
An introduction to Python
Builtin types and constructors

Python
● philosophy
● origin
● backgrounds
● the interpreterTo get in touch

with the language

History

Origin

Guido van Rossum

● Conceived in the
late 1980s

● Implementation
began in 1989

● Focus on readability

Releases

Major releases

● 2.0: 16 October
2000

● 3.0: 3 December
2008

Development

Python Enhancement
Proposals (PEPs)

● All new features
proposed through
PEP

● Guido is the BDFL
(benevolent dictator
for life)

A modern programming language

Simplicity

Easy to learn

● Looks like
pseudocode

● Easy to read
● Easy to maintain
● But it can be

difficult to master...

Flexibility

Multiparadigm

● Imperative

● Object oriented

● Functional

● ...

General purpose

Multidisciplinary

● Science
● Engineering
● Data management
● System

administration
● Web
● ...

A modern programming language

Dynamic

No static checks

● No need to compile
● No need to declare

variables/functions

Strong typing

Well defined behavior

● The type of every
object is completely
specified

● Duck typing

High-level

High-level

● Suitable for
complex programs

● Do not worry about
low-level details!

Not a scripting language!

Python is a complete, high-level language.

● It can be used to code very complex programs.
● Not so easy to embed in applications.
● Not an alternative to bash.

The zen of python (PEP 20)

>>> import this

1. Beautiful is better than ugly.

2. Explicit is better than implicit.

3. Simple is better than complex.

4. Complex is better than complicated.

5. Flat is better than nested.

6. Sparse is better than dense.

7. Readability counts.

8. Special cases aren't special enough to

break the rules.

9. Although practicality beats purity.

10. Errors should never pass silently.

11. Unless explicitly silenced.

12. In the face of ambiguity, refuse the temptation to

guess.

13. There should be one --and preferably only

one--obvious way to do it.

14. Although that way may not be obvious at first

unless you're Dutch.

15. Now is better than never.

16. Although never is often better than *right* now.

17. If the implementation is hard to explain, it's a

bad idea.

18. If the implementation is easy to explain, it may

be a good idea.

19. Namespaces are one honking great idea -- let's do

more of those!

Performance

The mantra

People are able to code complex algorithms in much less time by using a
high-level language like Python. There can be a performance penalty in the
most pure sense of the term.

"The best performance improvement is the transition from the nonworking to the working state."

--John Ousterhout

"Premature optimization is the root of all evil." --Donald Knuth

"You can always optimize it later." -- Unknown

Optimization

Libraries

Use fast libraries

● numpy
● scipy
● ...

Tools

Tools

● profilers
● shedskin
● ...

Cython

C + Python = Cython

Usually less than 10% of
lines are responsible of
more than 90% of the
execution time.

Use high-performance
languages to code only
these very few lines!

Python2 vs Python3

Python2

● Version 2.7 is the last 2.X release
● Less disruptive improvements in

python 3.X will be backported
● Supported at least until 2020

Python3

● Not backward compatible!
● Version: 3.5
● Devel version: 3.6
● All major libraries are fully

compatible
● A neater language
● Easier to learn, more powerful

Not a scripting language!

Major differences will be
shown This is what we will learn

Interactive vs program file

Interactive

● Prompt (>>>)
● Expression values are directly

printed (no need to print)

Running a program file

● No prompt
● Expression values must be explicitly

printed

The interpreter

An interactive calculator...

(python3.5)$ python

Python 3.5.2 (default, Oct 21 2016, 21:46:25)

[GCC 4.8.4] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>>

The interpreter

...

>>> print(2 ** 10)

1024

>>> 2 ** 16

65536

>>> quit()

(python3.5)$

The interpreter

Running a program file

(python3.5)$ cat first-main.py

print(2 ** 10)

2 ** 16

(python3.5)$ python first-main.py

1024

(python3.5)$

Python programs

A python program is a text file containing python code. It does not need the .py extension.

(python3.5)$ cat prog.exe

#!/usr/bin/env python

an example program

print(2 ** 10)

(python3.5)$

UNIX
The interpreter to be used
This is a python comment

This is a python comment

This is a python statement

Running python programs

The python interpreter can be explicitly used to run a python program:

(python3.5)$ python prog.exe

1024

(python3.5)$

[UNIX] If the file has execution permission, and if the shebang (#!/usr/bin/env python) was used, the
program can be directly called:

(python3.5)$ chmod 755 prog.exe

(python3.5)$./prog.exe

1024

Python source files

Source encoding

By default, a python source file is written using the utf-8 encoding (unicode). Any other encoding can
be accepted.

