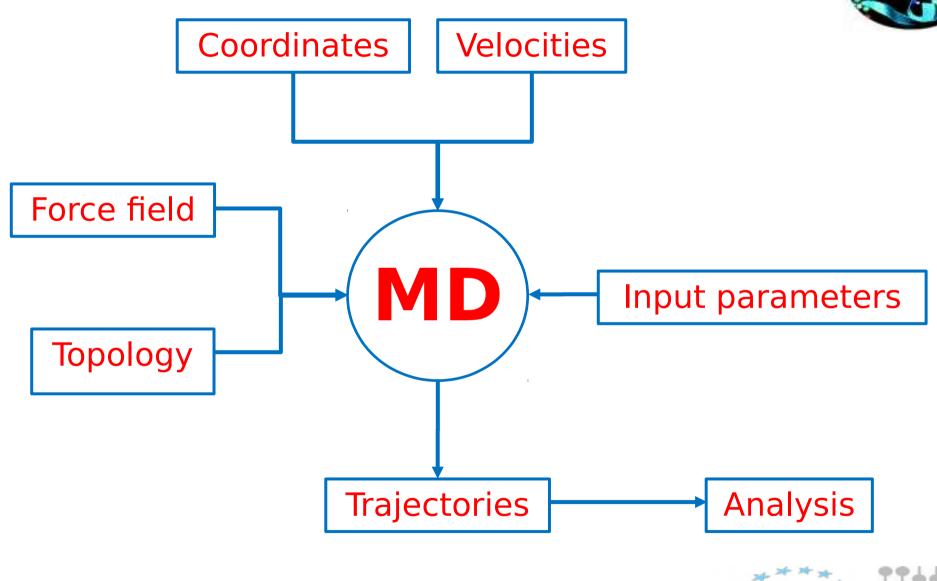


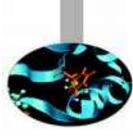
Introduction to Molecular Simulations

Alessandro Grottesi

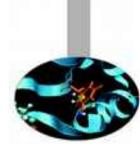
Outlook



1.Classic Molecular Dynamics2.Focus on Biomolecules: data insights3.Setting up a simulation: details and outputs4.Analysis of data



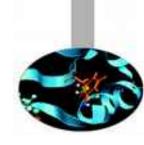
MD ingredients



Coordinates

Data formats for Molecular simulations

Mostly used in classical MD:


- · PDB format
- · GROMOS format
- · XPLOR
- · XYZ
- · DCD
- · CRD

PDB data

TITLE	GI	ROnin	gen Mixt	ure of	Alchemy	and Chil	drens''	Storie	S
REMARK	TI	HIS I	S A SIMU	LATION	BOX				
CRYST1	175	.540	175.540	180.0	90.0	0 90.00	90.00	P 1	
MODEL		1							
ATOM	1	Ν	LEU	1	52.630	70.190	49.490	1.00	0.00
ATOM	2	Hl	LEU	1	53.370	70.540	50.100	1.00	0.00
ATOM	3	H2	LEU	1	52.130	69.510	50.050	1.00	0.00
ATOM	4	CA	LEU	1	51.710	71.290	49.110	1.00	0.00
ATOM	5	CB	LEU	1	51.140	71.930	50.380	1.00	0.00
ATOM	6	CG	LEU	1	50.170	71.010	51.130	1.00	0.00
ATOM	7	CD1	LEU	1	49.950	71.550	52.550	1.00	0.00
ATOM	8	CD2	LEU	1	48.820	70.920	50.410	1.00	0.00
ATOM	9	С	LEU	1	52.250	72.410	48.180	1.00	0.00
ATOM	10	0	LEU	1	51.500	72.970	47.380	1.00	0.00
ATOM	11	Ν	GLN	2	53.540	72.710	48.310	1.00	0.00
ATOM	12	Н	GLN	2	54.110	72.210	48.960	1.00	0.00
ATOM	13	CA	GLN	2	54.220	73.760	47.510	1.00	0.00
ATOM	14	CB	GLN	2	54.880	74.800	48.420	1.00	0.00
ATOM	15	CG	GLN	2	53.910	75.550	49.350	1.00	0.00
ATOM	16	CD	GLN	2	52.960	76.480	48.590	1.00	0.00
ATOM	17	OE1	GLN	2	53.340	77.220	47.690	1.00	0.00
ATOM	18	NE2	GLN	2	51.720	76.500	49.020	1.00	0.00
ATOM	19	1HE2	GLN	2	51.430	75.950	49.830	1.00	0.00
ATOM	20	2HE2	GLN	2	50.990	76.900	48.440	1.00	0.00
ATOM	21	С	GLN	2	55.280	73.140	46.590	1.00	0.00
ATOM	22	0	GLN	2	56.280	72.600	47.060	1.00	0.00

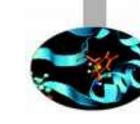
....

