
Introduction to Python language

What is Python?

a modern, general-purpose, object-oriented, high-level programming language.

General characteristics
clean and simple language:

Easy-to-read and intuitive code
easy-to-learn minimalistic syntax
maintainability scales well with size of projects

expressive language:
Fewer lines of code
fewer bugs
easier to maintain

Python: high level technical details

dynamically typed:
No need to define the type of variables, function arguments or return types.

automatic memory management:

No need to explicitly allocate and deallocate memory for variables and data
arrays: no memory leak bugs

interpreted:
No need to compile the code: the Python interpreter reads and executes the
python code directly

Python for scientific computing
Python has a strong position in scientific computing: large community of users, easy to find help
and documentation

Extensive ecosystem of scientific libraries and environments

numpy http://numpy.scipy.org (http://numpy.scipy.org) - Numerical Python
scipy http://www.scipy.org (http://www.scipy.org) - Scientific Python
pandas http://www.pydata.org (http://www.pydata.org) - Data analysis
matplotlib http://www.matplotlib.org (http://www.matplotlib.org) - Plotting library
seaborn http://seaborn.pydata.org/ (http://seaborn.pydata.org/) - Statistical data
visualization

``To understand the meaning of the numbers we compute, we often
 need postprocessing, statistical analysis and graphical visuali
zation of our data.``

Python interpreter
The standard way to use the Python programming language is to use the Python interpreter to
run Python code

The python interpreter is a program that reads and executes the python code in files
passed to it as arguments
At the command prompt, the command python is used to invoke the Python interpreter

For example, to run a file my-program.py that contains python code from the command
prompt, use:

$ python my-program.py

Python interactive shell
We can also start the interpreter by simply typing python at the command line, and interactively
type python code into the interpreter.

http://numpy.scipy.org/
http://www.scipy.org/
http://www.pydata.org/
http://www.matplotlib.org/
http://seaborn.pydata.org/

IPython (1)
IPython is an interactive shell that addresses the limitation of the standard python
interpreter: it is a work-horse for scientific use of python!
It provides an interactive prompt to the python interpreter with a greatly improved user-
friendliness.

IPython (2)
Some of the many useful features of IPython includes:

Command history, which can be browsed with the up and down arrows on the
keyboard.
Tab auto-completion.
In-line editing of code.
Object introspection, and automatic extract of documentation strings from python
objects like classes and functions.
Good interaction with operating system shell.

Using Python as a Calculator (1)
A Python interactive shell could be used as a powerful calculator

In [1]:

In [3]:

Out[1]: 7

Out[3]: 5.0

2+5

(50-5*6)/4

In [4]:

Note:

in Python 3 the integer division returns a floating point number;
in Python 2, like in C or Fortran, the integer division truncates the remainder and returns
an integer.

Using Python as a Calculator (2)
Our Python Calculator supports matematical functions, simply importing the math library

In [5]:

In [6]:

Using Python as a Calculator (3)
In our Python calculator, we can define variables using the equal sign (=):

In [7]:

Using Python as a Calculator (4)
If you try to access a variable that you haven't yet defined, you get an error:

Out[4]: 2.3333333333333335

Out[5]: 9.0

Out[6]: 9.0

Out[7]: 600

7/3

An example of using a module
from math import sqrt
sqrt(81)

Or you can simply import the math library itself
import math
math.sqrt(81)

width = 20
length = 30
area = length*width
area

In [8]:

and you need to define it:

In [9]:

Python variables (1)
You can name a variable almost anything you want
It needs to start with an alphabetical character or "_"
It can contain alphanumeric characters plus underscores ("_")

Certain words, however, are reserved for the language:

and, as, assert, break, class, continue, def, del, elif, else, except,
exec, finally, for, from, global, if, import, in, is, lambda, not, or,
pass, print, raise, return, try, while, with, yield

Python variables (2)

In [10]:

A short introduction to Python programming
language
(Python 3)

NameError Traceback (most recent call l
ast)
<ipython-input-8-0c7fc58f9268> in <module>()
----> 1 volume

NameError: name 'volume' is not defined

Out[9]: 6000

 File "<ipython-input-10-0cf476473b74>", line 3
 return = 0
 ^
SyntaxError: invalid syntax

volume

depth = 10
volume = area*depth
volume

Trying to define a variable using
one of these will result in a syntax error:
return = 0

Strings (1)
Strings are lists of printable characters, and can be defined using either single quotes

In [11]:

or double quotes

In [12]:

Strings (2)
Single quotes and double quotes cannot be used both at the same time, unless you want one of
the symbols to be part of the string.

In [13]:

In [14]:

In [15]:

Just like the other two data objects we're familiar with (ints and floats), you can assign a string to
a variable

In [16]:

How to concatenate strings (1)
You can use the + operator to concatenate strings together:

In [20]:

Out[11]: 'Hello, World!'

Out[12]: 'Hello, World!'

Out[13]: "He's a Rebel"

Out[14]: 'She asked, "How are you today?"'