The encoding can be defined at the very beginning of the file:

-*- coding: utf-8 -*-

Python 2 vs Python 3
Default source encoding

Default encoding is utf-8

No need to change the encoding!

Default encoding is latin-1

The latin-1 encoding includes
only the first 127 ASCII characters.

By default you cannot use à, è,
ì, ò, ù (even in comments!)

The print() function

Runnin a program fileThe print() function can be used to print everything

>>> print(2, 3 * 5)

2 15

>>>

Normally it prints a newline; this can be avoided

>>> print(2, 3 * 5, end='')

2 15>>>

Python 2 vs Python 3
print

print() is a function:

(python3.5)$ python

...

>>> print(2 ** 10)

1024

>>>

print is a statement:

(python2.7)$ python

...

>>> print 2 ** 10

1024

>>>

Types

● int
● float
● complex
● str
● bool
● the None singletonGetting information

about live objects

Integer values

Integer values have arbitrary precision:

>>> print(2 ** 1024)

17976931348623159077293051907890247336179769789423065727343008115773267
58055009631327084773224075360211201138798713933576587897688144166224928
47430639474124377767893424865485276302219601246094119453082952085005768
83815068234246288147391311054082723716335051068458629823994724593847971
6304835356329624224137216

>>>

Strong typing

The int type

The type for integer values is int:

>>> print(type(2))

<class 'int'>

>>>

Python 2 vs Python 3
The int type

Only int:

>>> print(type(2 ** 62))

<class 'int'>

>>> print(type(2 ** 63))

<class 'int'>

>>> 2 ** 63

9223372036854775808

Two integer types: int, long

>>> print type(2 ** 62)

<type 'int'>

>>> print type(2 ** 63)

<type 'long'>

>>> 2 ** 63

9223372036854775808L

Floating point values

Floating point values can be expressed as in other languages:

>>> print(2.0)

2.0

>>> print(2.003e10)

20030000000.0

>>> print(2.003e-2)

0.02003

Strong typing

The float type

The type for floating point values is float:

>>> print(type(2.0))

<class 'float'>

>>>

Floating point values have a limited precision

>>> print(2.0 ** -2048)

0.0

>>> print(2.0 ** +2048)

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

OverflowError: (34, 'Numerical result out of range')

>>>

Mixed int/float arithmetic

Mixed integer/floating point arithmetic always returns floating points (the “bigger” type):

>>> 3 * 10.5

31.5

>>> 3.5 - 10

-6.5

>>> 2. ** 3

8.0

>>>

Variables

Setting variables is easy as in other languages:

>>> i_value = 10

>>> f_value = 2.5 * i_value

Variable names are case sensitive.

Nevertheless, these symbolic names are not really variables as in C++ or
Fortran!

No type declaration is needed!

Symbolic names do not need to be declared. Moreover, the type of a symbolic name can change
during the execution:

>>> a = 10

>>> print(type(a))

<class 'int'>

>>> a = 1.5

>>> print(type(a))

<class 'float'>

Python variables are not variables at all!

● Python variables are simply symbolic names attached to objects.
● There is no type attached to a symbolic name!
● At any time, a symbolic name refers to exactly one object; anyway, that object can change

during time.
● Notice that the type of an object never changes through its lifetime, as required by strong

typing!

PEP 8 - coding
guidelines

● Avoid 'l' (lowercase letter el), 'O'
(uppercase letter oh), or 'I'
(uppercase letter eye)

● Use only lowercase and
underscore for variables

Complex values

A number followed by j is imaginary; this can be used to create complex numbers:

>>> z = 3.0 + 4.0j

>>> print(z, abs(z))

(3+4j) 5.0

>>> w = 5.0 + 6.0j

>>> print(z * w)

(-9+38j)

Strong typing

The complex type

The type for complex values is complex:

>>> print(type(3.0 + 4.0j))

<class 'complex'>

>>>

Attributes

In object-oriented programming
languages, objects can have named
attributes.

For instance, complex numbers have
the real and imag attributes,
corresponding to the real and
imaginary parts of the number.