CINECA

1

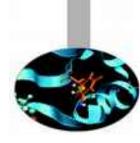
🖉 PRACE 🏂

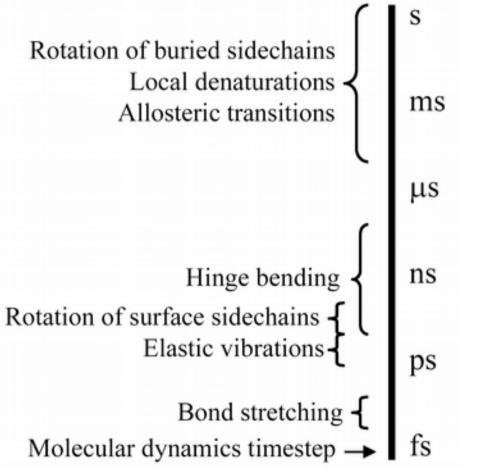
GROMOS data


GROningen	Mixture	of	Alchemy	and Child	rens''	Stories
31934						
1LEU	Ν	1	5.263	7.019	4.949	
1LEU	Hl	2	5.337	7.054	5.010	
1LEU	H2	3	5.213	6.951	5.005	
1LEU	CA	4	5.171	7.129	4.911	
1LEU	CB	5	5.114	7.193	5.038	
1LEU	CG	6	5.017	7.101	5.113	
1LEU	CD1	7	4.995	7.155	5.255	
1LEU	CD2	8	4.882	7.092	5.041	
1LEU	С	9	5.225	7.241	4.818	
1LEU	0	10	5.150	7.297	4.738	
2GLN	Ν	11	5.354	7.271	4.831	
2GLN	Н	12	5.411	7.221	4.896	
2GLN	CA	13	5.422	7.376	4.751	
2GLN	CB	14	5.488	7.480	4.842	
2GLN	CG	15	5.391	7.555	4.935	
2GLN	CD	16	5.296	7.648	4.859	
2GLN	OE1	17	5.334	7.722	4.769	
2GLN	NE2	18	5.172	7.650	4.902	
2GLN	HE21	19	5.143	7.595	4.983	
2GLN	HE22	20	5.099	7.690	4.844	
2GLN	С	21	5.528	7.314	4.659	
2GLN	0	22	5.628	7.260	4.706	

XYZ format

31934

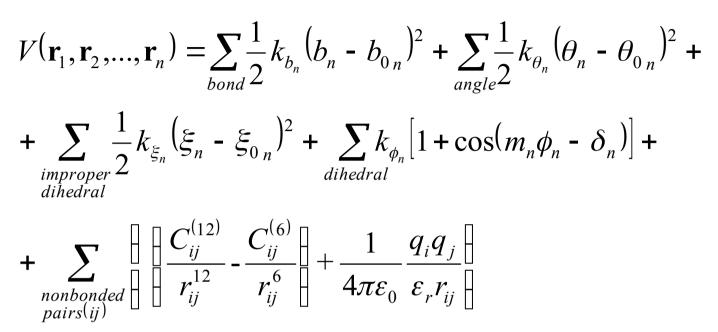

generated by VMD


2	1		
N	52.630001	70.190002	49.490002
H1	53.369999	70.540001	50.099998
H2	52.130001	69.510002	50.049999
CA	51.709999	71.290001	49.110001
CB	51.139999	71.930000	50.380001
CG	50.169998	71.010002	51.130001
CD1	49.950001	71.550003	52.549999
CD2	48.820000	70.919998	50.410000
С	52.250000	72.410004	48.180000
0	51.500000	72.970001	47.380001
Ν	53.540001	72.709999	48.310001
Н	54.110001	72.209999	48.959999
CA	54.220001	73.760002	47.509998
CB	54.880001	74.800003	48.419998
CG	53.910000	75.550003	49.349998
CD	52.959999	76.480003	48.590000
OE1	53.340000	77.220001	47.689999
NE2	51.720001	76.500000	49.020000
1HE2	51.430000	75.949997	49.830002
2HE2	50.990002	76.900002	48.439999
С	55.279999	73.139999	46.590000
0	56.279999	72.599998	47.060001
N	54.990002	73.169998	45.290001
Н	54.119999	73.540001	44.959999
CA	55.869999	72.620003	44.230000

