
An introduction to Python
Object-oriented programming
Iteration
Generators

Object-oriented
programming ● OOP/OOD

● Classes
● Inheritance

data+code->objects

Procedural programming

In traditional procedural programming, there are

● data
● functions working on data

>>> m1 = create_matrix(10, 20)

>>> fill_matrix(m1, 2.3)

>>> write_matrix(m1, “m1.raw”)

Object-oriented programming

In object-oriented programming, data and functions working on data are tied on the same class:

>>> m1 = Matrix(10, 20)

>>> m1.fill(2.3)

>>> m1.tofile(“m1.raw”)

Classes

In object-oriented languages, every object is an instance of a particular class.

The class completely defines the object’s type, so we’ll refer indifferently to the object’s type or to the
object’s class.

A class do not simply define the object’s content: it defines also the objects algebra, i.e. all the
operation supported by objects.

Design: interface and implementation

In (object-oriented) design it’s a good idea to fix first the interface and then the implementation.

Remember:

Code to an interface, not to an implementation.

The Fraction class

We want to design and implement a Fraction class for fractions.

This is only for exercise: the standard library already has a fractions module implementing this
class.

A simple class

Expected interface:

>>> fr = Fraction(2, 3)

>>> print("{}/{}".format(fr.numerator, fr.denominator))

2/3

Implementation:

class Fraction(object):

 def __init__(self, numerator, denominator):

 self.numerator = numerator

 self.denominator = denominator

The __init__ method

The __init__() method is the class initializer; it is called when the Fraction object is created.

The first argument is self, the instance to be initialized; this is the first argument for all the
methods.

The initializer adds two attributes (numerator and denominator) to self.

Technically it’s not a constructor, since the self object already exists.

The actual constructor is __new__() and is a special method (a class method). Normally there is
no need to define it.

The numerator and denominator attributes

By default instance attributes are public:

>>> f0 = Fraction(5, 2)

>>> f0.numerator

5

>>> f0.numerator = 7

>>>

The simplify() method

We now want to add a method that can be used to simplify the fraction.

The interface we want to implement is

>>> f0 = Fraction(15, 6)

>>> print("{}/{}".format(f0.numerator, f0.denominator))

15/6

>>> f0.simplify()

>>> print("{}/{}".format(f0.numerator, f0.denominator))

5/2

The simplify() method

class Fraction(object):

 ...

 def simplify(self):

 while True:

 for n in range(2, self.numerator - 1):

 if self.numerator % n == 0 and self.denominator % n == 0:

 self.numerator //= n

 self.denominator //= n

 break

 else:

 break

String conversion

It would be better to write simply

>>> print(f0)

instead of repeating the following code to print a fraction

>>> print("{}/{}".format(f0.numerator, f0.denominator))

All the Python objects can be converted to strings, so also our fractions can be printed; anyway, the
default string conversion is not meaningful:

>>> print(f0)

<__main__.Fraction object at 0x7fc854692940>

>>>

String conversion

What we would like to implement is the following interface:

>>> f0 = Fraction(15, 6)

>>> print(f0)

(15/6)

We need to define the __str__() method. It must return a string.

The __str__() method

class Fraction(object):

 ...

 def __str__(self):

 return "({}/{})".format(self.numerator, self.denominator)

Example:

f0 = Fraction(15, 6)

>>> print(f0)

(15/6)

Object’s representation

For the same reason, it would be better to change the default representation for fractions. It should
be the Python source code that can be used to construct that object, so a good interface is:

>>> f0 = Fraction(15, 6)

>>> print(repr(f0))

Fraction(15, 6)

We need to define the __repr__() method. It must return a string.

The __repr__() method

class Fraction(object):

 ...

 def __repr__(self):

 return "{t}({n}, {d})".format(

 t=type(self).__name__,

 n=self.numerator, d=self.denominator)

Usage:

>>> f0

Fraction(15, 6)

Design: class invariants

A class invariant is a particular condition or property that the class instances must have. The entire public interface of
the class must satisfy the class invariants.

In our case, we want that every fraction is always simplified.

Invariants are preserved only in the public interface: they are generally temporarily broken inside method.

The simplification invariant

We want to force that every Fraction object is automatically simplified:

>>> print(Fraction(15, 6))

(5/2)

We can force simplification during construction by calling the simplify method at the end of the
initializer:

class Fraction(object):

 def __init__(self, numerator, denominator):

 ...

 self.simplify()

Is this invariant broken?

