------

gradient of a scalar field &
(drawn with arrows) is
orthogonal to contours

[ It f #’ —
www.cs.rug.nl/svcg @ / ocmi b » i ; ; ; g
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w SCAN Basic contouring algorithm

arComputing Applcalions and Innosvation

0.10 for(each cell ¢ in D)

{

S={ //Ino contour-edge cuts
018 for(each edge e=(p,,p) of ¢)

{
0.26 if(fi<v<f) /le cuts contour
U o PV p(-v)
0.26 V.-V,
S=5uq
0.18 } }

connect points in S with lines to build contour;
008 013 0.21 : : 0.10 )

Works OK but it is

* cumbersome: connecting contour-edge cuts into lines is not trivial to program
* slow: edges intersecting contours are processed twice

Question

* Are contours piecewise-linear? Why (not)?

.Fﬂﬂﬂf CINECA

WWw.cs.rug.nl/svcg % university of

Broningen



Co%gr I!ambiguity

AL camputing AppEcalons and [N

Each edge of the red cell intersects the contour
* which is the right contour result?

* we could discriminate only if we had higher-level information (e.g. topology)
* atcell level, we cannot determine more
* same would happen if we first split quads into triangles (2 splits possible..)

FHJ{.’! CINECA

Eroningen

www.cs.rug.nl/svcg % university of



SCAI Marching squares

Fast implementation of 2D contouring on quad-cell grids

1. Encode inside/outside state of each vertex w.r.t. contour in a 4-bit code

s 2] (Y2 Yal |5 Ya Va [ Y2l [V Vg

v '|.|'1 "l"_u "i"._l lll"l:l_ "l".l Vu W "ul"':I \'1
0000 0001 0010 0110 0111

2| [Ys [ Ve| [V~ 2] [¥s | (18 2] [Ya  ¥e

Vo Val Vel  Val Ivor Vil LV Vy SV vl vy W
~ 1000 1001 1010 1011 1101 1110 1111

4-bit code construction [Va[Va[V4[V|

2. Process all dataset cells

« for each cell, use codes as pointers into a jump-table with 16 cases

* each case has hand-optimized code to
* compute only the existing edge-contour intersections
* automatically create required contour segments (connect intersections)
* reuse already-computed contour segment vertices from previous cells

Note: same can be done for triangles (‘marching triangles’)

www.cs.rug.nl/svcg [#% / universityof
%Y

groningen

e.g.

inside: f>f,
outside: f<f,

PRACE
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m SCA Marching cubes

arComputing Applcalions and Innosvation

Fast implementation of 3D contouring (isosurfaces) on parallelepiped-cell grids

1. Encode inside/outside state of each vertex w.r.t. contour in a 8-bit code

III[IEH]U Q0000001 Q0000011 00100001 01000001 00001110 01000011 01010010

00001111 10001101

01010101 ﬂ1ﬂﬂ'1101 00011110 10001110
V. vﬂ
E' 8-bit code construction [V VVaValVi['d
L*2
\ra ""'1

Invented by Bill Lorensen at GE, one of the authors of VTK from Kitware

groningen

www.cs.rug.nl/svcg L%% university of

e.g.
inside: f>f,

outside: f<f,

.Fﬂﬂﬂf CINECA
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Marching cubes (cont’d)

For each case -
« compute the cell-contour intersection — triangles, quads, pentagons, h&
* triangulate these on-the-fly — triangle output only

. Treat ambiguous cases

6 such cases (see bold-coded figures on previous slide)
harder to solve than in 2D (need to prevent false cracks in the surface)
see Sec. 5.3 for algorithmic details

. Compute isosurface normals

by face-to-vertex normal averaging (see Module 2, Data resampling)
directly from data

V(%)
[VF

vxe I, n(X)=— (gradient is normal to contours, see previous slides)

. Draw resulting surface as a (shaded) unstructured triangle mesh

Fﬁﬂﬂf CINECA

UNIvVers l1.'!|-' of
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arComputing Applcalions amy Innosation

isosurfaces

— isosurface for scalar value

corresponding to skin

0 2
N B ]
scalar CT volume

(tissue density)

isovalue = 65
* extremely simple to use tool _ isovalue = 127
* insightful results isosurfaces for skin and bone ™ pggnr CINECA

www.cs.rug.nl/svcg L%% / university of

groningean



| SCAI Isosurface examples

colon (CT dataset) electron density in molecule velocity in 3D fluid flow

\ fuel concentration, colored
velocity in 3D fluid flow magnetic field in sunspots by temperature in jet engine