Timescale

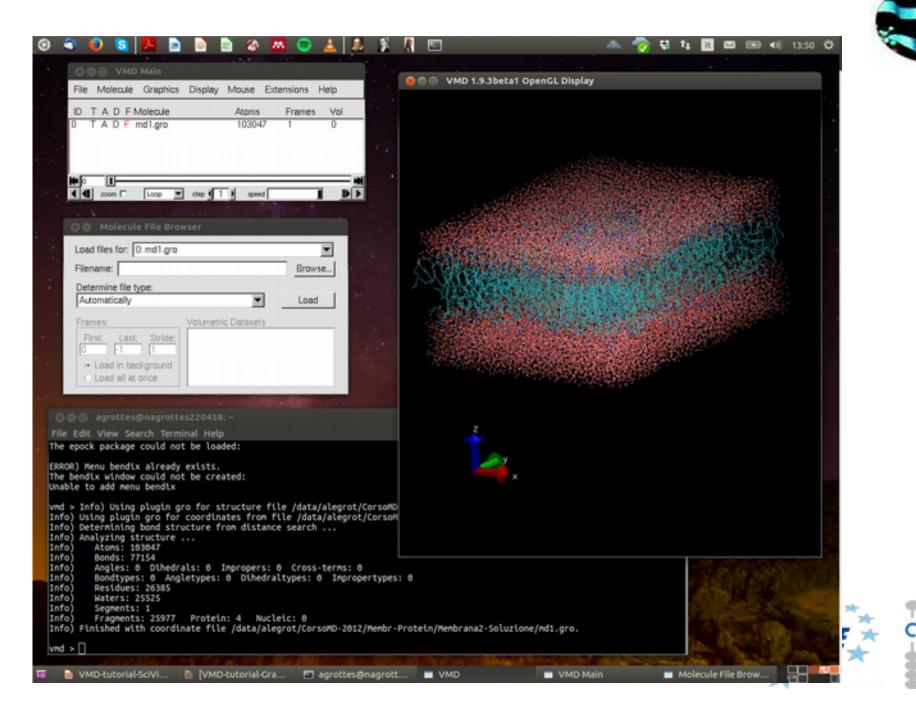
0	Protein Folding - milliseconds/seconds (10 ⁻³ -1s) Ligand Binding - micro/milliseconds (10 ⁻⁶ -10 ⁻³ s)
0	Enzyme catalysis - micro/milliseconds (10 ⁻⁶ -10 ⁻³ s) Conformational transitions - pico/nanoseconds (10 ⁻¹² -10 ⁻⁹ s)
0	Collective vibrations - 1 picosecond (10 ⁻¹² s)
0	Bond vibrations - 1 femtosecond (10 ⁻¹⁵ s)

Equation of motion

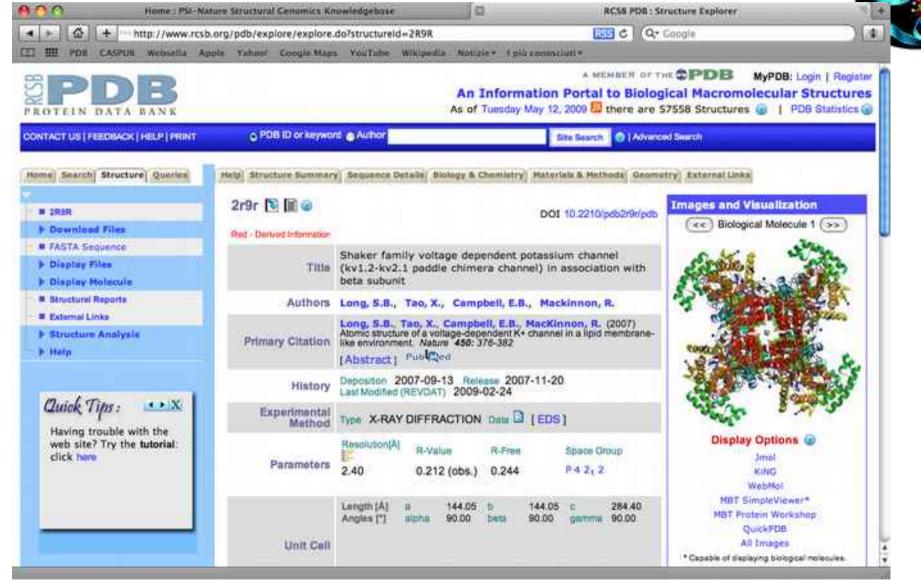

The equations that describe the temporal evolution of a physical system is called **equation of motion**. There are different equations of motions, which characterize the motion with different levels of approximation:

- > Time-dependent Schrödinger's Equation
 - > for quantum-mechanical system
- Newton's Equation
 - > for classical-mechanical system
- Langevin's Equation
 - > for stochastic system

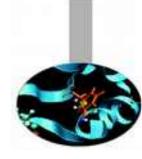
Force field

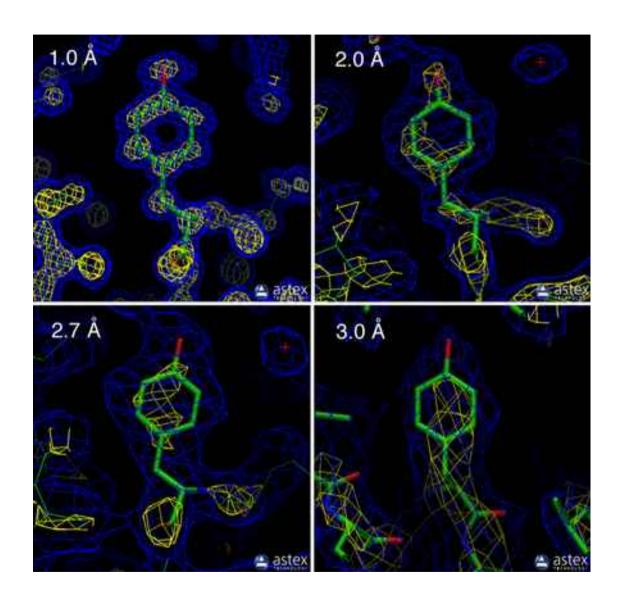

The potential energy function, together with the parameters required to describe the behavior of different kinds of atoms and bonds (k_b , k_{θ} , k_{ξ} , C_{ij} , ...), is called: <u>force field.</u>

Several force fields are currently used and the choice depends from the studied system. Some force field are better suited for nucleic acids, for example, while others for membrane proteins

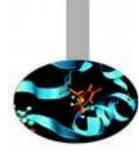


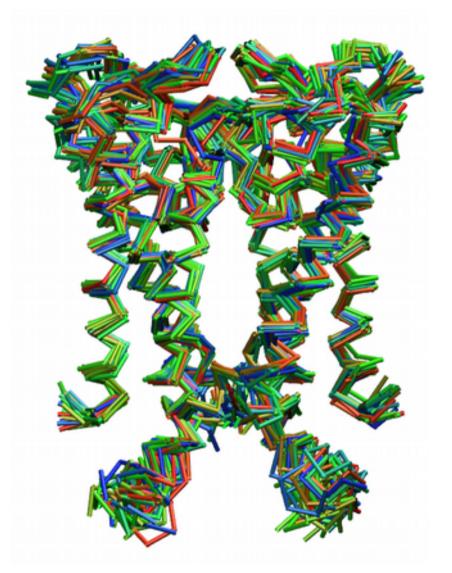
MD set up




http://www.rcsb.org/pdb

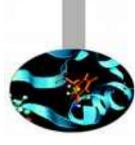
Initial coordinates: X-Ray vs. NMR


Higher X-ray resolution allows to use a more reliable starting structure in terms of amino-acids stereochemistry and accuracy of atomic positions

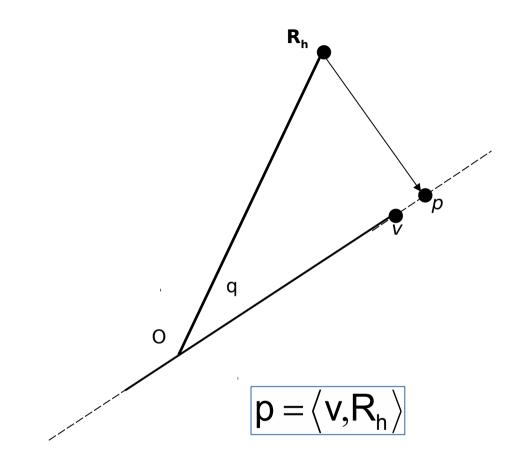

Error on initial position of protein atoms determines local structural alterations of the protein structure

