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Python data 
model ● __dict__

What is exactly a Python object?



A simple class

Consider this minimal class:

>>> class Simple(object):

...     def __init__(self, a, b):

...         self.a = a

...         self.b = b

...     def value(self):

...         return self.a + self.b

... 

>>> s = Simple(2, 13)



The __dict__ attribute

Every object has a __dict__ attribute:

>>> dir(s)

['__class__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__', 
'__format__', '__ge__', '__getattribute__', '__gt__', '__hash__', '__init__', 
'__le__', '__lt__', '__module__', '__ne__', '__new__', '__reduce__', 
'__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', 
'__subclasshook__', '__weakref__', 'a', 'b']

>>> s.__dict__

{'a': 2, 'b': 13}

>>> 

This dictionary contains the object’s attributes!



The __dict__ instance attribute

Every object has a __dict__ attribute which contains the instance attributes.



The __dict__ attribute

We know that classes are objects too. What is the Simple.__dict__ attribute?

>>> Simple.__dict__

mappingproxy({'__doc__': None, '__init__': <function Simple.__init__ at 
0x7f06fc719950>, '__module__': '__main__', '__dict__': <attribute '__dict__' of 
'Simple' objects>, 'value': <function Simple.value at 0x7f06fc7199d8>, 
'__weakref__': <attribute '__weakref__' of 'Simple' objects>})

>>>

 

It’s a little bit more complicated, anyway we can recognize a dict-like object containing the value method.



The __dict__ class attribute

Every class has a __dict__ attribute which contains all the class members (attributes and methods).



Attribute access

When we get an instance attribute:

● It is first searched in the instance’s __dict__
● If not found, it’s searched in the class __dict__
● If not found, it’s searched in the base classes __dict__



Garbage 
collection ● Reference counting

● The garbage collector

The object’s lifetime



Object reference

Remember how symbolic names are (temporarily) attached to objects.



Object reference

>>> s = "Hello, "

>>> id(s)

140386214488416 Memory

value:   "Hello, "
address: 140386214488416

Symbolic names

s



Object reference

>>> s = "Hello, "

>>> id(s)

140386214488416

>>> s += "world!"

>>> s

'Hello, world!'

>>> id(s)

140386214518192

Memory

value:   "Hello, "
address: 140386214488416

value:   "Hello, world!"
address: 140386214518192

Symbolic names

s



Object reference

>>> s = "Hello, "

>>> id(s)

140386214488416

>>> s += "world!"

>>> s

'Hello, world!'

>>> id(s)

140386214518192

Memory

value:   "Hello, "
address: 140386214488416

value:   "Hello, world!"
address: 140386214518192

Symbolic names

s
What happens 
to this object?



In this example the object with id 140386214488416 is no longer in use. There is no way to use it, 
since no references are left to this object.

The garbage collector is responsible for destroying such unusable objects.

Object reference



Each Python object has a reference count attribute, which count the number of references.

This counter is increased, for instance:

● when a new symbolic name is given to the object;
● when the object is stored on a container;
● when another object refers to its through some attribute.

The garbage collector automatically deletes objects whose reference count becomes zero.

Reference counting (CPython)



The CPython interpreter (the one we are using) has a deterministic garbage collector, which tries to 
collect objects as soon as possible.

This is one of the most cpu-consuming interpreter activities.

Other Python implementation (pypy for instance) implements alternative garbage collection 
strategies, with a considerable speedup.

Reference counting (CPython)



Consider this class:

>>> class Trc(object):

...     def __init__(self):

...         print("INIT")

...     def __del__(self):

...         print("DEL")

... 

>>> 

The garbage collector at work

The __del__ method is the 
finalizer: it is called just before 
the object is destroyed



>>> obj = Trc()

INIT

>>> del obj

DEL

>>> 

It seems we can decide when the object is destroyed. But it’s not our decision: it’s up to the garbage 
collector to destroy objects. We only can state that a reference to an object is no longer used.

The garbage collector at work



>>> obj = Trc()

INIT

>>> obj_alias = obj

>>> del obj

>>> 

Why in this case the __del__() method has not been called? The reason is that del obj deletes 
a reference, not an object! In this case the Trc instance has another symbolic names referring to it, 
so the reference count is not zero.

The garbage collector at work



>>> obj = Trc()

INIT

>>> obj_alias = obj

DEL

>>> del obj

>>> obj_alias = 10

DEL

>>> 

The garbage collector at work



>>> obj = Trc()

INIT

>>> obj_alias = obj

DEL

>>> del obj

>>> obj_alias = 10

DEL

>>> 

The garbage collector at work



Exceptions ● Exceptions
● Raising exceptions
● Caatching exceptions

The modern way to handle 
errors



Error handling

This is a list of the properties that we require to a modern language about error handling:

● Errors should never pass silently (the Zen of Python, n. 10)
● Error handling should not pollute code
● Errors can be handled partially



Error identification/handling

A very general property about errors:

● The code region where the error can easily be identified is not the code region where the error 
can be handled.