The invariant is broken if the public interface allows to obtain a fraction that is not simplified.
Unfortunately this is possible, since we gave public access to the numerator and denominator
attributes:

>>> f0 = Fraction(15, 6)

>>> f0

Fraction(5, 2)

>>> f0.numerator = 10

>>> f0

Fraction(10, 2)

How to fix this problem?

Generally classes do not give public access to their innards (the representation); attributes are
generally private. Helper functions can be added to give read-only access to the attributes.

Attributes whose name starts with a double underscore are private.

So we can change the implementation of the class by changing self.numerator with
self.__numerator, and self.denominator wit self.__denominator.

Generally a single underscore is used. Attributes starting with underscore are considered protected.

Private members

class Fraction(object):

 def __init__(self, numerator, denominator):

 self.__numerator = numerator

 self.__denominator = denominator

 self.simplify()

 def numerator(self):

 return self.__numerator

Private/protected methods

As attributes, methods starting with double underscore are private, and methods starting with a
single underscore are considered protected.

In this case, since the simplification is an invariant, the simplify method is useless in the public
interface. It’s better to avoid useless public functions or attributes, so we will protect this method.

We choose to have a protected, and not a private method, since using this method is useless, but
not dangerous.

class Fraction(object):

 def __init__(self, numerator, denominator):

 ...

 self._simplify()

Read-only property

As an alternative, a read-only property can be used. A property is an attribute-like object: it is used as
an attribute, but implemented as a member.

class Fraction(object):

 ...

 @property

 def numerator(self):

 return self.__numerator

Properties are by default read-only attributes.

Read-only property

In this case, the public interface allows accessing numerator as a read-only member:

>>> f0.numerator

5

>>> f0.numerator = 10

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

AttributeError: can't set attribute

>>>

Read-only property

Properties can be used not only to “protect” attributes, but also to create “virtual” attributes. For
instance

>>> print(f0)

Fraction(5, 2)

>>> print(f0.value)

2.5

>>>

We can implement this interface without introducing a new attributes (depending on the other).

Read-only property

Properties can be used not only to “protect” attributes, but also to create “virtual” attributes. For
instance

class Fraction(object):

 ...

 @property

 def value(self):

 return self.__numerator / self.__denominator

Property setter

Properties allow also the set operation. Consider this interface:

>>> f1 = Fraction(5, 6)

>>> print(f1)

(5/6)

>>> f1.numerator +=5

>>> print(f1)

(3/2)

Notice that the simplification invariant is satisfied after the numerator update. We can add a
property setter.

Property setter

class Fraction(object):

 @property

 def numerator(self):

 return self.__numerator

 @numerator.setter

 def numerator(self, value):

 self.__numerator = value

 self._simplify()

Notice that the simplification invariant is satisfied after the numerator update.

The property setter function is used in
assignment expressions such as:
>>> fr.numerator = 9

The property getter function is used in
read-only expressions such as:
>>> print(fr.numerator)

Property setter

We will add a setter for the numerator and the denominator properties, but not for the value, since
our interface does not need it.

Property deleter

Properties can also have a deleter, which is called when the property attribute is deleted, for
instance:

>>> del obj.prop

If the property prop has deleter function, it is called; otherwise an error is raised.

In this case, we won’t define a deleter, since our interface don’t need it, and since it would be absurd
to delete the numerator or the denominator.

Arithmetic

We now want to add arithmetic to our class. The interface we want to implement is the simplest
one:

>>> f0 = Fraction(5, 2)

>>> f1 = Fraction(2, 3)

>>> f0 + f1

Fraction(19, 6)

>>>

The __add__ method

In order to allow addition, the __add__ method must be added:

class Fraction(object):

 ...

 def __add__(self, other):

 return Fraction(

 numerator=self.numerator * other.denominator + \

 other.numerator * self.denominator,

 denominator=self.denominator * other.denominator)

Operator syntax

The operator syntax is only syntactic sugar: indeed operators are simply methods with a special
name. What we write is

>>> f0 + f1

but what the interpreter executes is

>>> f0.__add__(f1)

Mixed-type arithmetic

It would be nice to be able to mix fractions and integers in arithmetic expressions, as we can do with
float and int objects:

>>> f0 = Fraction(5, 2)

>>> print(f0 + 5)

(15/2)

>>> print(5 + f0)

(15/2)

>>>

The __add__ method

The first mixed expression (f0 + 5) can be obtained by slightly changing the method:

 def __add__(self, other):

 if not isinstance(other, Fraction):

 other = Fraction(other, 1)

 return Fraction(...)

