
From CUDA to OpenCL
Piero Lanucara, SCAI

p.lanucara@cineca.it

• Let’s start from a simple CUDA code (matrixMul from NVIDIA CUDA
samples).

– Now, you perfectly know how to compile and run on NVIDIA
hardware (Galileo, one K80 device)

– You should probably see something like this:

[planucar@node495 matrixMul]$./matrixMul -wA=2048 -wB=2048 -hA=2048 -hB=2048

[Matrix Multiply Using CUDA] - Starting...
GPU Device 0: "Tesla K80" with compute capability 3.7

MatrixA(2048,2048), MatrixB(2048,2048)

Computing result using CUDA Kernel...
done

Performance= 377.17 GFlop/s, Time= 45.550 msec, Size= 17179869184 Ops,
WorkgroupSize= 1024 threads/block
Checking computed result for correctness: Result = PASS

NOTE: The CUDA Samples are not meant for performance measurements. Results may

vary when GPU Boost is enabled.

• If you have CUDA code and NVIDIA hardware you’re already

satisfied (apart from any performance consideration)

• On the other hand, if you have CUDA code and non NVIDIA

hardware you could have a big problem…and your application will

be the shortest way to produce a “seg-fault” 

• You need a more “portable” solution to this problem…

• ….OpenCL?

Houston, we have a problem!

• If you have CUDA code, you’ve already done the hard work!

– I.e. working out how to split up the problem to run effectively on a

many-core device

• Switching between CUDA and OpenCL is mainly changing the host

code syntax

– Apart from indexing and naming conventions in the kernel code

(simple to change!)

Don’t worry, be happy!

CUDA vector addition

• The “hello world” program of data parallel programming is a program to

add two vectors

C[i] = A[i] + B[i] for i=0 to N-1

• CUDA simple NVIDIA Sample listing follows

/**

* Copyright 1993-2015 NVIDIA Corporation. All rights

reserved.

*

* Please refer to the NVIDIA end user license agreement

(EULA) associated

* with this source code for terms and conditions that govern
your use of

* this software. Any use, reproduction, disclosure, or
distribution of

* this software and related documentation outside the terms

of the EULA

* is strictly prohibited.

*

*/

/**

* Vector addition: C = A + B.

*

* This sample is a very basic sample that implements element

by element

* vector addition. It is the same as the sample illustrating

Chapter 2

* of the programming guide with some additions like error
checking.

*/

#include <stdio.h>

// For the CUDA runtime routines (prefixed with "cuda_")

#include <cuda_runtime.h>

/**

* CUDA Kernel Device code

*

* Computes the vector addition of A and B into C. The 3
vectors have the same

* number of elements numElements.

*/

__global__ void

vectorAdd(const float *A, const float *B, float *C, int

numElements)

{

int i = blockDim.x * blockIdx.x + threadIdx.x;

if (i < numElements)

{

C[i] = A[i] + B[i];

}

}

/**

* Host main routine

*/

fprintf(stderr, "Failed to allocate host vectors!\n");

exit(EXIT_FAILURE);

}

// Initialize the host input vectors

for (int i = 0; i < numElements; ++i)

{

h_A[i] = rand()/(float)RAND_MAX;

h_B[i] = rand()/(float)RAND_MAX;

}

// Allocate the device input vector A

float *d_A = NULL;

err = cudaMalloc((void **)&d_A, size);

if (err != cudaSuccess)

{

fprintf(stderr, "Failed to allocate device vector A (error
code %s)!\n", cudaGetErrorString(err));

exit(EXIT_FAILURE);

}

int

main(void)

{

// Error code to check return values for CUDA calls

cudaError_t err = cudaSuccess;

// Print the vector length to be used, and compute its size

int numElements = 50000;

size_t size = numElements * sizeof(float);

printf("[Vector addition of %d elements]\n", numElements);

// Allocate the host input vector A

float *h_A = (float *)malloc(size);

// Allocate the host input vector B

float *h_B = (float *)malloc(size);

// Allocate the host output vector C

float *h_C = (float *)malloc(size);

// Verify that allocations succeeded

if (h_A == NULL || h_B == NULL || h_C == NULL)

{

// Allocate the device input vector B

float *d_B = NULL;

err = cudaMalloc((void **)&d_B, size);

if (err != cudaSuccess)

{

fprintf(stderr, "Failed to allocate device vector B (error

code %s)!\n", cudaGetErrorString(err));

exit(EXIT_FAILURE);

}

// Allocate the device output vector C

float *d_C = NULL;

err = cudaMalloc((void **)&d_C, size);

if (err != cudaSuccess)

{

fprintf(stderr, "Failed to allocate device vector C (error
code %s)!\n", cudaGetErrorString(err));

exit(EXIT_FAILURE);

}

// Copy the host input vectors A and B in host memory to the

device input vectors in

// device memory

printf("Copy input data from the host memory to the CUDA

device\n");

err = cudaMemcpy(d_A, h_A, size,
cudaMemcpyHostToDevice);

if (err != cudaSuccess)

{

fprintf(stderr, "Failed to copy vector A from host to device

(error code %s)!\n", cudaGetErrorString(err));

exit(EXIT_FAILURE);

}

err = cudaMemcpy(d_B, h_B, size,

cudaMemcpyHostToDevice);

if (err != cudaSuccess)

{

fprintf(stderr, "Failed to copy vector B from host to device
(error code %s)!\n", cudaGetErrorString(err));

exit(EXIT_FAILURE);

}

// Launch the Vector Add CUDA Kernel

int threadsPerBlock = 256;

int blocksPerGrid =(numElements + threadsPerBlock - 1) /
threadsPerBlock;

printf("CUDA kernel launch with %d blocks of %d

threads\n", blocksPerGrid, threadsPerBlock);

vectorAdd<<<blocksPerGrid, threadsPerBlock>>>(d_A,
d_B, d_C, numElements);

err = cudaGetLastError();

if (err != cudaSuccess)

{

fprintf(stderr, "Failed to launch vectorAdd kernel (error

code %s)!\n", cudaGetErrorString(err));

exit(EXIT_FAILURE);

}

// Copy the device result vector in device memory to the
host result vector

// in host memory.

printf("Copy output data from the CUDA device to the host
memory\n");

err = cudaMemcpy(h_C, d_C, size,

cudaMemcpyDeviceToHost);

if (err != cudaSuccess)

{

fprintf(stderr, "Failed to copy vector C from device to host

(error code %s)!\n", cudaGetErrorString(err));

exit(EXIT_FAILURE);

