

Visualization in Chemistry

Giovanni Morelli

What is Chemistry ?

If we provide a good answer to this question maybe we can understand what graphics can do for chemistry ... and chemists

What is Chemistry ?

A possible answer

boiling point, electrical conductivity, specific heat, reactivity, color.... Properties of matter

Chemistry

Is one of the possibilities to understand this link

Molecular geometry, Electron Density, Electrostatic Potential , Molecular orbital,... Structure of matter

Jmol module

Topics covered

Structure of matter

Molecular geometry Electron Density Electrostatic Potential Molecular orbital,...

Introduction to basic nomenclature of the Molecular Modelling

- > **Explanation** of "some" chemical concept (we need a common vocabulary)
- Discussion of some examples of "chemistry by image"
- > Introduction of a specific tool for the molecular visualization : Jmol
- > Exploring chemical proprierty on real molecules by Jmol

Today

Thursday

Molecular Modelling

From Wikipidia

Molecular modelling encompasses all methods, theoretical and computational, used to model or mimic the behaviour of molecules.

The action of Ritonavir, a drug against HIV. Adapting within the protease (**band structure**), an enzyme essential for the spread of HIV, the Ritonavir (**ball and stick**) prevents the enzyme to perform its normal function in HIV propagation.

Three-dimensional structures

Focus on the geometrical structure

Ball and Stick

Shows three-dimensional arrangement of atoms and bonds.

Identification of atoms requires a key of color representations.

Shows three-dimensional arrangement as well as size relationships between atoms.

Bonding between atoms can sometimes be difficult to distinguish.

Three-dimensional structures

Ribbon Models

Three-dimensional Surface

Based on http://geometry.molmovdb.org/3v/ and http://www.netsci.org/Science/Compchem/feature14e.html

B) Solvent accessible Surface (r=1.4 Angstrom)

Molecular Geometry

Coordinate system

Internal					3N - 6	
0 1 C1 O2 H3 H4	1 1 1	r2 r3 r4	2 2	a3 a4	3	d4
r2=1.20 r3=1.0 r4=1.0 a3=120. a4=120. d4=180.						

HOCI (p $K_a = 7.40$)

Electron Density (Electrostatic Potential)

 $HOCIO_2 (pK_a = -2.0)$

Electron Density

(structure/properties)

The Relationship between Delocalization of the Negative Charge in the Oxoanions of Chlorine and the Number of Terminal Oxygen Atoms

https://saylordotorg.github.io/text_general-chemistry-principles-patterns-and-applications-v1.0/s20-03-molecular-structure-and-acid-b.html

Molecular Obital

E_{LUMO} - E_{HOMO} = 20 eV !!!

*** In electron volts (eV).

Molecular Obital HOMO/LUMO: Frontier Orbitals

The Nobel Prize in Chemistry 1981 Kenichi Fukui, Roald Hoffmann

Share this: f 📴 🈏 🛨 🔄 💈

Kenichi Fukui - Facts

Kenichi Fukui

Born: 4 October 1918, Nara, Japan

Died: 9 January 1998, Kyoto, Japan

Affiliation at the time of the award: Kyoto University, Kyoto, Japan

Prize motivation: "for their theories, developed independently, concerning the course of chemical reactions"

Field: theoretical chemistry

Prize share: 1/2

Molecular Obital

HOMO/LUMO: The Nobel Lecture

THE ROLE OF FRONTIER ORBITALS IN CHEMICAL REACTIONS

Nobel lecture, 8 December, 1981

by

KENICHI FUKUI

Department of Hydrocarbon Chemistry, Kyoto University, Sakyo-ku, Kyoto 606, Japan

HOMO of diene

LUMO of dienophile

HOMO of dienophile

Fig. 2. The significance of orbital symmetry in the HOMO-LUMO overlapping in Diels-Alder reactions.

Fig. 1. Nitration of naphthalene.

NH₃ HOMO

BH₃ LUMO

H₂O + H-CI H₃O⁺ + Cl⁻

The interaction stabilizes the unshared pair of the oxygen, while simultaneously breaking the CH3-CI bond because the interaction is with the antibonding orbital.

Predicted reactivity from the shape of HOMO Molecular Orbital

In order to predict reactive sites for electrophilic and nucleophilic attack in **meropenem**, the MEP was also established. The different values of electrostatic potential on the surface are represented by colors. The **positive** (**blue**) regions of MEP show **electrophilic** while the **negative** (**red**) areas **nucleophilic** reactivity. In meropenem, the most pronounced are the negative regions, localized on the carboxylic and carbonyl groups, that indicate possible sites for nucleophilic activity.

Chemistry Central Journal 7(1):98 · June 2013 with 111 Reads DOI: 10.1186/1752-153X-7-98 · Source: PubMed

The localization of charge density on the frontier molecular orbitals demonstrates a *similar localization for the lowest unoccupied molecular orbital and the highest occupied molecular orbital.*

For both the HOMO and LUMO, the charge density was localized on the β -lactam and pyrrolidine 4:5 bicyclic fused rings and the carboxylic and carbonyl groups.

Since the FMOs are the main orbitals involved in reactivity, the 4:5 bicyclic fused rings of meropenem may be proposed as the main areas where acceptor-donor electron reactions occur.

The low value of HOMO-LUMO gap energy for meropenem confirms its significant susceptibility to degradation

Chemistry Central Journal 7(1):98 · June 2013 with 111 Reads DOI: 10.1186/1752-153X-7-98 · Source: PubMed

Basic structure

Molecular Obital

Phenolphthalein colore

Acid structure

We will analyze FMO by Jmol in the Lab....