The isinstance(other, Fraction) function returns True if other is a Fraction
(introspection).

The __radd__ method

The second mixed expression (5 + f0) can be obtained by adding a __radd__ (reverse add)
method.

Indeed, when an expression obj0 + obj1 is found, the interpreter first tries to execute it as
obj0.__add__(obj1); if this is not possible, it then tries to execute obj1.__radd__(obj0).

In our case the implementation of the __radd__ method is simple, due to the commutative
property of the addition:

 def __radd__(self, other):

 return self.__add__(other)

The Matrix class

We now want to design a Matrix class.

This is only an exercise: the numpy package contains a much better implementation.

The matrix interface

We want to implement the following interface:

>>> m0 = Matrix(4, 10, fill=1.0)

 >>> print(m0[2, 3])

 1.0

 >>> m0[2, 3] = 5.5

 >>> m1 = Matrix(4, 10, fill=2.0)

>>> m2 = m0 + m1

>>> m0 += m1

The __getitem__() method

In order to implement the item access, as in

 >>> print(m0[2, 3])

we must implement the __getitem__(...) method:

 class Matrix(object):

 ...

 def __getitem__(self, index):

 i, j = index

 return self.__data[i][j]

The __setitem__() method

In order to implement the item assignment, as in

 >>> m0[2, 3] = 5.5

we must implement the __setitem__(...) method:

 class Matrix(object):

 ...

 def __setitem__(self, index, value):

 i, j = index

 self.__data[i][j] = value

Mutable or immutable?

We already know how to implement a class with the add interface. But notice the last line:

>>> m0 += m1

We know that, for immutable types, this += operation creates a new object; m0 becomes a symbolic
name for that new object. Since a matrix can be very big, this is not memory efficient: it would be
better to have a mutable type, and to change the matrix object in-place.

The __iadd__() method can be set to implement this in-place operator. It is defined as the
__add__(); generally it returns the self object after it has been changed.

The __add__() method

def __add__(self, other):

 result = Matrix(self.__num_rows, self.__num_columns)

 for i in range(self.__num_rows):

 for j in range(self.__num_columns):

 result[i, j] = self[i, j] + other[i, j]

 return result

The __iadd__() method

def __iadd__(self, other):

 for i in range(self.__num_rows):

 for j in range(self.__num_columns):

 self[i, j] += other[i, j]

 return self

Class attributes

Sometimes we need to set a class attribute, i.e. an attribute which is exactly the same for all the
instances of the class.

In this case, it can be set directly in the class body.

For instance, in a Circle class we need to define the value of pi.

Class attributes

class Circle(object):

 pi = 3.141592653589793

 def __init__(self, radius):

 self.radius = radius

 def area(self):

 return self.pi * self.radius ** 2

Class attributes

A class attribute belongs to the class, not to the instance. It can be accessed also through the class:

>>> print(Circle.pi)

3.141592653589793

>>>

Class methods

Sometimes we need to define a method whose behavior does not depend on the instance, but only on
the class.

For instance, the Matrix class could implement a method to read the class from file. The file contains
shape and data. The from_file method mustn’t be applied to a constructed matrix, since a
constructed matrix already has a shape (and data) that do not necessarily match the file content. It
can be defined as class method.

The matrix.to_file(...) method

The to_file(...) method is a normal instance method, which can be applied to an already
constructed instance:

 def to_file(self, filename):

 with open(filename, "w") as f_out:

 f_out.write("{!r} {!r}\n".format(

 self.__num_rows, self.__num_columns))

 for i in range(self.__num_rows):

 for j in range(self.__num_columns):

 f_out.write(str(self[i, j]) + '\n')

The matrix.from_file(...) method

 @classmethod

 def from_file(cls, filename):

 with open(filename, "r") as f_in:

 lst = f_in.readline().strip().split()

 num_rows, num_columns = int(lst[0]), int(lst[1])

 instance = cls(num_rows, num_columns)

 for i in range(num_rows):

 for j in range(num_columns):

 instance[i, j] = float(f_in.readline().strip())

 return instance

self or cls

The first argument of an instance method is the instance itself; it is generally named self.

The first argument of a class method is the class itself; it is generally named cls.

Do not use other names!