SCAI Marching cubes — technical points

overview detail

Does this person have wavy wrinkles on his head’s skin?
* so it looks from the visualization...
* these are so-called ‘ringing artifacts’
* due to the near-tangent orientation of the isosurface w.r.t. finite-resolution
Fﬂﬂﬂ! CINECA

volume grid
—’—/ iIsosurface

Www.cs.rug.nl/sveg % «-:i / university of

BEroningen




miﬁ%ﬁl‘bes — technical points

A Cloéer look at ringing artifacts

_ anifucts Two kinds of artifacts
mAeSE e from data: cannot remove easily
* from algorithm (due to linear
interpolation)

artifacts
— of the
algantheen

Removing algorithm artifacts
* use higher-order interpolants
(e.g. splines)

Fﬁ#ﬂ[ CINECA

E. C. LaMar, B. Hamann, K. Joy, High-Quality Rendering of Smooth Isosurfaces, JVCA vol. 10, 1999, 79-90



=~ SC Al Height / displacement plots

arComputing Applcalions and Innosvation

Displace a given surface S < D in the direction of its normal
Displacement value encodes the scalar data f

Si (X)=X+N(X) f(X), VXe S

Height plot
* S=uxyplane
* displacement always along z

input surface S displaced surface S,

Displacement plot

* S=any surface in R3

* useful to visualize
3D scalar fields

'Fﬂjﬂf CINECA

input surface S displaced surface S,



SCAI Vector algorithms

* divergence, curl, vorticity

* hedgehogs and glyphs
* color coding

* displacement plots
* stream objects

* image-based flow visualization in 2D, curved surfaces, and 3D

F)Y#&'[ CINECA

university of

www.cs.rug.nl/sveg | ‘? groningen



SCAI Basic problem

Input data

* vector field v:D — R

* domain D 2D planar surfaces, 2D surfaces embedded in 3D, 3D volumes
* variables n=2 (fields tangent to 2D surfaces) or n=3 (volumetric fields)

Challenge: comparison with scalar visualization

0.10
0.18
V.,V
X"y
0.26 T
VeoVy
0.26
0.18
0.08 0.13 0.21 0.24 0.18 0.10
Scalar visualization Vector visualization
* challenge is to map D to 2D screen * challenge is to map D to 2D screen
« after that, we have 1 pixel per scalar value « after that, we have

« 1 pixel for 2 or 3 scalar value}!ﬂﬂgf CINECA

university of
groningen

www.cs.rug.nl/svcg %



CINECA - . . = .
SCAI First solution: Reuse scalar visualization

compute derived scalar quantities from vector fields
* use known scalar visualization methods for these

1.Divergence

think of vector field as encoding a fluid flow
intuition: amount of mass (air, water) created, or absorbed, at a point in D
givenafieldv: R3?—> R3 divv:R>*—> Ris

vy Ouy O, . : ST |
: e il equivalentto div v= lim — v -nr)ds
div v 5z -+ ay -+ 52 q [0 |P| F( F)
iy div v is sometimes denoted as V xv

AL VAV
I R Z

curve I’

F)Y#&'[ CINECA

T ,
% university of
www.cs.rug.nl/sveg "'p"; / groningen



CINECA SCAI

SuperComputing Applicalions and Innosvation

* compute using definition with partial derivatives o
* visualize using e.g. color mapping

Divergence: Reuse scalar visualization

B

I source

sink

* gives a good impression of where the flow ‘enters’ and ‘exits’ some domain
- PRACE ~ C'NESA

b o
www.cs.rug.nl/sveg @Eﬁ / university of

proningen



g CA!

2. Curl (also called rotor) @

* consider again a vector field as encoding a fluid flow
* intuition: how quickly the flow ‘rotates’ around each point?
* givenafieldv:R}* > R rotv: R* > Ris

1
rot v = (ﬂﬂ3 Oy Db Bu; Ovy aﬂ’:) equivalentto rotv=Ilim — [ v-ds

dy 0z’ 0z Oz’ Or Oy r—o || Jr
e Tr—
= \
...... ' Lo
; T
v.ds f/ \‘ ;
\hf; -~
curve I rotational flow laminar flow local rotation
llrot vII>0 rot v=0 plane of v

Fﬁﬂ&’[ CINECA
rot v is sometimes denoted asV x v



* compute using definition with partial derivatives
* visualize magnitude llrot vll using e.g. color mapping

laminar

* very useful in practice to find vortices = regions of high vorticity
* these are highly important in flow simulations (aerodynamics, hydrodynamics)