X-ray resolutions smaller than 2 Å are much more reliable, although difficult to achieve. Generally, a resolution in the range 2 < R < 3 Å are acceptable. Beyond 3 Å the uncertainty of the initial position may cause artefacts in the MD simulation

Initial coordinates: X-Ray vs. NMR



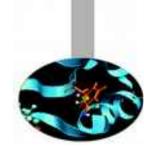
KcsA Potassium channel (PDB code: 2K1E) NMR determined structure provide information in a more realistic physiological environment as compared to X-ray determined structures although this could result in lower quality of initial coordinates and incertainties in the position of atomic coordinates.


Workflow for running MD simulations in GROMACS

PCA: how it works

Let's assume our simulation is defined by the vector Rn, that simply consists of the set of cartesian coordinates of Ca atoms at a given time step.

Question: what is the unity vector so that projection of \mathbf{R}_h on vector \mathbf{v} is the largest possible?


Answer: it is the vector \mathbf{v} , so that the variance of the projected point p of Rn onto v is the largest possible

p is the projection of vector \mathbf{R}_h onto unity vector \mathbf{v} (dot product between \mathbf{v} and \mathbf{R}_h)

Eigenvalue equation

The average of projected points onto ${\boldsymbol v}$ is:

 $\mu(v) = \langle v, \overline{x} \rangle$

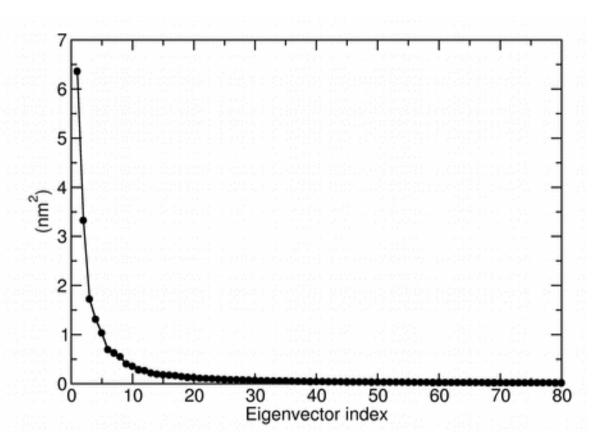
 $Cv = \lambda v$

Eigenvectors

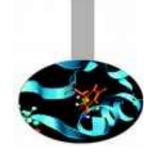
Eigenvalues

Variance of projected point onto ${\boldsymbol v}$ is:

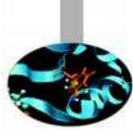
 $\sigma^{2}(\mathbf{v}) = \langle C\mathbf{v}, \mathbf{v} \rangle$


Variance of projected points along vector **v** can be expressed in terms of dot product between **v** and **Cv**. Eigenvectors represents direction where the σ^2 returns its maximum value.

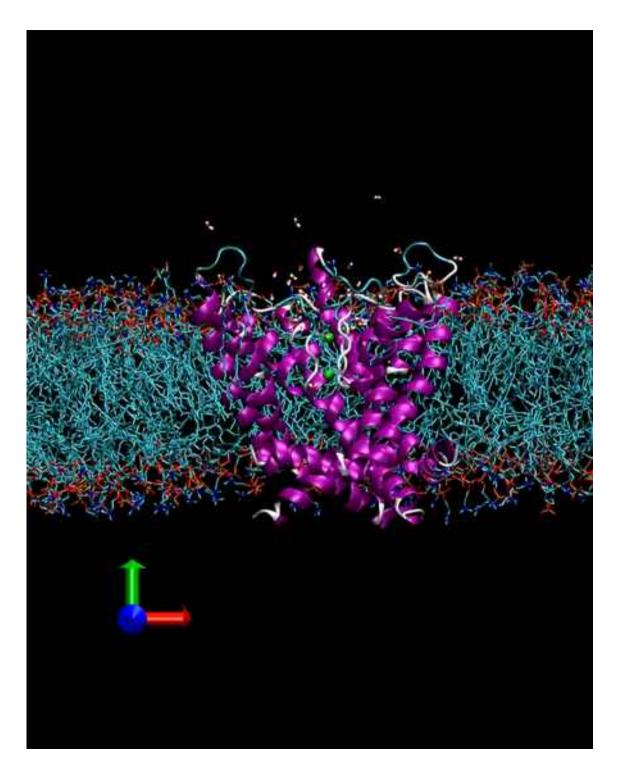
Moreover, it can be shown that σ^2 are numerically equivalent to calculated eigenvalues