Matrix I/O example

>>> m = Matrix(2, 10, fill=2.5)

>>> m.to_file("m.txt")

>>> m2 = Matrix.from_file("m.txt")

>>> print(m2)

2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5

2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5

>>>

Other magic methods

The list of magic __methods__ is very long:

● __delitem__(): remove an item
● __len__(): return the object length
● __iter__(): iterate on the object
● __del__(): the finalizer; it’s called just before the object is destroyed (normally there is no

need to implement it)
● __call__(*args, **kwargs): if defined, the object can be called as a function (it’s a

functor).

Operators and magic methods

Almost all the Python operators have corresponding magic methods, so they can be defined in classes:

● a + b -> a.__add__(b)
● a - b -> a.__sub__(b)
● a * b -> a.__mul__(b)
● a / b -> a.__truediv__(b)
● a // b -> a.__foordiv__(b)
● a % b -> a.__mod__(b)
● divmod(a, b) -> a.__divmod__(b)
● ...

We can overwrite all this operators; anyway, we cannot change their precedence: the standard Python precedence will
always be applied.

The class docstring

Also classes have docstrings.

>>> class Fraction(object):

... """Fraction instances have numerator/denominator attributes"""

...

>>>

Inheritance

Inheritance is an essential feature in object-oriented programming.

A class can inherit from another one (its base class or superclass). In this case, the derived class
inherits all the content (attributes and methods) of its superclass.

We make use of inheritance to

● Change an existing behavior
● Add new behaviors
● Enforce a common (abstract) interface to a hierarchy of classes

Change an existing behavior

We want to define a rstr class which behaves exactly as the builtin str, with the only exception
that it is printed reversed:

>>> s = rstr("Hello, world!")

>>> print(s)

!dlrow ,olleH

>>>

A rstr is a str with a changed behavior.

Add new behaviors

Suppose we want to define a Path class to implement the path algebra:

>>> pdir = Path("/home/user/data")

>>> print(pdir)

/home/user/data

>>> print(pdir.dirname())

/home/user

>>> print(pdir.join("alpha", "beta", "gamma.txt"))

/home/user/data/alpha/beta/gamma.txt

Add new behaviors

A Path is a string with some more algebra. We can implement it by inheriting from the string class,
and by defining the new behavior:

● Path.dirname()
● Path.basename()
● Path.split()
● Path.join(*args)
● ...

Enforce a common interface

We know that many dict-like types exist:

● dict
● defaultdict
● OrderedDict
● Counter

They all have a common interface. We will introduce a new frozendict class in the dictionary
hierarchy.

The “is a” property

The inheritance relationship can be expressed as “is a”:

● A rstr instance is a str
● A Path instance is a str
● A Counter instance is a Mapping

Changing an existing behavior: rstr

>>> class rstr(str):

... def __str__(self):

... return "".join(reversed(tuple(super().__str__())))

...

>>> s = rstr("Hello, world!")

>>> print(s)

!dlrow ,olleH

The rstr class

The base class is str, as stated in the first line. The __str__ method is replaced by a new one.
Notice that its implementation calls the original method. Here super() represents the superclass,
so super().__str__() is the original str method.

Class hierarchies

The “is a” property is maintained in complex hierarchies:

>>> class Animal(object): pass

>>> class Mammal(Animal): pass

>>> class Cat(Mammal): pass

>>> wasabi = Cat()

>>> isinstance(wasabi, Animal)

True

The object class

All the Python classes inherit (directly or indirectly) from object. This is the
base of the entire class hierarchy.

Adding a new behavior: Path

class Path(str):

 def dirname(self):

 return Path(os.path.dirname(self))

 def join(self, *parts):
 return Path(os.path.join(self, *parts))
 ...

The Path class

The base class is str also in this case.

Here dirname() is a new method, while join() is an overriden method.

The frozendict hierarchy

from collections import Mapping

class frozendict(Mapping):

 def __init__(self, *args, **kwargs):

 self.__dct = dict(*args, **kwargs)

 def __getitem__(self, key):

 return self.__dct[key]

 ...

The frozendict class

The base class is collections.Mapping. This is an abstract class enforcing the interface for an
immutable mapping. When inheriting from this class, three methods must be defined:

● __getitem__
● __len__
● __iter__

Multiple inheritance

A class can have multiple base classes:

class Alpha(BaseA, BaseB, BaseC):

 pass

Iteration ● The iterable/iterator duality

The glue between data and
algorithms

Iterable/iterator

An iterable is an object allowing iteration on it. To iterate means to traverse the object’s items, one
item after the other.