Attributes can be accessed using the
dot: z.real is the real part of the
complex object z.

>>> z = 3.0 + 4.0j

>>> w = 2.5 + 3.5j

>>> z.real # the real part of z

3.0

>>> w.imag # the imaginary part of w

3.5

>>>

Arithmetic operators

Python has all the common arithmetic operators:

● Addition: +
● Subtraction: -
● Multiplication: *
● (True) division: /
● Floor division: //
● Modulus: %
● Exponent: **

Two division operators

True division

● The standard float division

>>> 5.0 / 2

2.5

● int / int returns a float

>>> 5 / 2

2.5

Floor division

● float // float produces a float
without decimal part

>>> 5.0 // 2.0

2.0

● int // int returns an int

>>> 5 // 2

2

Python 2 vs Python 3
Integer true division

The integer (true) division returns
always a float:

>>> print(5 / 2)

2.5

The integer (true) division returns
always an int:

>>> print 5 / 2

2

Arithmetic operators

Additional arithmetic operators

Respect to other languages python offers additional arithmetic operators/functions:

● Floor division //
● Division and modulus divmod(...)

>>> divmod(10, 3)

(3, 1)

>>>

Binary assignment operators

Every binary operator has a related binary assignment operator; they are called in-place operators:

>>> a = 10

>>> a += 3 # -> a = a + 3

>>> a

13

The += operator is the increment operator.

Using these in-place operators can increase readability; in the code above, the increment operation
on a is explicit.

Comparison operators

Python has all the common comparison operators:

● Less than: <
● Less than or equal to: <=
● Greater than: >
● Greater than or equal to: >=
● Equal to: ==
● Not equal to: !=

Logical operators

Python offers all the common logical operators:

● and
● or
● not

PEP 8 - coding
guidelines

● Avoid tabs!

>>> a = 10

>>> a = 10

>>> a = 4 + 5

>>> a=4 +5

>>> a = 4 +5

>>> a = divmod(10, 3)

>>> a = divmod(10,3)

>>> a = divmod(10, 3)

>>> a = divmod (10, 3)

● Always surround binary
operators with a single space
on either side

● Always use a single space after
comma

● Avoid other spaces

Hands-on

Arithmetic operators

1. Open the interactive interpreter
and try to use several arithmetic
operators

2. Create a program file containing
some arithmetic operator

String values

A string can be created using ‘single’ or “double” quotes:

>>> p0 = "Hello, "

>>> p1 = ‘world!’

>>> print(p0, p1)

Hello, world!

>>>

Strong typing

The str type

The type for strings is str:

>>> print(type("alpha"))

<class 'str'>

>>>

Python 2 vs Python 3
Strings

Only str

The str class is used for both
ascii and unicode strings.

There is not basestring class.

str and unicode

In python 2.x the str class
supports only ascii strings.

The unicode class supports
unicode strings.

The string base class is basestring.

Triple quotes

Triple quotes can be used for multi-line texts:

>>> paragraph = """<p>

... Lorem ipsum.

... </p>"""

>>> print(paragraph)

<p>

 Lorem ipsum.

</p>

>>>

String quotes

'single', "double"

Single-line texts

● Cannot span over
multiple lines.

● Can contain escape
sequences (‘\t’,
‘\n’, ‘\\’ …).

""", '''

Multiline texts

● Can span over
multiple lines.

● Can contain escape
sequences.

r"raw"

Raw strings

● No escape
sequences.

● Generally used for
regular expressions.

String concatenation

The + operator can be used to concatenate strings:

>>> a = "Hello, " + 'world' + "!"

>>> print(a)

Hello, world!

In addition, adjacent string literals are automatically concatenated

>>> a = "Hello, " 'world' '!'

>>> print(a)

Hello, world!

>>>

String repetition

The * operator can be used to multiply string by integers; this mean repeating the string:

>>> print("a" * 10)

aaaaaaaaaa

>>> print("abc" * 6)

abcabcabcabcabcabc

>>>

String escape sequences

Non-raw strings have escape substitution:

>>> print("alpha\nbeta\tgamma")

alpha

beta gamma

Escape substitution does not happen in raw strings:

>>> print(r"alpha\nbeta\tgamma")

Alpha\nbeta\ tgamma

>>>

String len

The len(...) function returns the string length (the number of items):

>>> print(len("alpha"))

5

>>> s = "Hello, world!"