}

// Verify that the result vector is correct

for (int i = 0; i < numElements; ++i)

{

if (fabs(h_A[i] + h_B[i] - h_C[i]) > 1e-5)

{

fprintf(stderr, "Result verification failed at element

%d!\n", i);

exit(EXIT_FAILURE);

}

}

printf("Test PASSED\n");

// Free device global memory

err = cudaFree(d_A);

if (err != cudaSuccess)

{

fprintf(stderr, "Failed to free device vector A (error code
%s)!\n", cudaGetErrorString(err));

exit(EXIT_FAILURE);

}

err = cudaFree(d_B);

if (err != cudaSuccess)

{

fprintf(stderr, "Failed to free device vector B (error code
%s)!\n", cudaGetErrorString(err));

exit(EXIT_FAILURE);

}

err = cudaFree(d_C);

if (err != cudaSuccess)

{

fprintf(stderr, "Failed to free device vector C (error code
%s)!\n", cudaGetErrorString(err));

exit(EXIT_FAILURE);

}

// Free host memory

free(h_A);

free(h_B);

free(h_C);

// Reset the device and exit

// cudaDeviceReset causes the driver to clean up all state.

While

// not mandatory in normal operation, it is good practice. It

is also

// needed to ensure correct operation when the application
is being

// profiled. Calling cudaDeviceReset causes all profile data

to be

// flushed before the application exits

err = cudaDeviceReset();

if (err != cudaSuccess)

{

fprintf(stderr, "Failed to deinitialize the device!

error=%s\n", cudaGetErrorString(err));

exit(EXIT_FAILURE);

}

printf("Done\n");

return 0;

}

OpenCL vector addition

• For the OpenCL solution, there are two parts

– Host code

– Kernel code

Host code

• By default, CUDA initializes the GPU automatically

– If you needed anything more complicated (multi-

device etc.) you must do so manually

• OpenCL always requires explicit device initialization

– It runs not just on NVIDIA® GPUs and so you

must tell it which device(s) to use

CUDA to OpenCL terminology

CUDA OpenCL

GPU Device (CPU, GPU etc)

Multiprocessor Compute Unit, or CU

Scalar or CUDA core Processing Element, or PE

Global or Device Memory Global Memory

Shared Memory (per block) Local Memory (per workgroup)

Local Memory (registers) Private Memory

Thread Block Work-group

Thread Work-item

Warp No equivalent term (yet)

Grid NDRange

Vector Addition – Host

• The host program is the code that runs on the host to:

– Setup the environment for the OpenCL program

– Create and manage kernels

• 5 simple steps in a basic host program:

1. Define the platform … platform = devices+context+queues

2. Create and Build the program (dynamic library for kernels)

3. Setup memory objects

4. Define the kernel (attach arguments to kernel functions)

5. Submit commands … transfer memory objects and execute kernels

Please, refer to he reference card. This will help you

get used to the reference card and how to pull

information from the card and express it in code.

// Fill vectors a and b with random float values

int i = 0;

int count = LENGTH;

for(i = 0; i < count; i++){

h_a[i] = rand() / (float)RAND_MAX;

h_b[i] = rand() / (float)RAND_MAX;

}

// Set up platform and GPU device

cl_uint numPlatforms;

// Find number of platforms

err = clGetPlatformIDs(0, NULL, &numPlatforms);

checkError(err, "Finding platforms");

if (numPlatforms == 0)

{

printf("Found 0 platforms!\n");

return EXIT_FAILURE;

}

// Get all platforms

cl_platform_id Platform[numPlatforms];

err = clGetPlatformIDs(numPlatforms, Platform, NULL);

checkError(err, "Getting platforms");

// Secure a GPU

for (i = 0; i < numPlatforms; i++)

{

err = clGetDeviceIDs(Platform[i], DEVICE, 1, &device_id,
NULL);

if (err == CL_SUCCESS)

{

break;

}

}

if (device_id == NULL)

checkError(err, "Finding a device");

err = output_device_info(device_id);

checkError(err, "Printing device output");

1. Define the platform

// Create a compute context

context = clCreateContext(0, 1, &device_id, NULL, NULL,

&err);

checkError(err, "Creating context");

// Create a command queue

commands = clCreateCommandQueue(context, device_id,
0, &err);

checkError(err, "Creating command queue");

// Create the compute program from the source buffer

program = clCreateProgramWithSource(context, 1, (const
char **) & KernelSource, NULL, &err);

checkError(err, "Creating program");

// Build the program

// Piero: added option

char options[] = "-cl-mad-enable";

err = clBuildProgram(program, 0, NULL, options, NULL,
NULL);

if (err != CL_SUCCESS)

{

size_t len;

char buffer[2048];

printf("Error: Failed to build program executable!\n%s\n",

err_code(err));

clGetProgramBuildInfo(program, device_id,

CL_PROGRAM_BUILD_LOG, sizeof(buffer), buffer, &len);

printf("%s\n", buffer);

return EXIT_FAILURE;

}

// Create the compute kernel from the program

ko_vadd = clCreateKernel(program, "vadd", &err);

checkError(err, "Creating kernel");

// Create the input (a, b) and output (c) arrays in device
memory

d_a = clCreateBuffer(context, CL_MEM_READ_ONLY,
sizeof(float) * count, NULL, &err);

checkError(err, "Creating buffer d_a");

d_b = clCreateBuffer(context, CL_MEM_READ_ONLY,
sizeof(float) * count, NULL, &err);

checkError(err, "Creating buffer d_b");

d_c = clCreateBuffer(context, CL_MEM_WRITE_ONLY,
sizeof(float) * count, NULL, &err);

checkError(err, "Creating buffer d_c");

// Write a and b vectors into compute device memory

err = clEnqueueWriteBuffer(commands, d_a, CL_TRUE, 0,

sizeof(float) * count, h_a, 0, NULL, NULL);

checkError(err, "Copying h_a to device at d_a");

1. Define the platform

__kernel void

horizontal_reflect(read_only image2d_t src,

write_only image2d_t dst)

{

int x = get_global_id(0); // x-coord

int y = get_global_id(1); // y-coord

int width = get_image_width(src);

float4 src_val = read_imagef(src, sampler,

(int2)(width-1-x, y));

write_imagef(dst, (int2)(x, y), src_val);

}

Building Program

Objects

• The program object encapsulates:

– A context

– The program kernel source or binary

– List of target devices and build options

• The C API build process to create a program object:

– clCreateProgramWithSource()

– clCreateProgramWithBinary()

OpenCL uses runtime
compilation … because in
general you don’t know the
details of the target device
when you ship the program

Compile for

GPU

Compile for

CPU

GPU

code

CPU

code

Command-Queues

• Commands include:

– Kernel executions

– Memory object management

– Synchronization

• The only way to submit commands to

a device is through a command-

queue.