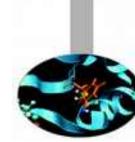
Essential Dynamics of Proteins



Eigenvalues are sorted in descending order: the first one corresponds to the maximum variance of the projected points. The corresponding eigenvectors are the best principal components of associated eigenvalues.



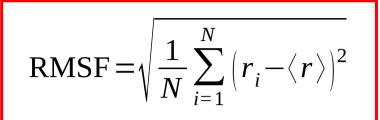
Data visualizzation for Molecular Simulations

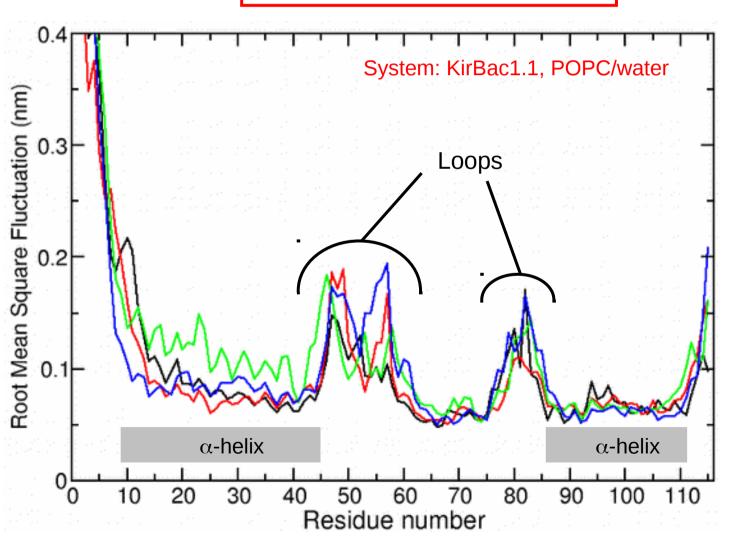


Molecular Dynamics Simulations

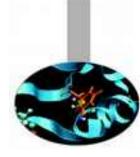
https://youtu.be/gNSeN7NMJRA

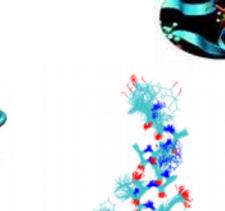
Did we reach equilibrium...?

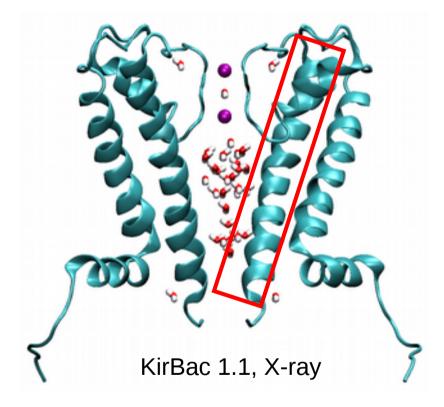


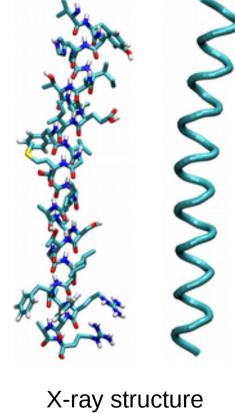

RMSD =
$$\sqrt{\frac{1}{N}\sum_{i=1}^{N} (r_i - r_0)^2}$$

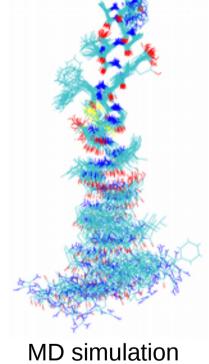
We need to make sure that all the chemical and physical properties of the system have reached an equilibrium, where their averages do not longer change as a function of time. A simple way to test this is by measuring the RMSD (root mean square deviation) of C α carbon atoms position with respect to start.