Out[15]: str

Hello,World!

'Hello, World!'

"Hello, World!"

"He's a Rebel"

'She asked, "How are you today?"'

myString = "I'm a string"
type(myString)

greeting = "Hello, World!"

statement = "Hello," + "World!"
print(statement)

Don't forget the space between the strings, if you want one there.

In [21]:

How to concatenate strings (2)
You can use + to concatenate multiple strings in a single statement:

In [22]:

If you have a lot of words to concatenate together, there are other, more efficient ways to do this.
But this is fine for linking a few strings together.

Lists
Very often in a programming language, one wants to keep a group of similar items together.

Python does this using a data type called list.

In [23]:

In [24]:

How to access to list items
You can access members of the list using the index of that item:

In [25]:

Python lists, like C, but unlike Fortran, use 0 as the index of the first element of a list.

Hello, World!

This is a longer statement.

Out[24]: list

Out[25]: 'Tuesday'

statement = "Hello, " + "World!"
print(statement)

print("This " + "is " + "a " + "longer " + "statement.")

days_of_the_week = ["Sunday","Monday","Tuesday",\
 "Wednesday","Thursday","Friday","Saturday"]

type(days_of_the_week)

days_of_the_week[2]

In [26]:

Some operations on lists
You can add an additional item to the list using the .append() method:

In [27]:

You can concatenate two or more lists using the + operator

In [28]:

Lists: data type of items
A list DOES NOT have to hold the same data type. For example,

In [29]:

However, it's good (but not essential) to use a list for similar objects that are somehow logically
connected.

The range data structure
range(stop): return an object that produces a sequence of integers from 0 to stop
(exclusive)
range(start,stop[, step]): return an object that produces a sequence of
integers from start (inclusive) to stop (exclusive) by step; the default value for step is 1!
The builtin function list() is useful for generating a list from a range object

Sunday
Saturday

['Fortran', 'C', 'C++', 'Python']

['Fortran', 'C', 'C++', 'Python', 'Java', 'Perl']

['Today', 7, 99.3, ''] <class 'list'>

First element
print(days_of_the_week[0])

If you need to access the *n*th element from the end of the list,
you can use a negative index.
print(days_of_the_week[-1])

languages = ["Fortran","C","C++"]
languages.append("Python")
print(languages)

other_languages = ["Java", "Perl"]
my_languages = languages + other_languages
print(my_languages)

my_multitype_list = ["Today",7,99.3,""]
print(my_multitype_list,type(my_multitype_list))

In [30]:

Other numerical lists

In [31]:

In [32]:

In [33]:

Number of elements in a sequence

In [34]:

In [35]:

Iteration, Indentation, and Blocks
One of the most useful things you can do with lists is to iterate through them

i.e. to go through each element one at a time

To do this in Python, we use the for statement:

Out[30]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Out[31]: [2, 3, 4, 5, 6, 7]

Out[32]: [0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

Out[33]: 6

Help on built-in function len in module builtins:

len(obj, /)
 Return the number of items in a container.

Out[35]: 10

list(range(10))

list(range(2,8))

evens = list(range(0,20,2))
evens

evens[3]

help(len)

#You can find out how long a list is using the **len()** command:
len(evens)

In [36]:

Blocks?

(Almost) every programming language defines blocks of code in some way.

In Fortran, one uses DO .. ENDDO (or IF .. ENDIF, etc..) statements to open and close
a code block.
In C, C++, and Perl, one uses curly brackets {} to define blocks.

Python blocks
Python uses a colon (":"), followed by indentation level

Everything at a the same level of indentation is taken to be in the same block.

The range() class and for statement

Sunday
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday

Define loop
for day in days_of_the_week:
 # This is inside the block :)
 print(day)

The range() class and for statement
The range() class is particularly useful with the for statement to execute loops of a specified
length:

In [37]:

Slicing (1)
Warning: pay attention! Slicing is very important for using matrices and numpy

Lists and strings have something in common that you might not suspect: they can both be
treated as sequences.

You can iterate through the letters in a string:

In [39]:

Slicing (2)
More useful is the slicing operation on any sequence.

In [40]:

or simply

The square of 0 is 0
The square of 1 is 1
The square of 2 is 4
The square of 3 is 9
The square of 4 is 16
The square of 5 is 25
The square of 6 is 36
The square of 7 is 49
The square of 8 is 64
The square of 9 is 81
The square of 10 is 100
The square of 11 is 121

S
u
n
d
a
y

Out[40]: ['Sunday', 'Monday']

for i in range(12):
 print ("The square of",i,"is",i*i)

for letter in "Sunday":
 print(letter)

days_of_the_week[0:2]

In [41]:

Note: we are not talking about indexing anymore.

Slicing (3)
If we want the last items of the list, we can do this with negative slicing:

In [42]:

We can extract a subset of the sequence:

In [43]:

Slicing (4)
Since strings are sequences

In [44]:

Slicing (5)
We can pass a third element into the slice.