Fﬂ'ﬂﬂf CINECA
—

WWW.CS.rug.nl/svcg ;‘;;E university of

ETOnIngen



* SCA

SuperCompating Applications and Innovation C U rl
Example of vorticity

* 2D fluid flow
* simulated by solving Navier-Stokes equations
* visualized using vorticity

counterclockwise laminar clockwise

* vortices appear at different scales
* ‘pairing’ of vortices spinning in opposite directions oe— ' TIPNL

WWW.cs.rug.nl/svcg @ / ';‘F“,;;f;;ﬁ"f = » i;;;;



i SCAI Vector glyphs
SuperComputing Applicalions and Innovaion
Icons, or signs, for visualizing vector fields
* placed by (sub)sampling the dataset domain

* attributes (scale, color, orientation) map vector data at sample points

Simplest glyph: Line segment (hedgehog plots)
* for every sample pointx e D

* draw line (x, x + kv(x))

* optionally color map livll onto it

hhhhhh
-

=

e :” g
5, B e
W l‘\\. . LA m r:-.-.
\\\ et "\-.Qx Ry - /
¥, T R -
\\\ " S A o s
N AL A =
Hh‘\hl\.‘\\‘%\ Q"\\ e s 1w f/ [
T, = T T R ————r A
Pis F ey = P EwRAAY % } IEE R R R RS DR, e ]
11 SR T 5 ' cnf AR NdR DI A i d e s raoay) T e LT
2 glyph gri 642 glyph grid
1282 glyph gri glypn gri

MHD simulation
2562 grid



SCAI Vector glyphs

o AN —
= I YY)
b L 1§ 4.
ry ff Y 1L
- [ -
| F =

% = _?ﬁ;ff ({)))0277 MHD simulation
- | - - 2562 grid

| £ |
L ’ Bt
f """" H“'“
. /-
W : : R R R /A~
N, [ | |~ RN RS I

322 glyph grid 322 Iglyph grid, no line séaliﬁg

Observations
* trade-offs
* more samples: more data points depicted, but more potential clutter
* less samples: less data points depicted, but higher clarity
* more line scaling: easier to see high-speed areas, but more clutter
* less line scaling: less clutter, but harder to perceive directions
FIML"[ CINECA



“= S Al Vector glyphs

abliare sad rms
i Ty 1"‘"&."«' LN A .
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3D cone glyph

Variants
* cones, arrows, ...
* show orientation better than lines
* but take more space to render
* shading: good visual cue to separate (overlapping) glyphs

Fﬂlﬂf CINECA
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Supe rI."r.-ﬂ': puting Applcation® and Thndvation

samples on a rotated grid random samples, quasi-uniform density

How to choose sample points
* avoid uniform grids! (why? See sampling theory, ‘beating artifacts’)
* random sampling: generally OK

Fﬂﬁﬂf CINECA
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groningen



3D vector glyphs
BCAI 128x85x42 volume field

SuperComputing Applicalions and Innosvation 456960 data pomts

100K subsamples

* same idea/technique as 2D vector glyphs
* 3D additional problems
* more data, same screen space
* occlusion
* perspective foreshortening B il
* viewpoint selection - PRACF ~ C'NECA
www.cs.rug.nl/svcg % university of :

groningen



Inees 3D vector glyphs
BCAI 128x85x42 volume field J

SuperComputing Applicalions and Innosvation z15Eﬁ36()(jata pcﬂnts

100K subsamples a=0.1

100K subsamples a=0.1
no color mapping

Alpha blending
* extremely simple and powerful tool
* reduce perceived occlusion
* low-speed zones: highly transparent
* high-speed zones: opaque and highly coherent (why?)

el | ]
ik I I ]

- PRACE ~ C'NESA
; | &
g o - K K
| . L I I I ]
= ] T IT T
- W

www.cs.rug.nl/svcg % university of
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B

scalar plot
interpolation

H =g perceived data

V\4
/ =i gctual data
V2

v s2

Recall the ‘inverse mapping’ proposal

* we render something...
* ...S0 we can visually map it to some data/phenomenon

Glyph problems
* no interpolation in glyph space (unlike for scalar plots with color mapping!)
* a glyph takes more space than a pixel
* we (humans) aren’t good at visually interpolating arrows...
* scalar plots are dense; glyph plots are sparse
* this is why glyph positioning (sampling) is extra important
Fﬁﬂﬂ[ CINECA