>>> print(len(s))

13

>>>

String items

The [] operator can be used to access single items.

>>> s = "abcd"

>>> s[0]

'a'

>>> s[3]

'd'

>>>

Remember:

s[index]

● first index is 0
● last indes is len(s) - 1

String indices

Accessing an out-of-range index is an error:

>>> s = "abcd"

>>> s[4]

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

IndexError: string index out of range

String negative indices

Negative indices can be used to get items from the right. Indeed, negative indices are automatically
increased by the string lengths:

>>> s = "abcd"

>>> s[-1] # -> s[-1 + len(s)] = s[3]

'd'

>>> s[-2] # -> s[-2 + len(s)] = s[2]

'c'

>>>

Slices can be used to obtain substrings:

>>> s = "Hello, world!"

>>> s[2:5]

'llo'

Slices can use negative indices:

>>> s[-6:-1]

'world'

>>>

String slices

Remember:

s[start:stop]

● start is always included;
● stop is always excluded.

Slices indices can be omitted:

>>> s = "Hello, world!"

>>> s[:5]

'Hello'

>>> s[5:]

', world!'

>>> s[:]

'Hello, world!'

>>>

Omitting slice indices

Remember:

Missing slice indices

● s[:stop] from the
beginning to stop
(excluded);

● s[start:] from start
(included) to the end;

● s[:] a full copy of s

Extended slices

Slices accepts also a stride, defaulting to 1:

>>> s = "Hello, world!"

>>> s[1:-1:2]

'el,wrd'

Negative strides are accepted:

>>> s[-2::-1]

'dlrow ,olleH'

>>>

The in/not in operators

in/not in

The in operator checks if a character or substring is contained in a string:

>>> "f" in "abcde"

False

>>> "bcd" in "abcde"

True

>>> "bcx" not in "abcde"

True

Methods

In object-oriented programming
languages a method is a function
attribute. Methods are included in the
object’s class.

Methods are called using the dot:
a.lower() calls the lower function
ono the string a.

>>> a = "Hello, world!"

>>> a.lower()

'hello, world!'

>>> a.upper()

'HELLO, WORLD!'

>>> b = "alpha beta gamma"

>>> b.title()

'Alpha Beta Gamma'

>>>

String methods

In addition to operators, there are many functions working on strings; for instance:

● str.upper(): returns an uppercase copy of the string
● str.lower(): returns a lowercase copy of the string
● str.title(): returns a titlecased copy of the string
● str.replace(‘x’, ‘y’): returns a copy of the string where all the ‘x’s are replaced by

‘y’s
● str.find(‘x’): returns the index of the first occurrence of ‘x’ in the string
● str.strip(): returns a copy of the string without leading/trailing spaces
● 'alpha:beta:gamma'.split(':'): split a string into words using ‘:’ as delimiter
● ':'.join(['alpha', 'beta', 'gamma']): joins a list of strings

Hands-on

Exercise with strings

1. Create string variables
2. Access string items
3. Access substrings
4. Try using some string method

Converting objects to strings

Any Python object can be converted to a string. Moreover, there are two ways
to convert an object to string:

● str(obj): the usual way to print obj;
● repr(obj): the object’s representation is shown; for builtin types, it’s the

source code that creates obj.

String representation of builtin types

For all builtin types but strings, str() and repr() return the same string:

>>> print(str(10), repr(10))

10 10

>>> print(str(1.3), repr(1.3))

1.3 1.3

>>> print(str(True), repr(True))

True True

>>>

String representation of builtin types

The str type has instead different str/repr:

>>> print(str('alpha'), repr('alpha'))

alpha 'alpha'

>>>

The repr() function returns the quoted string.

Remember:

For all builtin types, the result of repr() is the Python representation of the object; when executed,
it creates the same object.

Printing objects

When an object is printed, if it is not a string it is automatically converted to string using str():

>>> i = 10

>>> s = "alpha"

>>> print(i, s)

10 alpha

>>>

The interpreter

The interactive interpreter shows the result of an expression as repr():

>>> i

10

>>> s

'alpha'

>>>

Immutable types

Maybe you noticed that string objects cannot be changed. Strings are
immutable types.

Believe or not, all the builtin scalar types (str, int, float, complex,
bool, ...) are immutable! For instance, there is no way to change an integer
object.