It specifies a step length (like the third argument of the range() class)

In [45]:

note: I was even able to omit the second argument

Fundamental types (1)

Out[41]: ['Sunday', 'Monday']

Out[42]: ['Thursday', 'Friday', 'Saturday']

['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday']

Sun

Out[45]: [2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 3
8]

days_of_the_week[:2]

days_of_the_week[-3:]

workdays = days_of_the_week[1:6]
print(workdays)

day = "Sunday"
abbreviation = day[:3]
print(abbreviation)

numbers = list(range(0,40))
evens = numbers[2::2]
evens

Fundamental types (1)
The basic types in any language are:

Strings (we already saw them)
Integers
Real
Boolean

In [47]:

In [48]:

Fundamental types (2)

In [49]:

In [50]:

In [51]:

In [52]:

Checking type of a variable

Out[47]: int

Out[48]: float

Out[49]: bool

Out[50]: complex

(1-2j)

1.0 -2.0

integers
x = 1
type(x)

float
x = 1.0
type(x)

boolean
b1 = True

type(b1)

complex numbers: note the use of `j` to specify the imaginary part
x = 1.0 - 2.0j
type(x)

print(x)

print(x.real, x.imag)

In [53]:

In [54]:

Type casting (1)

In [55]:

In [56]:

In [57]:

Type casting (2)
Some conversions are impossible:

In [58]:

Booleans and Truth Testing
A boolean variable can be either True or False

Out[53]: True

Out[54]: False

1.5 <class 'float'>

1 <class 'int'>

(1+0j) <class 'complex'>

TypeError Traceback (most recent call l
ast)
<ipython-input-58-e719cc7b3e96> in <module>()
----> 1 x = float(z)

TypeError: can't convert complex to float

x = 1.0

check if the variable x is a float
type(x) is float

check if the variable x is an int
type(x) is int

x = 1.5

print(x, type(x))

x = int(x)

print(x, type(x))

z = complex(x)

print(z, type(z))

x = float(z)

We invariably need some concept of conditions in programming
to control the branching behavior
to allow a program to react differently to different situations

if statement (1)
if statement controls the branching on the basis of a boolean value

In [60]:

Let's take the snippet apart to see what happened.

In [61]:

if statement (2)
If statements can have elif parts ("else if"), in addition to if/else parts. For example:

In [62]:

Equality testing
The == operator performs equality testing: if the two items are equal, it returns True, otherwise it
returns False.

You can compare any data types in Python:

In [63]:

Sleep in

Out[61]: True

Sleep in

Out[63]: False

if day == "Sunday":
 print("Sleep in")
else:
 print("Go to work")

First, note the statement
day == "Sunday"

if day == "Sunday":
 print("Sleep in")
elif day == "Saturday":
 print("Do sport")
else:
 print("Go to work")

1 == 2

In [64]:

In [65]:

Other tests

In [66]:

In [67]:

In [68]:

In [69]:

a "strange" equality test
Particularly interesting is the 1 == 1.0 test

hint: the two objects are different in terms of data types (integer and floating point number) but
they have the same value

In [70]:

More on boolean tests
We can do boolean tests on lists as well:

In [71]:

Out[64]: True

Out[65]: True

Out[66]: True

Out[67]: False

Out[68]: True

Out[69]: True

True
False

Out[71]: False

50 == 2*25

3 < 3.14159

1 != 0

2 <= 1

2 > 1

1 == 1.0

A strange test
print(1 == 1.0)

Operator **is** tests whether two objects are the same object
print(1 is 1.0)

[1,2,3] == [1,2,4]

In [72]:

Finally, note that you can also perform multiple comparisons in a single line; the result is a very
intuitive test!

In [73]:

Dictionaries (1)
Dictionaries are an object called "mappings" or "associative arrays" in other
languages.
Whereas a list associates an integer index with a set of objects:

 mylist = [1,2,9,21]

In a dictionary, the index is called the key, and the corresponding dictionary entry is the
value

In [90]:

Dictionaries (2)
There's also a convenient way to create dictionaries without having to quote the keys.

In [91]:

In [92]:

About dictionaries
dictionaries are the most powerful structure in python

Out[72]: True

Out[73]: True

Rick's age is 46

Out[90]: {'Bob': 86, 'Fred': 21, 'Rick': 46}

Out[91]: {'Bob': 86, 'Fred': 20, 'Rick': 46}

Fred is 21 years old
Rick is 46 years old
Bob is 86 years old

[1,2,3] < [1,2,4]

hours = 5
0 < hours < 24

ages = {"Rick": 46, "Bob": 86, "Fred": 21}
print("Rick's age is",ages["Rick"])
ages

dict(Rick=46,Bob=86,Fred=20)

looping on a dictionary
for key,value in ages.items():
 print(key,"is",value,"years old")

dictionaries are not suitable for everything

In [93]:

In [94]:

Out[93]: 4

Out[94]: 3

len(t)

len(ages)