For instance, an invalid argument value can be easily detected as an error by a third party library; 
nevertheless, this library function does not know what is the correct way to handle the error:

● stop the program? (generally it’s not a good idea…)
● use an alternate value? Which?
● ask the user for another value? How?

On the other hand, the caller function can easily handle this error after it has been detected. 

Error identification



Exceptions are raised when an error condition is detected. Consider this library function:

def invert(matrix):

    if not is_square(matrix):

        raise MatrixError("not a square matrix")

    det = compute_determinant(matrix)

    if det == 0:

        raise SingularMatrixError("singular matrix")

    ...

Exceptions



When a raise statement is encountered, the function execution is stopped. Execution 
is then passed through the call stack to the first caller which is able to handle the raised 
exception.

raise



An exception is an instance of an exception class; exception classes must inherit from 
BaseException (usually from Exception). Exceptions are usually organized 
hierarchically:

class MatrixError(Exception):

    pass

class SingularMatrixError(MatrixError):

    pass

Exception

A SingularMatrixError error is a 
MatrixError!



Exception classes have an error message (a string) as first argument. They can have 
optional arbitrary arguments.

Generally exception classes are empty; the exception type itself contains all the 
information needed to identify the error.

Exception



The user program calling this function can now check if an error is raised:

from third_party_matrix_library import load, invert

m = load("m.dat")

try:

    minv = invert(m)

except MatrixError:

    ...

try/except



If the execution of the try block raises a MatrixError, the execution stops and pass 
to the corresponding except block.

try/except



try:

    ...

except SingularMatrixError:

    ...

except MatrixError as err:

    ...

else:

    ...

finally:

    ...

try/except

This block is executed if a SingularMatrixError is raised

This block is executed if a MatrixError, but not a 
SingularMatrixError, is raised. Error is available as err.

This block is executed only if no errors are raised

This block is executed always after the try block



Sometimes a caller function can handle the error only partially; in this case, a raise 
command without arguments in the except block will re-raise the catched error:

gui = create_gui()

try:

    ...

except SingularMatrixError:

    gui.close()  #  partial error handling (cleanup)

    raise

Partial error handling



Decorators ● Function decorators

How to decorate functions and 
classes



Decorator pattern

To decorate a function means to implement a new function which is the original one, plus something 
executed before and/or after.



Suppose you often want to trace computing time for your functions. For each function, 
you have to

● start a timer before the function execution;
● execute the function;
● stop the timer at the end, and, for instance, print the elapsed time.

This timing recipe does not depend at all on the function’s content.

Applying the same recipe to every possible function is tedious and error prone. 
Moreover, if you want to change the timing itself (for instance, you want to collect all 
the function call times and print a report at the end), you have to change each function.

Timing



def timed(function):

    def timed_function(*args, **kwargs):

        t0 = time.time()

        result = function(*args, **kwargs)

        print("elapsed: {:.2f} s".format(time.time() - t0))

        return result

    return timed_function

The timed() function



This function receives a function as argument. 

It then creates a new function, timed_function(), which accept arbitrary positional 
and keyword arguments. The new function starts the times, calls the original 
function, shows the elapsed time, and returns the function’s return value.

This is possible because functions are first-class citizens, so they can be passed to 
functions or returned from functions.

The timed() function



Suppose you have this function and you want to time it:

def next_prime(n):

    p = n

    while not is_prime(p):

        p += 1

    return p

The timed() function



You can obtain a timed version of the function by calling timed():

>>> from timed import timed

>>> from primes import next_prime

>>> timed_next_prime = timed(next_prime)

>>> timed_next_prime(10000000)

elapsed: 1.91 seconds

10000019

The timed() function



This timed() function is called a decorator: it takes a function as arguments and returns 
a decorated function.

The timed() decorator



Often you don’t need the original function: you only need the decorated one. If you are 
defining your own function compute() and you want it to be timed, you can write:

>>> @timed

... def compute(f):

...     time.sleep(f)

... 

>>> compute(0.35)

elapsed: 0.35 seconds

The @timed syntax



The @decorator syntax is syntactic sugar: it only means that you want to replace the 
function you’re defining with it’s timed version.

>>> def compute(f):

...     time.sleep(f)

... 

>>> compute = timed(compute)

>>>

The @decorator syntax



The @decorator syntax can be repeated in order to apply multiple decorators:

>>> @traced

... @timed

... @cached

... def compute(f):

...     pass

... 

>>>

The @decorator syntax



Sometimes you need to pass an argument to the decorator:

>>> @timed("### {:.3f} seconds")

... def compute(f):

...     time.sleep(f)

... 

>>> compute(0.35)

### 0.350 seconds

>>> 

j

Decorators with arguments



def timed(fmt="elapsed: {:.2d} s"):

    def timed_decorator(function):

        def timed_function(*args, **kwargs):

            t0 = time.time()

            result = function(*args, **kwargs)

            print(fmt.format(time.time() - t0))

            return result

        return timed_function

    return timed_decorator

j

Decorators with arguments