• Each command-queue points to a

single device within a context.

• Multiple command-queues can feed a

single device.

– Used to define independent

streams of commands that don’t

require synchronization

Queue Queue

Context

GPU CPU

Command-Queue execution

details

Command queues can be configured in different ways to

control how commands execute

• In-order queues:

– Commands are enqueued and complete in the

order they appear in the program (program-order)

• Out-of-order queues:

– Commands are enqueued in program-order but

can execute (and hence complete) in any order.

• Execution of commands in the command-queue are

guaranteed to be completed at synchronization points

Queue Queue

Context

GPU CPU

// Create a compute context

context = clCreateContext(0, 1, &device_id, NULL, NULL,

&err);

checkError(err, "Creating context");

// Create a command queue

commands = clCreateCommandQueue(context, device_id,
0, &err);

checkError(err, "Creating command queue");

// Create the compute program from the source buffer

program = clCreateProgramWithSource(context, 1, (const
char **) & KernelSource, NULL, &err);

checkError(err, "Creating program");

// Build the program

// Piero: added option

char options[] = "-cl-mad-enable";

err = clBuildProgram(program, 0, NULL, options, NULL,
NULL);

if (err != CL_SUCCESS)

{

size_t len;

char buffer[2048];

printf("Error: Failed to build program executable!\n%s\n",

err_code(err));

clGetProgramBuildInfo(program, device_id,

CL_PROGRAM_BUILD_LOG, sizeof(buffer), buffer, &len);

printf("%s\n", buffer);

return EXIT_FAILURE;

}

// Create the compute kernel from the program

ko_vadd = clCreateKernel(program, "vadd", &err);

checkError(err, "Creating kernel");

// Create the input (a, b) and output (c) arrays in device
memory

d_a = clCreateBuffer(context, CL_MEM_READ_ONLY,
sizeof(float) * count, NULL, &err);

checkError(err, "Creating buffer d_a");

d_b = clCreateBuffer(context, CL_MEM_READ_ONLY,
sizeof(float) * count, NULL, &err);

checkError(err, "Creating buffer d_b");

d_c = clCreateBuffer(context, CL_MEM_WRITE_ONLY,
sizeof(float) * count, NULL, &err);

checkError(err, "Creating buffer d_c");

// Write a and b vectors into compute device memory

err = clEnqueueWriteBuffer(commands, d_a, CL_TRUE, 0,

sizeof(float) * count, h_a, 0, NULL, NULL);

checkError(err, "Copying h_a to device at d_a");

2. Create and Build the program

Error messages

• Fetch and print error messages:

if (err != CL_SUCCESS) {

size_t len;

char buffer[2048];

clGetProgramBuildInfo(program, device_id,

CL_PROGRAM_BUILD_LOG, sizeof(buffer), buffer, &len);

printf(“%s\n”, buffer);

}

• Important to do check all your OpenCL API error messages!

• Easier in C++ with try/catch

// Create a compute context

context = clCreateContext(0, 1, &device_id, NULL, NULL,

&err);

checkError(err, "Creating context");

// Create a command queue

commands = clCreateCommandQueue(context, device_id,
0, &err);

checkError(err, "Creating command queue");

// Create the compute program from the source buffer

program = clCreateProgramWithSource(context, 1, (const
char **) & KernelSource, NULL, &err);

checkError(err, "Creating program");

// Build the program

// Piero: added option

char options[] = "-cl-mad-enable";

err = clBuildProgram(program, 0, NULL, options, NULL,
NULL);

if (err != CL_SUCCESS)

{

size_t len;

char buffer[2048];

printf("Error: Failed to build program executable!\n%s\n",

err_code(err));

clGetProgramBuildInfo(program, device_id,

CL_PROGRAM_BUILD_LOG, sizeof(buffer), buffer, &len);

printf("%s\n", buffer);

return EXIT_FAILURE;

}

// Create the compute kernel from the program

ko_vadd = clCreateKernel(program, "vadd", &err);

checkError(err, "Creating kernel");

// Create the input (a, b) and output (c) arrays in device
memory

d_a = clCreateBuffer(context, CL_MEM_READ_ONLY,
sizeof(float) * count, NULL, &err);

checkError(err, "Creating buffer d_a");

d_b = clCreateBuffer(context, CL_MEM_READ_ONLY,
sizeof(float) * count, NULL, &err);

checkError(err, "Creating buffer d_b");

d_c = clCreateBuffer(context, CL_MEM_WRITE_ONLY,
sizeof(float) * count, NULL, &err);

checkError(err, "Creating buffer d_c");

// Write a and b vectors into compute device memory

err = clEnqueueWriteBuffer(commands, d_a, CL_TRUE, 0,

sizeof(float) * count, h_a, 0, NULL, NULL);

checkError(err, "Copying h_a to device at d_a");

3. Setup Memory Objects

Memory Objects

CUDA C OpenCL C

Allocate float* d_x;

cudaMalloc(&d_x, sizeof(float)*size);

cl_mem d_x =

clCreateBuffer(context,

CL_MEM_READ_WRITE,

sizeof(float)*size,

NULL, NULL);

Host to Device cudaMemcpy(d_x, h_x,

sizeof(float)*size,

cudaMemcpyHostToDevice);

clEnqueueWriteBuffer(queue, d_x,

CL_TRUE, 0,

sizeof(float)*size,

h_x, 0, NULL, NULL);

Device to Host cudaMemcpy(h_x, d_x,

sizeof(float)*size,

cudaMemcpyDeviceToHost);

clEnqueueReadBuffer(queue, d_x,

CL_TRUE, 0,

sizeof(float)*size,

h_x, 0, NULL, NULL);

Memory Objects

• Buffers are declared on the host as type: cl_mem

• Arrays in host memory hold your original host-side data:

float h_a[LENGTH], h_b[LENGTH];

• Create the buffer (d_a), assign sizeof(float)*count bytes from “h_a” to the buffer and copy it into device
memory:

cl_mem d_a = clCreateBuffer(context,

CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,

sizeof(float)*count, h_a, NULL);

Memory Objects

• Other common memory flags include:

CL_MEM_WRITE_ONLY, CL_MEM_READ_WRITE

• These are from the point of view of the device

• Submit command to copy the buffer back to host memory at “h_c”:

– CL_TRUE = blocking, CL_FALSE = non-blocking

clEnqueueReadBuffer(queue, d_c, CL_TRUE,

sizeof(float)*count, h_c,

NULL, NULL, NULL);

// Create the compute kernel from the program

ko_vadd = clCreateKernel(program, "vadd", &err);

checkError(err, "Creating kernel");

d_b = clCreateBuffer(context, CL_MEM_READ_ONLY,

sizeof(float) * count, NULL, &err);

checkError(err, "Creating buffer d_b");

d_c = clCreateBuffer(context, CL_MEM_WRITE_ONLY,

sizeof(float) * count, NULL, &err);

checkError(err, "Creating buffer d_c");

// Write a and b vectors into compute device memory

err = clEnqueueWriteBuffer(commands, d_a, CL_TRUE, 0,
sizeof(float) * count, h_a, 0, NULL, NULL);

checkError(err, "Copying h_a to device at d_a");

err = clEnqueueWriteBuffer(commands, d_b, CL_TRUE, 0,
sizeof(float) * count, h_b, 0, NULL, NULL);

checkError(err, "Copying h_b to device at d_b");

// Set the arguments to our compute kernel

err = clSetKernelArg(ko_vadd, 0, sizeof(cl_mem), &d_a);

err |= clSetKernelArg(ko_vadd, 1, sizeof(cl_mem), &d_b);

err |= clSetKernelArg(ko_vadd, 2, sizeof(cl_mem), &d_c);

err |= clSetKernelArg(ko_vadd, 3, sizeof(unsigned int),
&count);

checkError(err, "Setting kernel arguments");

double rtime = wtime();

// Execute the kernel over the entire range of our 1d input
data set

// letting the OpenCL runtime choose the work-group size

global = count;

err = clEnqueueNDRangeKernel(commands, ko_vadd, 1,
NULL, &global, NULL, 0, NULL, NULL);

checkError(err, "Enqueueing kernel");

// Wait for the commands to complete before stopping the
timer

err = clFinish(commands);

checkError(err, "Waiting for kernel to finish");

rtime = wtime() - rtime;

printf("\nThe kernel ran in %lf seconds\n",rtime);

// Read back the results from the compute device

err = clEnqueueReadBuffer(commands, d_c, CL_TRUE, 0,
sizeof(float) * count, h_c, 0, NULL, NULL);

if (err != CL_SUCCESS)

{

printf("Error: Failed to read output array!\n%s\n",
err_code(err));

exit(1);

}

4. Define the kernel

Dividing up the work

• To enqueue the kernel

– CUDA – specify the number of thread blocks and threads

per block

– OpenCL – specify the problem size and (optionally)

number of work-items per work-group

Problem size

CUDA
OpenCL

Work-itemThread

Thread block Work-group

// Create the compute kernel from the program

ko_vadd = clCreateKernel(program, "vadd", &err);

checkError(err, "Creating kernel");

d_b = clCreateBuffer(context, CL_MEM_READ_ONLY,

sizeof(float) * count, NULL, &err);

checkError(err, "Creating buffer d_b");

d_c = clCreateBuffer(context, CL_MEM_WRITE_ONLY,

sizeof(float) * count, NULL, &err);

checkError(err, "Creating buffer d_c");

// Write a and b vectors into compute device memory

err = clEnqueueWriteBuffer(commands, d_a, CL_TRUE, 0,
sizeof(float) * count, h_a, 0, NULL, NULL);

checkError(err, "Copying h_a to device at d_a");

err = clEnqueueWriteBuffer(commands, d_b, CL_TRUE, 0,
sizeof(float) * count, h_b, 0, NULL, NULL);

checkError(err, "Copying h_b to device at d_b");

// Set the arguments to our compute kernel

err = clSetKernelArg(ko_vadd, 0, sizeof(cl_mem), &d_a);

err |= clSetKernelArg(ko_vadd, 1, sizeof(cl_mem), &d_b);

err |= clSetKernelArg(ko_vadd, 2, sizeof(cl_mem), &d_c);

err |= clSetKernelArg(ko_vadd, 3, sizeof(unsigned int),
&count);

checkError(err, "Setting kernel arguments");

double rtime = wtime();

// Execute the kernel over the entire range of our 1d input
data set

// letting the OpenCL runtime choose the work-group size

global = count;

err = clEnqueueNDRangeKernel(commands, ko_vadd, 1,
NULL, &global, NULL, 0, NULL, NULL);

checkError(err, "Enqueueing kernel");

// Wait for the commands to complete before stopping the
timer

err = clFinish(commands);

checkError(err, "Waiting for kernel to finish");

rtime = wtime() - rtime;

printf("\nThe kernel ran in %lf seconds\n",rtime);

// Read back the results from the compute device

err = clEnqueueReadBuffer(commands, d_c, CL_TRUE, 0,
sizeof(float) * count, h_c, 0, NULL, NULL);

if (err != CL_SUCCESS)

{

printf("Error: Failed to read output array!\n%s\n",
err_code(err));

exit(1);

}

5. Enqueue Commands

Enqueue a kernel (C)

CUDA C

dim3 threads_per_block(30,20);

dim3 num_blocks(10,10);

kernel<<<num_blocks,

threads_per_block>>>();

OpenCL C

const size_t global[2] =

{300, 200};

const size_t local[2] =

{30, 20};

clEnqueueNDRangeKernel(

queue, &kernel,

2, 0, &global, &local,

0, NULL, NULL);

Vector Addition – Host

Program

// create the OpenCL context on a GPU device

cl_context context = clCreateContextFromType(0,

CL_DEVICE_TYPE_GPU, NULL, NULL, NULL);

// get the list of GPU devices associated with context

clGetContextInfo(context, CL_CONTEXT_DEVICES, 0, NULL, &cb);

cl_device_id[] devices = malloc(cb);

clGetContextInfo(context,CL_CONTEXT_DEVICES,cb,devices,NULL);

// create a command-queue

cmd_queue = clCreateCommandQueue(context,devices[0],0,NULL);

// allocate the buffer memory objects

memobjs[0] = clCreateBuffer(context, CL_MEM_READ_ONLY |

CL_MEM_COPY_HOST_PTR, sizeof(cl_float)*n, srcA, NULL);

memobjs[1] = clCreateBuffer(context, CL_MEM_READ_ONLY |

CL_MEM_COPY_HOST_PTR, sizeof(cl_float)*n, srcb, NULL);

memobjs[2] = clCreateBuffer(context, CL_MEM_WRITE_ONLY,

sizeof(cl_float)*n, NULL, NULL);