.m.
¥ university of
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CINECA

Trade-off between vector glyphs in 2D planes and in full 3D
* find interesting surface
* e.g. isosurface of flow velocity
* plot 3D vector glyphs on it
* in our example, we don’t use color-mapping of velocity

o7 ' ity of
WWW.CS.rug.nl/svcg % / university o

groningen
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SCAI Vector color coding

angle

I‘1B'EI

obstacle

a0 color = angle between vector field
and normal of some given surface
obstacle 0

See if vectors are tangent to some given surface
* color-code angle between vector and surface normal
* easily spot

* tangent regions (flow stays on surface, green)
* inflow regions (flow enters surface, red)
* outflow regions (flow exits surface, blue)

CINECA
university of Fﬂjgf

Eroningen

b
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SCAI Displacement plots (also called warp plots)

Show motion of a ‘probe’ surface in the field g
* define probe surface S < D

» create displaced surface Sjg; ={ X+ M(X)AL Vxe 5

two displacement surfaces two displacement surfaces
orthogonal to x axis orthogonal to y axis

* analogy: think of a flexible sheet bent into the wind
* color can map additional scalar
* robust extension: S ={ X+(V(X)N(X)) N(X)AL Vxe S

* removes tangential displacements PRACE CINECA

l?'r ' ity of
www.cs.rug.nl/svcg %5 / university o

groningen



SCAl Stream objects

Main idea

* think of the vector field v : D as a flow field
* choose some ‘seed’ points s € D

* move the seed points s in v

* show the trajectories

Stream lines
* assume that v is not changing in time (stationary field)
» foreach seed p, e D

 the streamline S seeded at p_is given by

-

S = {p(r), € [0, T]}, p(r) = f _ v@)dt,  where p(0) = pr

\ integrate p_ in vector field v for time T

* if v is time dependent v=v(t), streamlines are called particle traces PRACE CINECA

university of

-m.
o g
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SCAI Stream objects

Practical construction
* numerically integrate

-

S = {p(r), € [0, 7]}, p(r) = / _ V@), where p(0) = px

* discretizing time yields
T /At

.
/ v(p)dt = Z v(p;)At where p; = p;—1 + v;_1 At (simple Euler integration)
=0 i=0

* recall our discussion on interpolation and basis functions
* Euler integration explained
« we consider v constant between two sample points p. and p.,

* we compute v(p) by linear interpolation within the cell containing p
* variant: use v(p)/llv(p)ll instead of v(p) in integral (why better?)
« S will be a polyline, S = {p.}

* stop whent=T or v(p)=0orp ¢ D

* what doelrzT mean when we use v(p)/llv(p)ll ? PRACE CINECA

s 7 university of
www.cs.rug.nl/svcg ;-;; groningen



o SC A Stream objects

SuperComputing Applicalions and Innosvation

* > 3 > = o > 5 o = = = G o o = £

streamlines: seeds from regular grid; use un-normalized v for integration; color by llvll

better than vector glyphs

less intersections than for hedgehog plots as streamlines do not intersect
the image more continuous: pixel continuity along lines

; - oy L L P
i 1 [k L 1
-\% university of - F.Mgf Y .
www.cs.rug.nl/svcg |lui 2 groningen _ . +7373
s I - e e e e
F : . A A L
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7 SLAI  Good stream objects design

Coverage
* each dataset point should be close to a stream object
* why?
* because we need to easily do the inverse mapping at any dataset point

Uniformity
* stream object density should be quasi-uniform
* why?
* because we want to avoid high-clutter areas and no-information areas

Continuity
* long stream objects preferable to short ones
* why?
* because we can easier follow few, long, objects than many short ones

Note:
* all above can be seen as an optimization process on the seeds and integration time
* however, efficient and robust solutions of this optimizations are generally hard

university of Fﬁﬂﬂ[ CINECA

=
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SuperComputing Applicalions and Innosvation

* compute 1D stream objects (e.g. streamlines)
* sweep (circular) cross-section along these
* visualize result with shading

stream tubes, forward integration

* in 2D they are a nicer option than hedgehog/glyph plots
www.cs.rug.nl/svcg & / E:;;?:;:'ﬂ of
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Variations

* modulate tube thickness by
* data (we’ll see this later in Module 5 — hyperstreamlines)
* Integration time — we obtain nice tapered arrows

L]

O e -t B0,

* 1"“""'—-..-

i N e p_— ¥ y r#-_ ™\
fﬂ___...a\“”,,--_\ (/7'—“““\\
r*‘ "‘\\\_\’1 1 e ’)
=7 \ N N\
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stream tubes — radius and opacity decrease with integration time
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e SCAN Stream lines in 3D