Measuring chain flexibility


RMSF is a simple tool to measure the rigidity of the polypeptide chain. It calculates the deviations of C-alpha atoms coordinates from their average position. flexibility The pattern reflects the location of secondary structure elements in the protein structure.

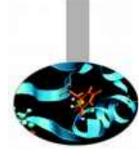


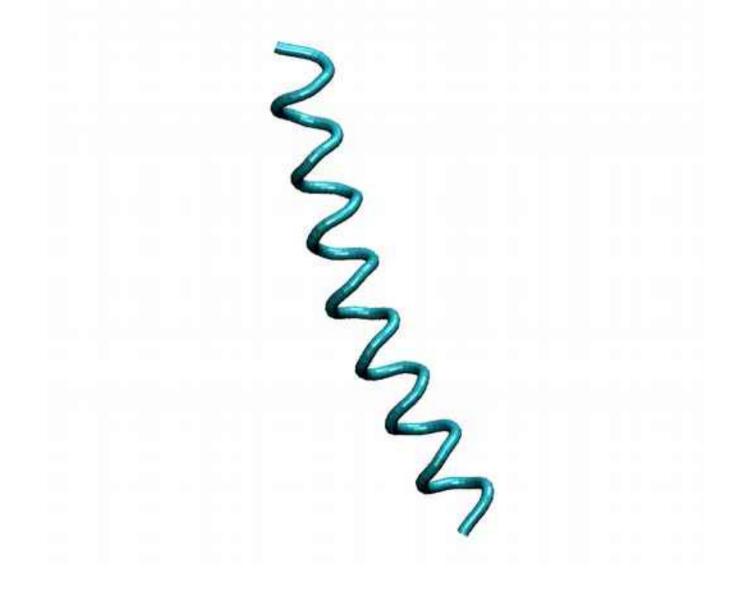




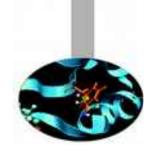
g_anaeig: the flag --filt

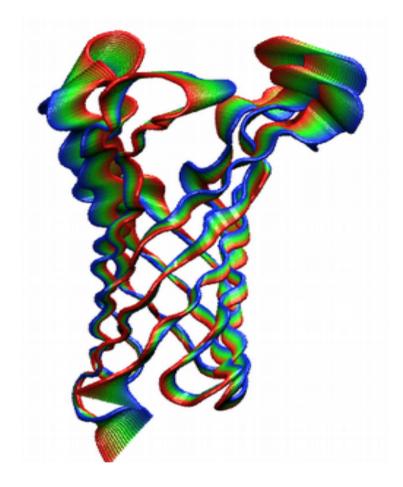
M2 helix KirBac 1.1, raw data



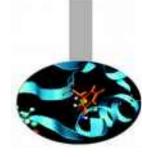


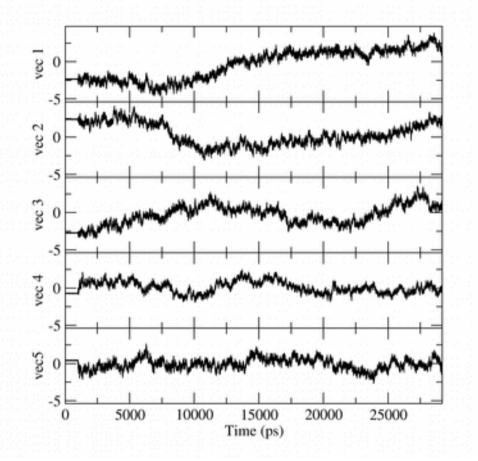
M2 helix KirBac 1.1 first eigenvector





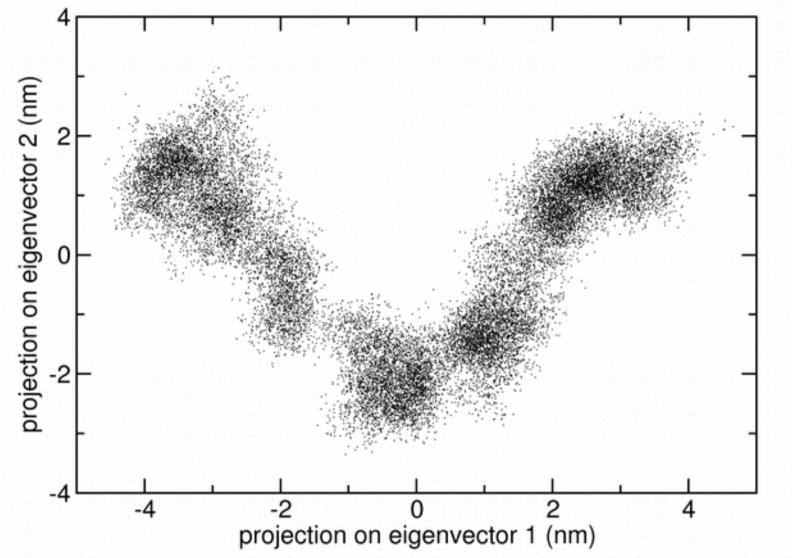