An iterator is an object allowing iteration on an iterable.

● An object is iterable if its class has an __iter__() method returning an iterator.
● An object is an iterator if its class has a __next__() method returning the next iteration

element.

iter()

The iter() function returns an iterator from an (iterable) object. It’s a shorthand to call the object’s
__iter__() method.

>>> lst = [7, 11, 13]

>>> iterator = iter(lst)

>>> iterator

<list_iterator object at 0x7f5b56ebf9e8>

>>>

next()

The next() function moves the iterator forward and returns the next item, if any. It’s simply a
shorthand to call the object’s __next__() method.

>>> next(iterator)

7

>>> next(iterator)

11

>>> next(iterator)

13

>>>

Python 2 vs Python 3
The name of the next method

__next__()next()

StopIterator

The iteration process stops when the __next__() method raises a StopIteration() exception.

>>> next(iterator)

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

StopIteration

>>>

The for loop magic unveiled

We now understand how the for loop for item in sequence works:

● It creates an iterator to the sequence iterator = iter(sequence)
● It assigns item = next(iterator) (and then executes the loop’s body) until next raises a

StopIteration error

for item in lst:

 print(item)

iterator = iter(lst)

while True:

 try:

 print(next(iterator))

 except StopIteration:

 break

The Fibonacci iterable

We want to create an iterable object representing the Fibonacci sequence.

>>> for n in Fibonacci(limit=4):

... print(n)

...

1

1

2

3

The limit argument is used to limit the number of generated
fibonacci numbers; iteration must stop when the limit is
reached.
This is only to show how to stop the iteration.

The Fibonacci class

The implementation of the Fibonacci class is quite simple:

class Fibonacci(object):

 def __init__(self, limit=None):

 self._limit = limit

 def __iter__(self):

 return FibonacciIterator(self._limit)

We now need to implement the FibonacciIterator.

The FibonacciIterator.__init__ method

The FibonacciIterator initializer accepts the limit value and sets the internal iterator status:

class FibonacciIterator(object):

 def __init__(self, limit):

 self._limit = limit

 self._count = 0

 self._first, self._second = 1, 1

The status is needed to keep track of the current position in iteration and to save it between
consecutive calls to the __next__ method.

The FibonacciIterator.__next__ method

The FibonacciIterator next method is responsible for

● Updating the internal status
● Returning the next iteration item
● Stopping the iteration when the limit is reached.

The FibonacciIterator.__next__ method

 def __next__(self):

 self._count += 1

 if self._limit is not None and self._count > self._limit:

 raise StopIteration()

 if self._count <= 2:

 return 1

 else:

 self._first, self._second = self._second, self._first + self._second

 return self._second

Why two classes?

The iteration process involves two classes and two objects, the iterable and the iterator. Is that
necessary?

For instance, consider a Range class which emulates the builtin range function.

A naive implementation with a single class is possible.

Range, single iterable/iterator class

A naive implementation with a single class:

class Range(object):

 def __init__(self, stop):

 self._stop = stop

 self._index = 0

 def __iter__(self):

 return self

 def __next__(self):

 if self._index >= \

 self._stop:

 raise StopIteration()

 value = self._index

 self._index += 1

 return value

Range, single iterable/iterator class

It seems to work:

>>> list(Range(6))

[0, 1, 2, 3, 4, 5]

>>>

Range, single iterable/iterator class

...but...

>>> r = Range(3)

>>> for i in r:

... for j in r:

... print(i, j)

...

0 1

0 2

>>>

The expected output is
0 0
0 1
0 2
1 0
1 1
1 2
2 0
2 1
2 2

Range and RangeIterator classes

class Range(object):

 def __init__(self, stop):

 self._stop = stop

 def __iter__(self):

 return RangeIterator(self._stop)

 class RangeIterator(object):

 def __init__(self, stop):

 Self._stop, self._index = stop, 0

 def __next__(self):

 if self._index >= self._stop:

 raise StopIteration()

 value = self._index

 self._index += 1

 return value

Range and RangeIterator classes

This works correctly, since two distinct iterators are used:

>>> for i in r:

... for j in r:

... print(i, j)

...

0 0

0 1

0 2

1 0

1 1 ...

Generator functions

Creating iterable objects is not difficult, anyway we need to implement two cooperative classes.
Luckily, Python supports a simpler way to implement iteration: generator functions (generators).