SuperComputing Applicalions and Innosvation

Tough problem
* more lines, so increased occlusion/clutter

undersampling 10x10x10, opacity=1 undersampling 3x3x3, opacity=1
* not too much occlusion * more local insight (better coverage)
* Dbut little insight in the flow field * but too much occlusion
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m SCA Stream lines in 3D

SuperComputing Applicalions and Innovaion

Variations
* play with opacity, seeding density, integration time

undersampling 3x3x3, opacity=0.1 undersampling 3x3x3, shorter time
* less occlusion (see through) * more local insight (better coverage)
* good coverage * even less occlusion
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SCAI Stream tubes in 3D

o gt T BT

* even higher occlusion problem than for 3D streamlines
* must reduce number of seeds

inlet = seed area

stream tubes traced from inlet to outlet
* show where incoming flow arrives at

* color by flow velocity

* shade for extra occlusion cues

FHJ{.’! CINECA
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%J;Alj vector field visualization

So far
* we had discrete visualizations (glyphs, streamlines, stream ribbons, warp plots)
Now

* we want a dense, pixel-filling, continuous, vector field visualization
Principle

p
b}
N \-l"l W sis) I, N(S(p, 5))k(s)ds

T(p) =
. R f_L k(s)ds
* take each pixel
* trace a streamlii] al) gray value at pixel p
+  Dblend all stream| S =-L N = noise texture
* multiplied 5= ===

* with opacity decreasing (exponentially) on distance-along-streamline from p
* identical to blurring (convolving) noise along the streamlines of v
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s SC Al Image-based vector field visualization

Swmrﬂmmhng Applicaions and Inngwation

noise texture line integral convolution (LIC)

Line integral convolution
* highly coherent images along streamlines (why? because of v-oriented blurring)
* highly contrasting images across streamlines (why? because of random noise)

* easy to interpret images
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CIMECA

SCAI Image-based animated flow visualization

Main idea
* extend LIC with animation
* dynamics help seeing orientation and speed (not shown by LIC)

Algorithm

- consider a time-and-space dependent property [ :DXR, — R (e.g. gray value)
* advect I in time over D

I(z + v(z,t)At,t + At) = I(z,t)

* ...and also inject some noise at each point of D

I{z+v(z,t)At, t+ At) = (1 :&)I'\(:r:, t) +{iﬁi($+v($’ t)At, t+ At)

advected term injected noise term

balance between advection
and noise injection

CINECA
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f“:mw%gééli flow visualization (IBFV)

Supa ting Applicalions and Innowation

IBFV, velocity color-coded IBFV, with user-placed colored ink seeds
and luminance-coded velocity magnitude

Implementation
* sounds complex, but it'’s really easy” (200 LOC C with OpenGL)
* see next slide for details
* real-time (hundreds of frames per second) even for modest graphics cards
* naturally handles time-dependent vector fields et S®LLlL
.;'Fﬁl’#[ «  CINECA
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SCAI Image-based flow visualization (IBFV)

Implementatlon g

noise texture

/ warp _} mtnp inject
. _hinjec
\ grid ::) j;_‘f:—?texture Vnoise :5
{ : 1
At - o
vector field warped grid flow texture
use texture for next frame

* define grid on 2D flow domain D
- warp grid D along vinto D,

* forever
* read current frame buffer into /
- draw D, textured with I (advection) with opacity 1-a

« blend noise texture N’ atop of I (injection) with opacity o PRACE ~ CNECA
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SCAl Image-based flow visualization (IBFV)

Varlants on 3D curved surfaces and 3D volumes

IBFV on curved surfaces IBFV in 3D volumes

Curved surfaces
* basically same as in planar 2D, just some implementation details different

3D volumes
* must do something to ‘see through’ the volume
* use an ‘opacity noise’ (similarly injected as grayvalue noise)

* effect: similar to snowflakes drifting in wind on a black background
PRACF . CINECA
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CINECA SCAI

il e Volume visualization: Motivation

Scalar volume s:R3—> R

How to visualize this?

0 28 0 208 i
I . B . isovalue = 65
direct color mapping slicing contouring
* see only outer surface ¢ all details on slice * all details on contour
* no info outside slice * no info outside contour
How to visualize this so we see through the volume .Fﬂﬂﬂf CINECA
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SCAI Seeing through a volume

use known techniques (slices and contours)

* use transparency

draw several contours C, for several values s,
transparency . proportional to scalar value s

.' We start seeing a little bit
| through the volume...