Strings are immutable

It is not possible to change a string item:

>>> s = "Hello, world!"

>>> s[0] = 'h'

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: 'str' object does not support item assignment

>>>

Strings are immutable

None of the string methods can be used to change the string.

For instance, str.replace(...) returns another string, but the original one is left unchanged:

>>> s1 = s.replace('o', '0')

>>> s1

'Hell0, w0rld!'

>>> s

'Hello, world!'

>>>

Strings are immutable

How about increment operator? We can use it to concatenate a string in-place:

>>> s = "Hello, "

>>> s += "world!"

>>> s

'Hello, world!'

Is the str object really changed? The answer is no.

The id() function

The id() function returns the unique id of a python object.

>>> s = "Hello, "

>>> id(s)

140386214488416

The id() function

The id() function returns the unique id of a python object.

>>> s = "Hello, "

>>> id(s)

140386214488416

Memory

value: "Hello, "
address: 140386214488416

Symbolic names

s

The id() function

The id() function returns the unique id of a python object.

>>> s = "Hello, "

>>> id(s)

140386214488416

>>> s += "world!"

>>> s

'Hello, world!'

>>> id(s)

140386214518192

Memory

value: "Hello, "
address: 140386214488416

value: "Hello, world!"
address: 140386214518192

Symbolic names

s

The in-place operators

For all the builtin types seen so far, the in-place operators (+=, -=, *=, …) are not in-place at all.
They are completely equivalent to the long version

● a += b
● a= a + b

Anyway, always use in-place operators when the operation is semantically in-place.

Python data model

Object reference

A symbolic name refers to an object.

The symbolic name can be moved to another object.

The object itself can be mutable or immutable. All the built-in types seen so far are immutable.

All numeric types are immutable

Numeric types are immutable too:

>>> a = 10

>>> id(a)

140386213813280

>>> a += 3

>>> id(a)

140386213813376

>>>

Comments

Python considers a comment the source code from the # symbol to the end of
the line:

>>> size *= factor # apply the scaling factor

>>>

PEP 8 - coding
guidelines

● Use inline comments sparingly.
● Avoid comments stating the

obvious:

>>> x += 1 # increase x by 1

● Use only useful comments:

>>> x += 1 # compensate for border

Hands-on

Put some of the string exercises in a
program file and run it.

None

The None value can be used for variables whose value is currently undefined:

>>> a = None

>>> print(a)

None

None is an object, not a type; it’s a singleton.

Bool

Boolean objects can be used to store a truth value. Two bool literals are available: True and False.

>>> t = True

>>> print(t)

True

>>> print(1 > 3)

False

Strong typing

The bool type

The type for boolean objects is bool:

>>> print(type(True))

<class ‘bool’>

>>>

Implicit bool conversion

All the builtin types have a boolean value:

● int: 0 is False, other values are True
● float: 0.0 is False, other values are True
● str: the empty string is False, non-empty strings are True
● None: always False

Containers

● tuple ()
● list []
● set {}, frozenset
● dict {}
● collections

○ deque
○ OrderedDict
○ Counter
○ defaultdict

One of the most powerful
features

Tuples ()

Tuples are immutable sequences of items of arbitrary type.

>>> t = (1, "alpha", 3.1)

>>> t

(1, 'alpha', 3.1)

>>> type(t)

<class 'tuple'>

>>>

Tuple construction

Parentheses are not really needed to create a tuple; the comma is mandatory instead:

>>> a = 1, 2, 3

>>> print(a)

(1, 2, 3)

Tuple construction

Comma is needed also if the tuple has a single item:

>>> a = (1)

>>> print(a, type(a))

1 <class 'int'>

>>> a = (1,)

>>> print(a, type(a))

(1,) <class 'tuple'>

>>>

This is an integer with useless parentheses

This is a tuple; parentheses are not needed

Tuple construction

Parentheses are needed only to define the empty tuple:

>>> a = ()

>>> print(a, type(a))

() <class 'tuple'>

>>>

Tuple concatenation/repetition

As strings, tuples can be concatenated using the operator +:

>>> t = (1, 2, 3)

>>> t + (4, 5)

(1, 2, 3, 4, 5)

As strings, tuples can be multiplied by integers, meaning repetition:

>>> (1, 2) * 3

(1, 2, 1, 2, 1, 2)

Tuple item access

Item access and slicing follow the same syntax as strings (indexing returns the item, slicing returns
a sub-tuple):

>>> t[-1]

3.1

>>> t[1:]

('alpha', 3.1)

>>> len(t)

3

>>>

Item access/slicing

Even it the syntax is (almost) the same, item access and slicing are not the same:

>>> a = (0, 1, 2, 3)

>>> a[1]

1

>>> a[1:2]

(1,)

>>>

This is the tuple item with index 1

This is the sub-tuple containing only the item
with index 1

Tuple item assignment

Item assignment is forbidden (tuples are immutable!)

