Introduction to Molecular Simulations

Alessandro Grottesi

Outlook

1.Classic Molecular Dynamics
2.Focus on Biomolecules: data insights
3.Setting up a simulation: details and outputs
4.Analysis of data

MD ingredients

Coordinates

Data formats for Molecular simulations

Mostly used in classical MD:

- PDB format
- GROMOS format
- XPLOR
- XYZ
- DCD
- CRD PDB data

GROMOS data

31934					
1LEU	N	1	5.263	7.019	4.949
1LEU	H1	2	5.337	7.054	5.010
1LEU	H2	3	5.213	6.951	5.005
1LEU	CA	4	5.171	7.129	4.911
1LEU	CB	5	5.114	7.193	5.038
1LEU	CG	6	5.017	7.101	5.113
1LEU	CD1	7	4.995	7.155	5.255
1LEU	CD2	8	4.882	7.092	5.041
1LEU	C	9	5.225	7.241	4.818
1LEU	\bigcirc	10	5.150	7.297	4.738
2GLN	N	11	5.354	7.271	4.831
2GLN	H	12	5.411	7.221	4.896
2GLN	CA	13	5.422	7.376	4.751
2GLN	CB	14	5.488	7.480	4.842
2GLN	CG	15	5.391	7.555	4.935
2GLN	CD	16	5.296	7.648	4.859
2GLN	OE1	17	5.334	7.722	4.769
2GLN	NE2	18	5.172	7.650	4.902
2GLN	HE21	19	5.143	7.595	4.983
2GLN	HE22	20	5.099	7.690	4.844
2GLN	C	21	5.528	7.314	4.659
2GLN	\bigcirc	22	5.628	7.260	4.706

PPBEC

31934

generated by VMD

N	52.630001	70.190002	49.490002
H1	53.369999	70.540001	50.099998
H2	52.130001	69.510002	50.049999
CA	51.709999	71.290001	49.110001
CB	51.139999	71.930000	50.380001
CG	50.169998	71.010002	51.130001
CD1	49.950001	71.550003	52.549999
CD2	48.820000	70.919998	50.410000
C	52.250000	72.410004	48.180000
O	51.500000	72.970001	47.380001
N	53.540001	72.709999	48.310001
H	54.110001	72.209999	48.959999
CA	54.220001	73.760002	47.509998
CB	54.880001	74.800003	48.419998
CG	53.910000	75.550003	49.349998
CD	52.959999	76.480003	48.590000
OE1	53.340000	77.220001	47.689999
NE2	51.720001	76.500000	49.020000
1HE2	51.430000	75.949997	49.830002
2HE2	50.990002	76.900002	48.439999
C	55.279999	73.139999	46.590000
O	56.279999	72.599998	47.060001
N	54.990002	73.169998	45.290001
H	54.119999	73.540001	44.959999
CA	55.869999	72.620003	44.230000

XYZ format

49.490002

099998
49.110001
50.380001
51.130001
52.549999
50.410000
47.380001
48.310001
8.959999
48.419998
49.349998
48.590000

99
49.830002
44.230000

Timescale

- Protein Folding milliseconds/seconds (10-3-1s)
- Ligand Binding micro/milliseconds ($10^{-6}-10^{-3} \mathrm{~s}$)
- Enzyme catalysis micro/milliseconds ($10^{-6}-10^{-3} \mathrm{~s}$)
- Conformational transitions pico/nanoseconds ($10^{-12}-10^{-9} \mathrm{~s}$)
- Collective vibrations -
- 1 picosecond ($10^{-12} \mathrm{~s}$)
- Bond vibrations -
- 1 femtosecond ($10^{-15} \mathrm{~s}$)

Equation of motion

The equations that describe the temporal evolution of a physical system is called equation of motion. There are different equations of motions, which characterize the motion with different levels of approximation:
, Time-dependent Schrödinger's Equation

- for quantum-mechanical system
> Newton's Equation
» for classical-mechanical system
> Langevin's Equation
- for stochastic system

Force field

$$
\begin{aligned}
& V\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{n}\right)=\sum_{\text {bond }} \frac{1}{2} k_{b_{n}}\left(b_{n}-b_{0 n}\right)^{2}+\sum_{\text {angle }}^{2} \frac{1}{2} k_{\theta_{n}}\left(\theta_{n}-\theta_{0 n}\right)^{2}+ \\
& +\sum_{\begin{array}{c}
\text { improper } \\
\text { dihedral }
\end{array}} \frac{1}{2} k_{\xi_{n}}\left(\xi_{n}-\xi_{0 n}\right)^{2}+\sum_{\text {dihedral }} k_{\phi_{n}}\left[1+\cos \left(m_{n} \phi_{n}-\delta_{n}\right)\right]+ \\
& +\sum_{\begin{array}{c}
\text { nonbonded } \\
\text { pairs }(i j)
\end{array}} \frac{C_{i j}^{(12)}}{r_{i j}^{12}}-\frac{C_{i j}^{(6)}}{r_{i j}^{6}}+\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{i} q_{j}}{\varepsilon_{r} r_{i j}}
\end{aligned}
$$

The potential energy function, together with the parameters required to describe the behavior of different kinds of atoms and bonds ($\mathrm{k}_{\mathrm{b}}, \mathrm{k}_{\theta}, \mathrm{k}_{\xi}, \mathrm{C}_{\mathrm{i}}$, ...), is called: force field.