// create the program

program = clCreateProgramWithSource(context, 1,

&program_source, NULL, NULL);

// build the program

err = clBuildProgram(program, 0, NULL,NULL,NULL,NULL);

// create the kernel

kernel = clCreateKernel(program, “vec_add”, NULL);

// set the args values

err = clSetKernelArg(kernel, 0, (void *) &memobjs[0],

sizeof(cl_mem));

err |= clSetKernelArg(kernel, 1, (void *) &memobjs[1],

sizeof(cl_mem));

err |= clSetKernelArg(kernel, 2, (void *) &memobjs[2],

sizeof(cl_mem));

// set work-item dimensions

global_work_size[0] = n;

// execute kernel

err = clEnqueueNDRangeKernel(cmd_queue, kernel, 1, NULL,

global_work_size, NULL,0,NULL,NULL);

// read output array

err = clEnqueueReadBuffer(cmd_queue, memobjs[2],

CL_TRUE, 0,

n*sizeof(cl_float), dst,

0, NULL, NULL);

Define platform and queues

Define memory objects

Create the program

Build the

program

Create and setup kernel

Execute the kernel

Read results on the host

It’s complicated, but most of this is “boilerplate” and not as bad as it looks.

/**

* Copyright 1993-2015 NVIDIA Corporation. All rights

reserved.

*

* Please refer to the NVIDIA end user license agreement

(EULA) associated

* with this source code for terms and conditions that govern
your use of

* this software. Any use, reproduction, disclosure, or
distribution of

* this software and related documentation outside the terms

of the EULA

* is strictly prohibited.

*

*/

/**

* Vector addition: C = A + B.

*

* This sample is a very basic sample that implements element

by element

* vector addition. It is the same as the sample illustrating

Chapter 2

* of the programming guide with some additions like error
checking.

*/

#include <stdio.h>

// For the CUDA runtime routines (prefixed with "cuda_")

#include <cuda_runtime.h>

/**

* CUDA Kernel Device code

*

* Computes the vector addition of A and B into C. The 3
vectors have the same

* number of elements numElements.

*/

__global__ void

vectorAdd(const float *A, const float *B, float *C, int

numElements)

{

int i = blockDim.x * blockIdx.x + threadIdx.x;

if (i < numElements)

{

C[i] = A[i] + B[i];

}

}

/**

* Host main routine

*/

Vector Addition – CUDA Kernel

Indexing at work

gridDim

blockIdx

blockDim

gridDim * blockDim

threadIdx

blockIdx * blockdim+ threadIdx

OpenCL
get_num_groups()

get_group_id()

get_local_size()

get_global_size()

get_local_id()

get_global_id()

CUDA C OpenCL

const char *KernelSource = "\n" \

"#pragma OPENCL EXTENSION cl_nv_compiler_options :

enable \n" \

"__kernel void vadd(\n" \

" __global float* a, \n" \

" __global float* b, \n" \

" __global float* c, \n" \

" const unsigned int count) \n" \

"{ \n" \

" int i = get_global_id(0); \n" \

" if(i < count) \n" \

" c[i] = a[i] + b[i]; \n" \

"} \n" \

"\n";

//--

Vector Addition – OpenCL Kernel

OpenCL C Language

Highlights

• Function qualifiers

– __kernel qualifier declares a function as a kernel

• I.e. makes it visible to host code so it can be enqueued

– Kernels can call other kernel-side functions

• Address space qualifiers

– __global, __local, __constant, __private

– Pointer kernel arguments must be declared with an address space qualifier

• Work-item functions

– get_work_dim(), get_global_id(), get_local_id(), get_group_id()

• Synchronization functions

– Barriers - all work-items within a work-group must execute the barrier function before any work-item
can continue

– Memory fences - provides ordering between memory operations

Differences in

kernels

• Where do you find the kernel?

– OpenCL - either a string (const char *), or read from a file

– CUDA – a function in the host code

• Denoting a kernel

– OpenCL - __kernel

– CUDA - __global__

• When are my kernels compiled?

– OpenCL – at runtime

– CUDA – with compilation of host code

Run OpenCL

• Goal:

– Use DeviceInfo and vectorAdd directory

• Procedure:

– Enter in each of them

– Run make

– Run the executables

• Expected output:

– A message to standard output for both executables

• DeviceInfo output

Number of devices: 2

Name: Tesla K40m

Version: OpenCL C 1.2

Max. Compute Units: 15

Local Memory Size: 48 KB

Global Memory Size: 11519 MB

Max Alloc Size: 2879 MB

Max Work-group Total Size: 1024

Max Work-group Dims: (1024 1024 64)

Name: Tesla K40m

Version: OpenCL C 1.2

Max. Compute Units: 15

Local Memory Size: 48 KB

Global Memory Size: 11519 MB

Max Alloc Size: 2879 MB

Max Work-group Total Size: 1024

Max Work-group Dims: (1024 1024 64)

• vectorAdd output

[planucar@node166 C]$./vadd

Device is Tesla K40m GPU from NVIDIA Corporation with

a max of 15 compute units

The kernel ran in 0.000061 seconds

C = A+B: 8192 out of 8192 results were correct.

Run OpenCL-2

OpenCL and

portability

from http://www.karlrupp.net/

http://www.karlrupp.net/

from http://www.karlrupp.net/

http://www.karlrupp.net/

from http://www.karlrupp.net/

http://www.karlrupp.net/

Microprocessor trends

Individual processors have many (possibly heterogeneous) cores.

The (Heterogeneous) many-core challenge:

How are we to build a software ecosystem for the
Heterogeneous many core platform?

Third party names are the property of their owners.

61 cores

16 wide SIMD

NVIDIA® Tesla®

C2090

10 cores

16 wide SIMD

ATI™ RV770

16 cores

32 wide SIMD

Intel® Xeon Phi™

coprocessor

Heterogeneous High Performance

Programming framework

A modern computing platform

includes:

• One or more CPUs

• One of more GPUs

• DSP processors

• Accelerators

• … other?