>>> t[1] = 2

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: 'tuple' object does not support item assignment

>>>

Tuple methods

The tuple class has some methods:

● t.count(1) returns the number of occurrences of the object 1 in the tuple t
● t.index(1) returns the index of the first occurrence of the object 1 in the tuple

Tuple assignment

Tuple of variables on the left-hand of an assignment

When the right-hand of an assignment is a tuple, the left-hand can be a tuple of variables. For
instance, we know that divmod(...) returns a 2-tuple:

>>> div, mod = divmod(10, 3)

>>> div

3

>>> mod

1

Tuple assignment

Variable swap

Tuple assignment can be used to swap variables:

>>> a = 10

>>> b = 1

>>> a, b = b, a

>>> print(a, b)

1 10

Item lookup

The in/not in operators

The in operator can be used to check if a container has a given item:

>>> t = (1, 2, 3)

>>> 2 in t

True

>>> 4 in t

False

The not in operator is also available.

Hands-on

Exercise with tuples

1. Tuple circular shift: given an
arbitrary tuple, create a new one
by moving the last item to the
beginning

Lists []

Lists are mutable tuples

>>> lst = [1, 'abc', 5.5]

>>> lst[-1]

5.5

>>> lst[1:]

['abc', 5.5]

>>>

List item assignment

Item assignment is supported (lists are mutable!)

>>> lst[1] = 10

>>> lst

[1, 10, 5.5]

>>>

List item deletion

Item can also be deleted:

>>> del lst[1]

>>> lst

[1, 5.5]

>>>

The append method

The list.append(item) method can be used to add items to the end of the list:

>>> lst

[1, 5.5]

>>> lst.append('xyz')

>>> lst

[1, 5.5, 'xyz']

The insert method

The list.insert(index, item) method can be used to add items at arbitrary positions:

>>> lst

[1, 5.5, 'xyz']

>>> lst.insert(2, 44)

>>> lst

[1, 5.5, 44, 'xyz']

>>>

The extend method

The list.extend(sequence) method can be used to add multiple items coming from
sequence:

>>> lst

[1, 5.5, 44, 'xyz']

>>> lst.extend([2, 5, 7])

>>> lst

[1, 5.5, 44, 'xyz', 2, 5, 7]

>>>

append and extend

Do not be confused about append() and extend():

Append inserts an item (it can be a sequence)

>>> l2 = [0, 1]

>>> l2.append([2, 3, 4])

>>> l2

[0, 1, [2, 3, 4]]

>>>

Extend needs a sequence argument

>>> l2 = [0, 1]

>>> l2.extend([2, 3, 4])

>>> l2

[0, 1, 2, 3, 4]

>>>

List slicing assignment

Items can be assigned also with slicing:

>>> lst = ['a', 'b', 'c', 'd']

>>> lst[2:] = [5, 4, 3, 2, 1]

>>> lst

['a', 'b', 5, 4, 3, 2, 1]

>>>

List slicing deletion

Slicing can be used also to delete parts of a string:

>>> lst = ['a', 'b', 'c', 'd', 'e', 'f']

>>> del lst[2:-1]

>>> lst

['a', 'b', 'f']

>>>

List as a stack

A list can be used as a stack (a Last-In-First-Out container):

>>> lst = []

>>> lst.append(2)

>>> lst.append(5)

>>> lst.pop()

5

>>> lst.pop()

2

The push operation

The pop operation

The list.pop(index=-1) method

The pop method accepts as argument the index (it defaults to -1):

>>> lst = [1, 2, 3]

>>> lst.pop(1)

2

>>> lst

[1, 3]

>>>

Other list methods

Some other methods are available:

● lst.sort() sorts the list in-place
● lst.reverse() reverses the list in-place
● lst.copy() returns a copy of the list (as lst[:])
● lst.clear() clears the list (as del lst[:])

Mutable types and in-place operators

Mutable types allow optimized in-place operators.