Generator functions

A generator function is a function that can temporarily stop its execution, yield a value to the caller,
and then be restarted by the caller; execution restarts just after the yield statement.

Generators use the yield statement instead of return.

The yield statement is a kind of “temporary” return: the execution of the function is suspended, and
it’s up to the caller to resume it.

Generator functions

When a generator is called, it returns an iterator; the caller then uses this iterator as usual. Any call
to next restart the execution of the generator function.

When the generator function returns, a StopIteration is automatically raised.

The range_gen generator

Consider this function:

>>> def range_gen(n):

... i = 0

... while i < n:

... yield i

... i += 1

...

>>>

The range_gen generator

>>> r = range_gen(3)

>>> r

<generator object range_gen at 0x7f039be9b150>

>>> next(r)

0

>>> next(r)

1

The range_gen generator

>>> next(r)

2

>>> next(r)

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

StopIteration

>>>

Hands-on

Write a function that “returns” all the
Fibonacci numbers, for instance to be
used as follows:

>>> for n in fibonacci():

... if is_pandigital(n):

... print(n)

... break

def is_pandigital(n):

 return len(set(str(n))) == 10

The Fibonacci generator

This is a solution:

>>> def fibonacci(*, first=1, second=1):

... yield first

... yield second

... while True:

... first, second = second, first + second

... yield second

...

>>>

The Fibonacci generator

Notice that the fibonacci() iterator never stops! It’s up to the caller to stop the iteration. For
instance:

>>> for index, n in zip(range(10), fibonacci()):

... print(index, n)

...

0 1

...

8 34

9 55

Generator expressions

Generator expressions have the list comprehension syntax with the generator semantics:

>>> [i ** 2 for i in range(5)]

[0, 1, 4, 9, 16]

>>> (i ** 2 for i in range(5))

<generator object <genexpr> at 0x7f06fc7181a8>

>>>

Summing all the squares of the first N integers

Suppose you want to sum all the squares of the first N integers:

>>> sum([i ** 2 for i in range(10000)])

333283335000

>>> sum([i ** 2 for i in range(100000)])

333328333350000

>>> sum([i ** 2 for i in range(1000000)])

333332833333500000

>>>

Summing all the squares of the first N integers

This wastes a lot of memory: indeed this sum does not really need a container. Using generator
expressions only one integer is in the memory at any time:

>>> sum((i ** 2 for i in range(1000000)))

333332833333500000

>>>

When a generator expression is the only argument in a function call, parentheses can be omitted:

 >>> sum(i ** 2 for i in range(1000000))

333332833333500000

>>>

Modules ● Modules
● Packages

How to organize Python source

Python modules

A Python module is simply a Python source file with .py extension. Modules are libraries: they can be
imported and used in other modules or programs.

(python3.5)$ cat greetings.py

def greet(who):

 print("Hello, {}!".format(who))

def welcome(who):

 print("Welcome, {}!".format(who))

Importing modules

Modules can be imported:

>>> import greetings

>>> dir(greetings)

['__builtins__', '__cached__', '__doc__', '__file__', '__loader__',
'__name__', '__package__', '__spec__', 'greet']

>>> greetings.greet("world")

Hello, world!

>>>

Importing from modules

Specific symbolic names can be imported from a module:

>>> from greetings import greet, welcome

>>> greet("world")

Hello, world!

>>> welcome("Guido")

Welcome, Guido!

>>>

Importing all from modules

It is possible to import all the symbolic names from a module:

>>> from greetings import *

>>> greet("world")

Hello, world!

>>> welcome("Guido")

Welcome, Guido!

>>>

This is not a good idea, since it pollutes the namespace!

The __all__ module attribute

Generally modules contain an __all__ attribute, which is a list of the public symbolic names; when
importing with *, only those names will be imported:

(python3.5)$ cat greetings.py

__all__ = [

 'greet',

 'welcome',

]

...

(python3.5)$

Module docstring

Modules have a docstring too; it’s a function string at the beginning of the file

(python3.5)$ cat primes.py

"""Functions to test primality"""

def is_prime(n):

 ...

(python3.5)$

Python packages

A Python package is a directory containing a module file __init__.py (the package initializer, which
can be empty) and some other Python modules: for instance

number_theory/

 __init__.py

primes.py

divisors.py

Packages can contain subpackages.

Hands-on

Organize the Fibonacci exercise in a
module.

Create a package containing the
Fibonacci module and the divisors
module.