Visualizzation of trajectories

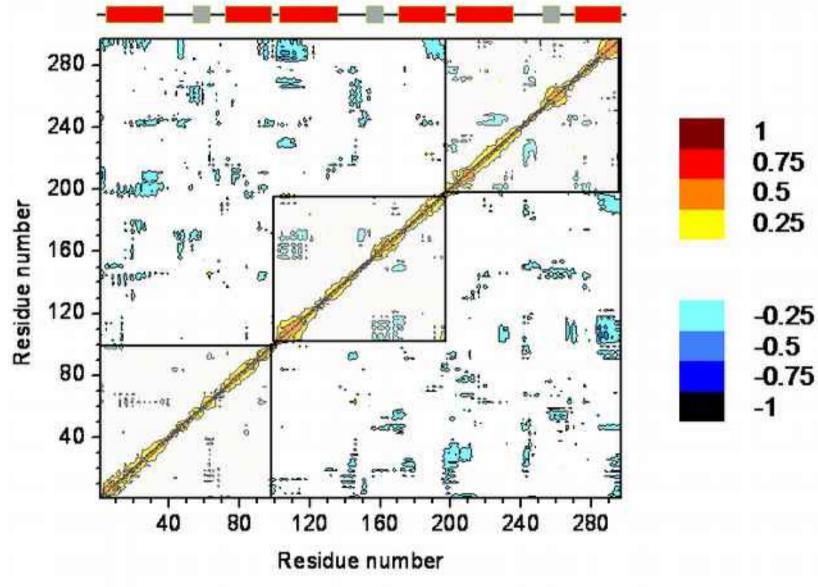

Picture produced with RasMol

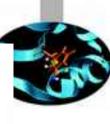

Tube representation of a filtered trajectory onto the first and second eigenvectors of the atomic fluctuation covariance matrix of porin OmpA

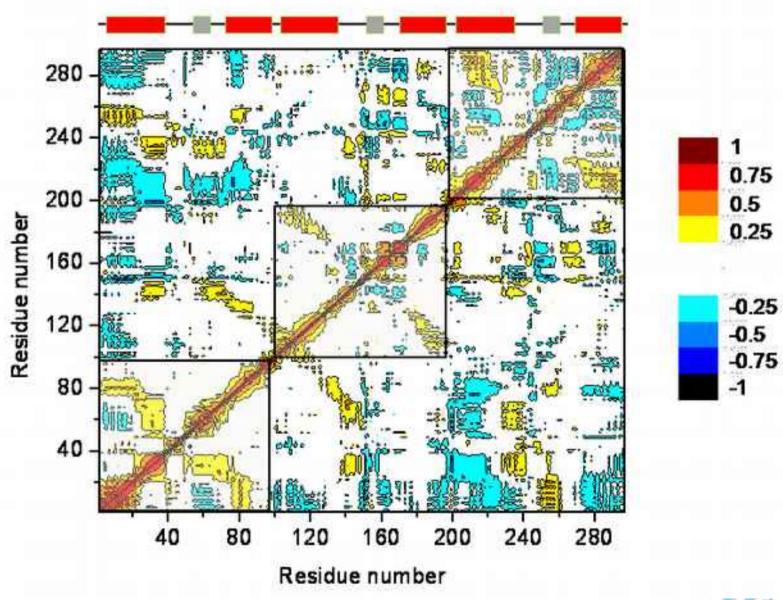
g_anaeig: output of flag -proj

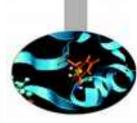
By default, 8 eigenvectors are considered for output using g_anaeig. This option can be set by using the flags -first and -end


g_anaeig -f trajectory.xtc -v eigenvec.trr -eig eigenval.xvg -s reference.gro -proj proj.xvg -first 1 -last 5


Graphic representation of classic MD simulations







CΔ