Remember that obj0 += obj1 has the same effect as obj0 = obj0 + obj1; if obj0 is a mutable
object, instead of creating a new object, the original object is changed in place.

In-place operators

Immutable types

>>> tpl = (1, 2, 3)

>>> id(tpl)

140106958666560

>>> tpl += (4, 5)

>>> id(tpl)

140106959260840

Mutable types

>>> lst = [1, 2, 3]

>>> id(lst)

140106958659080

>>> lst += [4, 5]

>>> id(lst)

140106958659080

Hands-on

Exercise with tuples

1. List circular shift: move the last
item of an arbitrary list to the
beginning in-place

Sequences

Lists, tuples and strings are all sequences. Sequences consist of items that can be accessed in a
given direction (from left to right).

A string is the sequence of its characters.

Functions operating on sequences

Iteration over sequences is pervasive in python. Many functions work on sequences.

For instance, list and tuple constructors accept a sequence as argument; this allow to construct a
new container from an existing one:

>>> s = "abc"

>>> tpl = tuple(s)

>>> tpl

('a', 'b', 'c')

>>> list(tpl)

['a', 'b', 'c']

Sequences that are not containers

All containers are sequences; nevertheless, a sequence is not necessarily a container.

Sequences can be simply a recipe to generate all the items, one after the other, from left to right.

The range function generates a sequence of natural numbers. This sequence can be used for
instance to create a container (but we will see other uses later):

>>> list(range(10))

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> tuple(range(3, 17, 2))

(3, 5, 7, 9, 11, 13, 15)

Functions generating sequence items as range() are called generators.

Python 2 vs Python 3
The range function

range() is a generatorrange() returns a list

● The xrange() is a generator

Question

Why do we need tuples? List are
mutable sequence; they support all
tuple’s operations, plus some other.

Set {}

A set is an unordered collection of unique items of arbitrary types.

Sets are particularly efficient for item lookup, insertion and deletion.

>>> {1, 'a', 3, 5.3}

{1, 3, 5.3, 'a'}

>>>
The original order is not preserved!

Sets do not support indexing

Sets do not support indexing

>>> st = {1, 3, 1}

>>> st[0]

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: 'set' object does not support indexing

>>>

This is because sets are unordered.

Empty sets

Empty sets cannot be created using the {} syntax: indeed {} is an empty dict! Use set() to
create an empty set:

>>> obj = {}

>>> type(obj)

<class 'dict'>

>>> obj = set()

>>> type(obj)

<class 'set'>

>>>

Set operations

Sets operations are supported:

● s0.issubset(s1): check if the set s0 is a subset of s1 (s0 <= s1)
● s0.issuperset(s1): check if the set s0 is a superset of s1 (s0 >= s1)
● s0.union(s1): return the union of s0 and s1 (s0 | s1)
● s0.intersection(s1): return the intersection of s0 and s1 (s0 & s1)
● s0.difference(s1): return the difference of s0 and s1 (s0 - s1)
● s0.symmetric_difference(s1): return the set of elements that are in s0 or in s1 but not

in both(s0 ^ s1)
● s0.copy(): returns a copy of s0
● s0 < s1: check if s0 is a proper subset of s1
● s0 > s1: check if s0 is a proper superset of s1

Set is mutable

These methods/operators change the set in-place:

● s0.update(s1): update the set s0 adding elements from s1 (s0 |= s1)
● s0.intersection_update(s1): update the set s0 keeping only elements in both s0 and

s1 (s0 &= s1)
● s0.difference_update(s1, s2, ...): update the set s0 removing elements in all

others (s0 -= s1)
●
● s0.symmetric_difference_update(s1): update the set s0 keeping only elements in s0

ondr s1 but not in both (s0 ^= s1)
● s0.add(item): add an item to set s0
● s0.remove(item): remove an item from the set s0
● s0.discard(item): remove an item from set s0, if present
● s0.pop(): remove and returns an item
● s0.clear(): clears the set

Set items must be hashable

Hashable objects

An object is hashable if it has a hash value which never changes through the object’s lifetime.

All immutable types are hashable; by default, mutable types are not hashable.

Hashability is required for lookup efficiency.

Lists and sets, which are unhashable, cannot be used as set values.