E.g. Samsung® Exynos 5:

• Dual core ARM A15 1.7GHz, Mali

T604 GPU

OpenCL lets Programmers write a single portable program that uses

ALL resources in the heterogeneous platform

Industry Standards for

Programming Heterogeneous

Platforms

OpenCL – Open Computing Language

Open, royalty-free standard for portable, parallel programming of heterogeneous parallel
computing CPUs, GPUs, and other processors

CPUs
Multiple cores driving

performance increases

GPUs
Increasingly general
purpose data-parallel

computing

Graphics
APIs and
Shading

Languages

Multi-
processor

programming
– e.g. OpenMP

Emerging
Intersection

Heterogeneous
Computing

OpenCL Timeline

• Launched Jun’08 … 6 months from “strawman” to OpenCL 1.0

• Rapid innovation to match pace of hardware innovation

– 18 months from 1.0 to 1.1 and from 1.1 to 1.2

– Goal: a new OpenCL every 18-24 months

– Committed to backwards compatibility to protect software

investments

OpenCL 1.0
released.

Conformance tests
released Dec08

Dec08

Jun10

OpenCL 1.1
Specification and

conformance tests
released

Nov11

OpenCL 1.2
Specification and
conformance tests

released

Within 6

months
(depends on

feedback)

OpenCL 2.0
Specification
finalized and

conformance tests
released

Jul13

OpenCL 2.0
Provisional

Specification released
for public review

OpenCL Working Group

within Khronos

• Diverse industry participation

– Processor vendors, system OEMs, middleware vendors, application

developers.

• OpenCL became an important standard upon release by virtue of the

market coverage of the companies behind it.

Third party names are the property of their owners.

http://www.codeplay.com/
http://www.amd.com/
http://www.umu.se/umu/index_eng.html
http://www.gshark.com/

OpenCL abstract Platform Model

• One Host and one or more OpenCL Devices

– Each OpenCL Device is composed of one or more
Compute Units

• Each Compute Unit is divided into one or more Processing Elements

• Memory divided into host memory and device memory

Processing

Element

OpenCL Device

…
…

…

…
……

…
…

……
…

…
……

…

Host

Compute Unit

E.g. NVIDIA® K80:

• Dual NVIDIA K40 GPU

OpenCL NVIDIA Platform Model

CUDA thread

CUDA streaming processor

CUDA thread block

CUDA streaming multiprocessor

CUDA enabled GPU

• Each WI runs as one

of the thread within a

CUDA SP

• A whole WG executes

on a single SMP

• Several WG can

reside on a single

SMP (depending on

WG memory and

SMP resources

• Each kernel is

executed on a CUDA

device

OpenCL NVIDIA Platform Model

• DeviceInfo output

Number of OpenCL platforms: 1

Platform: NVIDIA CUDA

Vendor: NVIDIA Corporation

Version: OpenCL 1.2 CUDA 7.5.23

Number of devices: 1

Name: Tesla K80

Version: OpenCL C 1.2

Max. Compute Units: 13

Local Memory Size: 48 KB

Global Memory Size: 11519 MB

Max Alloc Size: 2879 MB

Max Work-group Total Size: 1024

Max Work-group Dims: (1024 1024 64)

• vectorAdd output

[planucar@node495 C]$./vadd

Device is Tesla K80 GPU from NVIDIA Corporation with a

max of 13 compute units

The kernel ran in 0.000052 seconds

C = A+B: 8192 out of 8192 results were correct.

Run OpenCL on NVIDIA (K80)

The MontBlanc proto

• 2 racks, 8 standard BullX

chassis, 72 compute blades

fitting 1080 compute cards, for

a total of 2160 CPUs and 1080

GPUs.

• SoC Samsung Exynos 5 Dual

CPU Cortex-A15@1.7Ghz

dual core.

• GPU ARM Mali T604 (OpenCL

1.1 capable).

mailto:Cortex-A15@1.7Ghz

E.g. Samsung® Exynos 5:

• Dual core ARM A15 1.7GHz, Mali

T604 GPU

OpenCL Mali Platform Model

• Each WI runs as one

of the thread within a

core

• Up to 256 threads(WI)

per core

• A whole WG executes

on a single core

• “Adiacent” WG are

scheduled onto core

in a round-robin

fashion

OpenCL Mali Platform Model

• DeviceInfo output

Number of OpenCL platforms: 1

Platform: ARM Platform

Vendor: ARM

Version: OpenCL 1.1

Number of devices: 1

Name: Mali-T604

Version: OpenCL C 1.1

Max. Compute Units: 4

Local Memory Size: 32 KB

Global Memory Size: 3527 MB

Max Alloc Size: 881 MB

Max Work-group Total Size: 256

Max Work-group Dims: (256 256 256)

• vectorAdd output

planucar@mb-login-1:~/OpenCL2016/Exercises-
Solutions/Exercises/Exercise02/C$./vadd

Device is Mali-T604 GPU from ARM with a max of 4
compute units

The kernel ran in 0.000346 seconds

C = A+B: 1024 out of 1024 results were correct.

Run OpenCL on Mali GPU

• A simple mechanism is used to

address multiple separate

vendor drivers: ICD loader

(ICD stands for Installable

Client Drivers)

• At every OpenCL function call

the ICD loader infers the

vendor ICD function to call

from the arguments to the

function.

• The structure _cl_icd_dispatch

is a function pointer dispatch

table to direct calls to a

particular vendor

implementation (ICD library).

• ICD compatible object has the

following structure:
Struct _cl_<object>

{

struct _cl_icd_dispatch *dispatch:

// ….remainder of internal data

};

<object> can be platform_id, devide_id, context, etc

OpenCL runtime: how it works?

Example: NVIDIA ICD loader.

• Search for

/etc/OpenCL/vendors

• ICD loader opens the file

containing the vendor ICD

library (shared object). In this

case the file nvidia.icd text

line:libnvidia-opencl.so.1

An N-dimensional

domain of work-items
• Global Dimensions:

– 1024x1024 (whole problem space)
• Local Dimensions:

– 128x128 (work-group, executes together)

• Choose the dimensions that are “best” for your algorithm (and

hardware)

1024

1
0

2
4

Synchronization between

work-items possible only

within work-groups:

barriers and memory

fences
Cannot synchronize

between work-groups

within a kernel

OpenCL N Dimensional Range

(NDRange)

• The problem we want to compute should have some

dimensionality;

– For example, compute a kernel on all points in a cube

• When we execute the kernel we specify up to 3 dimensions

• We also specify the total problem size in each dimension – this is

called the global size

• We associate each point in the iteration space with a work-item

OpenCL N Dimensional Range

(NDRange)

• Work-items are grouped into work-groups; work-items within a

work-group can share local memory and can synchronize

• We can specify the number of work-items in a work-group –

this is called the local (work-group) size

• Or the OpenCL run-time can choose the work-group size for

you (usually not optimally)