Several force fields are currently used and the choice depends from the studied system. Some force field are better suited for nucleic acids, for example, while others for membrane proteins

MD set up

[1] Ress PDA : Structurw Explorer:

FSS c - Coople
t

A Mumuk or The EPIDB MyPDB: Login I Register An Information Portal to Biological Macromolecular Structures As of Tuesday May 12,2009 这 there are 57558 Structures (i) | PDB Statistice (3)

O Poa inorkeymen onithor

2 rgr (2)

DOI $10.2210 / p d o 2 r 9 \mathrm{r} / \mathrm{pob}$
Pod - Deivert Lrforration
Tilie
Shaker family voltage dependent potassium channel (kv1.2-kv2.1 paddle chimera channel) in association with beta subunit

Authors
Primary Citation

Lono, 5. E, Tao, X, Camptoll, EA. MacKInnon, ㅁ. (7007) Atomio sarusture of a voltape-dependentK+ channel in a lipid membranelike envirmiment Naturo 450:376-382
[Abstract] Publmea
Deposisoe 2007-09-13 Release 2007-11-20 LantModining (REVDAT) 2009-02-24

Experimental Method	TYpe X-RAY DIFFRACTION Datu [EDS]						
Paramoters	$\begin{aligned} & \text { Rosolition }\|A\| \\ & 2.40 \\ & 2 \end{aligned}$	- 0.21	$\begin{aligned} & \text { Lun } \\ & 2 \text { (obs.) } \end{aligned}$	$\begin{aligned} & \text { R.Fren } \\ & 0.244 \end{aligned}$		$\begin{aligned} & \text { Spoce Gry } \\ & \mathrm{P} 42,2 \end{aligned}$	
Unit Cell	Letegth $\left\{\begin{array}{l}\text { A }\end{array}\right.$ Angles [7]	a mipht	$\begin{aligned} & 144.06 \\ & 90,00 \end{aligned}$	B Buta	144.05 90.00	c gamma	$\begin{aligned} & 284,40 \\ & 90.00 \end{aligned}$

Images and visuallration
(ce) Biological Molecule 1 (>>

Display Options (1)
Jthol
King
WobMol
Mat SimpleViewer-
Mat Proterin Workshap QuickFDa
All tmages

- Capable of Japlayng biobpcel nolecuien.
http://www.rcsb.org/pdb

Initial coordinates: X-Ray vs. NMR

Higher X-ray resolution allows to use a more reliable starting structure in terms of amino-acids stereochemistry and accuracy of atomic positions

Error on initial position of protein atoms determines local structural alterations of the protein structure

X-ray resolutions smaller than $2 \AA$ are much more reliable, although difficult to achieve. Generally, a resolution in the range $2<\mathrm{R}<3 \AA$ are acceptable. Beyond $3 \AA$ the uncertainty of the initial position may cause artefacts in the MD simulation

Initial coordinates: X-Ray vs. NMR

NMR determined structure provide information in a more realistic physiological environment as compared to X-ray determined structures although this could result in lower quality of initial coordinates and incertainties in the position of atomic coordinates.

KcsA Potassium channel (PDB code: 2K1E)

Workflow for running MD simulations in GROMACS

PCA: how it works

Let's assume our simulation is definve by the vector Rn, that simply consists of the set of cartesian coordinates of Ca atoms at a given time step.

Question: what is the unity vector so that projection of \mathbf{R}_{h} on vector \mathbf{v} is the largest possible?

Answer: it is the vector \mathbf{v}, so that the variance of the projected point p of Rn onto v is the largest possible
p is the projection of vector \mathbf{R}_{h} onto unity vector \mathbf{v} (dot product between \mathbf{v} and \mathbf{R}_{h})

Eigenvalue equation

The average of projected points onto \mathbf{v} is:

$$
\mu(v)=\langle v, \bar{x}\rangle
$$

Eigenvectors

Variance of projected point onto \mathbf{v} is:

$$
\sigma^{2}(v)=\langle C v, v\rangle
$$

Variance of projected points along vector \boldsymbol{v} can be expressed in terms of dot product between v and $C v$.

Essential Dynamics of Proteins

Eigenvalues are sorted in descending order: the first one corresponds to the maximum variance of the projected points. The corresponding eigenvectors are the best principal components of associated eigenvalues.

Data visualizzation for Molecular Simulations

Molecular Dynamics Simulations

Did we reach equilibrium...?
$\mathrm{RMSD}=\sqrt{\frac{1}{N} \sum_{i=1}^{N}\left(r_{i}-r_{0}\right)^{2}}$

We need to make sure that all the chemical and physical properties of the system have reached an equilibrium, where their averages do not longer change as a function of time. A simple way to test this is by measuring the RMSD (root mean square deviation) of $\mathrm{C} \alpha$ carbon atoms position with respect to start.

PRACE

$$
\text { RMSF }=\sqrt{\frac{1}{N} \sum_{i=1}^{N}\left(r_{i}-\langle r\rangle\right)^{2}}
$$

RMSF is a simple tool to measure the rigidity of the polypeptide chain. It calculates the deviations of C-alpha atoms coordinates from their average position. The flexibility pattern reflects the location of secondary structure elements in the protein structure.

g_anaeig: the flag -filt

M2 helix KirBac 1.1
 first eigenvector

Visualizzation of trajectories

Tube representation of a filtered trajectory onto the first and second eigenvectors of the atomic fluctuation covariance matrix of porin OmpA

Picture produced with RasMol

g_anaeig: output of flag -proj

By default, 8 eigenvectors are considered for output using g_anaeig. This option can be set by using the flags -first and -end
g_anaeig -f trajectory.xtc -v eigenvec.trr -eig eigenval.xvg -s reference.gro -proj proj.xvg -first 1 -last 5

Graphic representation of classic MD simulations

1
0.75
0.5
0.25
-0.25
-0.5
-0.75
-1

PRACE

PRACE