Frozenset

A frozenset is an immutable set. It supports only methods that do not change the frozenset in-place.

>>> file_formats = frozenset({'raw', 'text', 'json'})

>>> 'raw' in file_formats

True

>>> file_formats.add('toml')

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

AttributeError: 'frozenset' object has no attribute 'add'

Frozenset

Frozensets are hashable:

>>> s0 = {1, 2}

>>> s0.add({4, 5})

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: unhashable type: 'set'

>>> s0.add(frozenset({4, 5}))

>>>

Dict {}

A dict is an unordered mapping of unique keys onto values. Both keys and values can have arbitrary
types, but keys must be hashable objects. As sets, dicts are very efficient for key lookup.

>>> mendeleev = {'H': 1, 'He': 2, 'C': 6, 'O': 8}

>>> mendeleev['N'] = 7

>>> mendeleev

{'O': 8, 'He': 2, 'H': 1, 'C': 6, 'N': 7}

>>> mendeleev['He']

2 The original order is not preserved!

Dict key access

Accessing a missing key raises a KeyError:

>>> mendeleev

{'O': 8, 'He': 2, 'H': 1, 'C': 6, 'N': 7}

>>> mendeleev['Au']

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

KeyError: 'Au'

>>>

Dict methods

The following methods do not change the dict object:

● dct.keys(): return a sequence of the keys in dct
● dct.values(): return a sequence of the values in dct
● dct.items(): return a sequence of the items in dct (items are (key, value) tuples)
● dct.get(key, default=None): return the value for key if it is in dct, else default
● dct.copy(): return a copy of dct
● dict.fromkeys(iterable, value=None): return a new dict with keys from iterable,

and values all equal to value

Python 2 vs Python 3
Dict methods

keys(), values(), items() generatorskeys(), values(), items() return lists

● dct.keys()->[]
● dct.iterkeys(),

dct.itervalues,
dct.iteritems() return
sequences

Dicts are mutable

These methods change the dict in-place:

● dct.setdefault(key, default=None): if key is in dct, return the corresponding value;
otherwise, insert key in dct with value default, and return default

● dct.clear(): clear the dictionary
● dct.pop(key[, d]): if key it it is in dct,return the corresponding value and remove it; otherwise,

return d or raise a KeyError
● dct.popitem(): return an item

Hands-on

Use a dict to store book titles and
authors.

Exercise with some of the dict
methods.

Other standard containers

The python standard module collections contains other useful containers:

● collections.deque: a double ended queue
● collections.OrderedDict: a dict that maintains the key insertion order
● collections.Counter: a dict that counts items (an alternative to multiset or bag)
● collections.defaultdict: a dict returning a default value for missing keys

deque

A deque is a double ended queue; the maxlen argument can set a maximum capacity:

>>> from collections import deque

>>> dq = deque([1, 2, 3, 4, 5], maxlen=3)

>>> dq

deque([3, 4, 5], maxlen=3)

deque

>>> dq.append(6)

>>> dq

deque([4, 5, 6], maxlen=3)

>>> dq.appendleft(0)

>>> dq

deque([0, 4, 5], maxlen=3)

The leftmost item 3 has been removed

The rightmost item 6 has been removed

OrderedDict

An OrderedDict maintains the original key order:

>>> from collections import OrderedDict

>>> dct = OrderedDict()

>>> dct['b'] = 10

>>> dct['a'] = 5

>>> dct['c'] = 15

>>> dct

OrderedDict([('b', 10), ('a', 5), ('c', 15)])

Counter

A Counter counts items:

>>> from collections import Counter

>>> cnt = Counter("abracadabra")

>>> cnt

Counter({'a': 5, 'b': 2, 'r': 2, 'd': 1, 'c': 1})

>>>

Counter

A Counter is a valid alternative to the multiset or bag container. It also accept negative counts
(this is not possible with a multiset).

>>> c

Counter({'r': 2, 'b': 2, 'c': 1, 'd': 1, 'a': -5})

>>>

defaultdict

A defaultdict does not raise an error when accessing a missing key; it calls a
default_factory() function instead:

● collections.defaultdict(default_factory)

This is a first example of passing a function (the default_factory) as an argument to another
function (the defaultdict constructor).

Containers and implicit bool conversion

When used as a conditional expression, a container evaluates to False if it is empty, otherwise to
True.