OpenCL Matrix Multiply

live@CINECA

How to extract working dirs

• wget from standard hpcforge.cineca.it site the file:

OpenCL_Exercise_Solutions.tgz

• tar xvfz OpenCL_Exercise_Solutions.tgz

• OpenCL2017 directory is created

• ….that’s all !

void mat_mul(int N, float *A, float *B, float *C)

{

int i, j, k;

for (i = 0; i < N; i++) {

for (j = 0; j < N; j++) {

C[i*N+j] = 0.0f;

for (k = 0; k < N; k++) {

// C(i, j) = sum(over k) A(i,k) * B(k,j)

C[i*N+j] += A[i*N+k] * B[k*N+j];

}

}

}

}

Matrix multiplication: sequential code

We compute C=AB, where all three matrices are NxN

= x
A(i,:)

B(:,j)
C(i,j)

Dot product of a row of A and a column of B for each element of

C

Matrix multiplication: sequential code

void mat_mul(int N, float *A, float *B, float *C)

{

int i, j, k;

for (i = 0; i < N; i++) {

for (j = 0; j < N; j++) {

C[i*N+j] = 0.0f;

for (k = 0; k < N; k++) {

// C(i, j) = sum(over k) A(i,k) * B(k,j)

C[i*N+j] += A[i*N+k] * B[k*N+j];

}

}

}

}

Matrix multiplication: OpenCL kernel (1/2)

void mat_mul(int N, float *A, float *B, float *C)

{

int i, j, k;

for (i = 0; i < N; i++) {

for (j = 0; j < N; j++) {

// C(i, j) = sum(over k) A(i,k) * B(k,j)

for (k = 0; k < N; k++) {

C[i*N+j] += A[i*N+k] * B[k*N+j];

}

}

}

}

__kernel void mat_mul(

const int N,

__global float *A, __global float *B, __global float *C)

Mark as a kernel function and

specify memory qualifiers

__kernel void mat_mul(

const int N,

__global float *A, __global float *B, __global float *C)

{

int i, j, k;

for (i = 0; i < N; i++) {

for (j = 0; j < N; j++) {

for (k = 0; k < N; k++) {

// C(i, j) = sum(over k) A(i,k) * B(k,j)

C[i*N+j] += A[i*N+k] * B[k*N+j];

}

}

}

}

Matrix multiplication: OpenCL kernel (2/2)

i = get_global_id(0);

j = get_global_id(1);

Remove outer loops and set

work-item co-ordinates

__kernel void mat_mul(

const int N,

__global float *A, __global float *B, __global float *C)

{

int i, j, k;

i = get_global_id(0);

j = get_global_id(1);

// C(i, j) = sum(over k) A(i,k) * B(k,j)

for (k = 0; k < N; k++) {

C[i*N+j] += A[i*N+k] * B[k*N+j];

}

}

Matrix multiplication: OpenCL kernel

__kernel void mmul(

const int N,

__global float *A,

__global float *B,

__global float *C)

Matrix multiplication: OpenCL kernel

improved

{

int k;

int i = get_global_id(0);

int j = get_global_id(1);

if ((i < N) && (j < N))

{

float tmp = 0.0f;

for (k = 0; k < N; k++)

tmp += A[i*N+k]*B[k*N+j];

}

C[i*N+j] += tmp;

}

Rearrange and use a local scalar for intermediate C element

values (a common optimization in Matrix Multiplication

functions)

Exercise 2: run serial and first matMul

OpenCL

• Goal:

– Use basic directory

• Procedure:

– Enter

– Run make

– Run the executable

• Expected output:

– A message to standard output for serial and first matMul execution

Matrix multiplication performance

(Galileo compute node, N=2048)

• Matrices are stored in global memory.

Case MFLOPS

CPU GPU

Sequential C (not OpenCL) N/A

C(i,j) per work-item, all global N/A

GPU Device is Kepler® K80 GPU from NVIDIA® with a max of 13 compute units, 512

PEs

CPU Device is Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz

Matrix multiplication performance

(MontBlanc proto compute node, N=2048)

• Matrices are stored in global memory.

Case MFLOPS

CPU GPU

Sequential C (not OpenCL) 37.9 N/A

C(i,j) per work-item, all global N/A 220.7

GPU Device is Mali® T604 GPU with a max of 4 compute units

CPU Device is ARM(R) A15 @ 1.7GHz

Matrix multiplication performance

(Galileo compute node, N=2048)

• Matrices are stored in global memory.

Case MFLOPS

CPU GPU

Sequential C (not OpenCL) 725 N/A

C(i,j) per work-item, all global N/A 8835

GPU Device is Kepler® K80 GPU from NVIDIA® with a max of 13 compute units,

2496 PEs

CPU Device is Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz

Far from optimal(CUDA)

OpenCL and

(performance?)

Portability

Portable performance in OpenCL

• Portable performance is

always a challenge, more so

when OpenCL devices can be

so varied (CPUs, GPUs, …)

• But OpenCL provides a

powerful framework for writing

performance portable code

• The target is writing code that

should work well on most

OpenCL devices

• Tremendous amount of computing power

available

1170

GFLOPs

peak

1070

GFLOPs

peak

Optimizing matrix multiplication

• MM cost determined by FLOPS and memory movement:

– 2*n3 = O(n3) FLOPS

– Operates on 3*n2 = O(n2) numbers

• To optimize matrix multiplication, we must ensure that for

every memory access we execute as many FLOPS as

possible.

• Outer product algorithms are faster, but for pedagogical

reasons, let’s stick to the simple dot-product algorithm.

• We will work with work-item/work-group sizes and the memory model to optimize

matrix multiplication

= x
A(i,:)

B(:,j)
C(i,j)

Dot product of a row of A and a column of B for each element of C

Optimization issues: memory

coalescing
• Efficient access to memory

– Memory coalescing

• Ideally get work-item i to access data[i] and work-item j to access data[j] at the same

time etc.

• Infact, to maximize global memory throughput access is important to maximize

coalescing

{

int k;

int i = get_global_id(0);

int j = get_global_id(1);

if ((i < N) && (j < N))

{

float tmp = 0.0f;

for (k = 0; k < N; k++)

tmp += A[i*N+k]*B[k*N+j];

}

C[i*N+j] += tmp;

}

{

int k;

int i = get_global_id(1);

int j = get_global_id(0);

if ((i < N) && (j < N))

{

float tmp = 0.0f;

for (k = 0; k < N; k++)

tmp += A[i*N+k]*B[k*N+j];

}

C[i*N+j] += tmp;

}

Non coalesced Coalesced

Aligned (coalesced) access during load/store operations

reduce the number of segments moved across the bus

Matrix multiplication performance

(Galileo compute node, N=2048)

• Matrices are stored in global memory.