II ...But this won’t work for
too many contours

isovalue = 65
isovalue = 127
CINECA
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CINECA SCAI

T Seeing through a volume

Second try

draw several parallel slices S,

transparency a.inversely proportional to number of slices

0

255 0 [ 255
N . B |
axis-aligned slices view direction-aligned slices
* not OK if we view volume .

any viewing direction OK

across slicing direction * must reslice when changing viewpoint

PRACE ~ C'NECA
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SCAI Volume rendering basics

Main idea
* consider a scalar signal s : D— R to be drawn on the screen image I
« for each pixel pe I

* construct a ray r orthogonal to 7 passing through p
- compute intersection points p, and p,of r with D

« express I(p) as function of s along r between p, and p,

. dataset D

S 1. Parameterize ray
:::::ﬁ-_h P(t):(l—t)po +tp19 te [O,l]
::“‘:::: 1. Compute pixel color
T [(p)=(FEED),  te01]
~ T = w
H‘H‘“‘“:::“ N / \ ray function
HEE transfer function
hA university of Fﬁﬂg[ i s
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CINECA SCAI V0|ume rendering

Define a ray function F: —®\~
/

all scalar values along ray a single resulting scalar value

The ray function 'aggregates’ all scalar values along a ray
Next, define a transfer function

f:
/

a single scalar value an RGBA color

* same concept as color mapping (see Module 2)

Idea

* ray function: says how to combine all scalar values along a ray into a single value
* transfer function: says how to map a single scalar value to a color

* The process of computing all rays for an image I is called ray casting

w PRACE ~ C'NECA
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mee SC Al Maximum intensity projection (MIP)

arComputing Applcalions and Innosvation

First example of ray function
* find maximum scalar along ray, then apply transfer function to its value

I(p) = f(max s(0)

* useful to emphasize high-value points in the volume

Example
MIP of human head CT

* white = low density (air)
* black = high density (bone)

OK, but gives no depth cues

'Fﬂjﬂf CINECA
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SCAl Average intensity projection

compute average scalar along ray, then map it to color

T
1) = 1 (ft—“sm'ﬁ)

T

useful to emphasize average tissue type (e.g. density in a CT scan)

Example
Human torso CT

* black = low density (air)
* white = high density (bone)

Average intensity projection
is equivalent to an X-ray

maximum intensity projection average intensity projection

Fﬁ#ﬂ[ CINECA



SCAl Distance to value function

* compute distance along ray until a specific scalar value ¢

. I[:P] =f (tE[ﬂ.%.iﬁtjzat)é some specific tissue is located

Example
Human head CT

* black = low distance
* white = high distance

distance to value 20 distance to value 50

Fﬂﬂﬂ! CINECA
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SCAI Isosurface function

Ao and Inmeeaison

* compute whether a given isovalue ¢ exists along ray

I(p) = flo), FHtel0,T),s(t)=0c
Iy, otherwise.
* produces same result as marching cubes, but with a higher accuracy

isog.urface isosurface | isosurface CINECA
(marching cubes) (software ray casting) (hardware ray cagﬁw



SCAI Composite function

Fifth example of ray function

* compute a color at each point along the ray (apply transfer function first)
* blend (compose) all colors to get the final pixel color (ray function=alpha blending)

I(p)=F({f(gd|te [0,1]]

\\ transfer function (applied to all pixels along ray)

ray function (blends all colors produced by transfer function along ray)

* transfer function: controls color+transparency of all material types

* ray function: blends together all material colors+transparencies along ray
* most powerful (but most computationally expensive) ray function

* allows huge range of effects (depending on type of transfer function)

* designing ‘good’ transfer functions is however non-trivial:

* let the user change it interactively

FIML"[ CINECA



s SCAl Implementation issues

SuperComputing Applicalions and Innosvation

Sampling density

* recall the ray parameterization Cl(t) — (1 - t)qo T tq, t S [Oa 1]
* we need to sample along the ray (e.g. integrate, compute min/max, etc)

* how small should we take the sampling step 6=d:?

Human head CT, four different o values

* smaller 8: more accuracy
* too small &: slow rendering

Practical guideline
* d should never exceed a voxel size

- (a)5=0.1 -{b} 5=05 (otherwise we skip voxels while
traversing the ray...)

U
I"' scalar CINECA

color transfer function

(c)6=1.0 (d)yd=2.0