Case MFLOPS

CPU GPU

Sequential C (not OpenCL) 725 N/A

C(i,j) per work-item, all global coalesced N/A 72680

GPU Device is Kepler® K80 GPU from NVIDIA® with a max of 13 compute units,

2496 PEs

CPU Device is Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz

Big Impact (still not optimal)

Matrix multiplication performance

(MontBlanc proto compute node, N=2048)

• Matrices are stored in global memory.

Case MFLOPS

CPU GPU

Sequential C (not OpenCL) 37.9 N/A

C(i,j) per work-item, all global coalesced N/A 1308

GPU Device is Mali® T604 GPU with a max of 4 compute units

CPU Device is ARM(R) A15 @ 1.7GHz

Big Impact

Optimization issues: occupancy

• Efficient use of resources

– Occupancy

• Ideally, try to maximize the number of blocks and warps (on NVIDIA hardware)

residing on each SMP for a given kernel

• Infact, it depends on the NDRange of the call, the memory resources of the

multiprocessor, and the resource requirements of the kernel

const size_t global[2] = {N, N};

err = clEnqueueNDRangeKernel(

commands,

kernel,

2, NULL,

global, NULL,

0, NULL, NULL);

Modified host code

const size_t global[2] = {N, N};

const size_t local[2] = {8, 8};

err = clEnqueueNDRangeKernel(

commands,

kernel,

2, NULL,

global, local,

0, NULL, NULL);

Original host code

Which is the best thread block size/work-group size to select (i.e. LOCAL)?

On Keplerarchitectures: each SM can handle up to 2048 total threads

8x8 = 64 threads >>> 2048/64 = 32 blocks needed to fully load a SM LOCAL = 8

… yet there is a limit of maximum 16 resident blocks per SM for cc 3.x

so we end up with just 64x16 = 1024 threads per SM on a maximum of 2048 (only

50% occupancy)

16x16 = 256 threads >>> 2048/256 = 8 blocks to fully load a SM LOCAL = 16

8x256 = 2048 threads per SM … reaching full occupancy per SM!

32x32 = 1024 threads >>> 2048/1024 = 2 blocks fully load a SM LOCAL = 32

2x1024 = 2048 threads per SM … reaching full occupancy per SM!

LOCAL = 16 or 32

Optimization issues: occupancy

Exercise 3: run serial and coalesced

occupancy findings matMul OpenCL

• Goal:

– Use occupancy directory

• Procedure:

– Enter in C directory. Modify host source in order to exploit different

occupancy parameters.

– Run make

– Run the executable

• Expected output:

– A message to standard output for serial and OpenCL matMul

executions (according to different local size)

Matrix multiplication performance

(Galileo compute node, N=2048)

• Matrices are stored in global memory.

Case MFLOPS

CPU GPU

Sequential C (not OpenCL) 725 N/A

C(i,j) per work-item, all global coalesced

Occupancy: local(8,8)
N/A 42950

GPU Device is Kepler® K80 GPU from NVIDIA® with a max of 13 compute units,

2496 PEs

CPU Device is Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz

Matrix multiplication performance

(Galileo compute node, N=2048)

• Matrices are stored in global memory.

Case MFLOPS

CPU GPU

Sequential C (not OpenCL) 725 N/A

C(i,j) per work-item, all global coalesced

Occupancy: local(16,16)
N/A 62593

GPU Device is Kepler® K80 GPU from NVIDIA® with a max of 13 compute units,

2496 PEs

CPU Device is Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz

Matrix multiplication performance

(Galileo compute node, N=2048)

• Matrices are stored in global memory.

Case MFLOPS

CPU GPU

Sequential C (not OpenCL) 725 N/A

C(i,j) per work-item, all global coalesced

Occupancy: local(32,32)
N/A 80287

GPU Device is Kepler® K80 GPU from NVIDIA® with a max of 13 compute units,

2496 PEs

CPU Device is Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz

Best result

Matrix multiplication performance

(MontBlanc proto compute node, N=2048)

• Matrices are stored in global memory.

Case MFLOPS

CPU GPU

Sequential C (not OpenCL) 37.9 N/A

C(i,j) per work-item, all global coalesced

Occupancy: local(16,16)
N/A 1952

GPU Device is Mali® T604 GPU with a max of 4 compute units

CPU Device is ARM(R) A15 @ 1.7GHz

Best result

Optimization issues: Pinned Memory

• In general, the fewer transfers you can do between host and device,

the better

• But some are unavoidable

• It is possible to speed up these transfers, by using pinned memory

(also called page-locked memory)

• If supported, can enable much faster host <-> device

communications

Pinned Memory

• A regular clEnqueueReadBuffer/clEnqueueWriteBuffer command

might manage ~6GB/s

• But PCI-E Gen 3.0 can sustain transfer rates of up to 16GB/s

• So, where has our bandwidth gone?

• The operating system

• In fact, an allocation may not even be contiguous

• So, clEnqueueReadBuffer/clEnqueueWriteBuffer must incur an

additional host memory to host memory copy, wasting bandwidth

and costing performance

• Pinned memory side-steps this issue by giving the host process

direct access to the portions of host memory that the DMA engines

read and write to.

• This results in much less time spent waiting for transfers!

• Disclaimer: Not all drivers support it, and it makes allocations much

more expensive (so it would be slow to continually allocate and free

pinned memory!)

Pinned Memory

Using Pinned Memory

• OpenCL has no official support for pinned
memory

• But e.g. NVIDIA supports pinned memory
allocations
(CL_MEM_ALLOC_HOST_PTR flag)

• In this way, when you allocate a cl_mem
object, you also allocate page-locked
host memory of the same size

• But this does not return the host pointer

• Reading and writing data is handled by
clEnqueueMapBuffer, which does return
the host pointer

• Eventually call
clEnqueueUnmapMemObjectwhen
you're done

//create device buffer

cl_mem devPtrA= clCreateBuffer(

context,

CL_MEM_ALLOC_HOST_PTR, //pinned memory flag

len,

NULL, //host pointer must be NULL

NULL

);

float *hostPtrA=

(float *) clEnqueueMapBuffer(

queue,

devPtrA,

CL_TRUE, //blocking map

CL_MAP_WRITE, //write data

0, //offset of region

len, //amount of data to be mapped

0, NULL, NULL, //event information

NULL //error code pointer

);

Exercise: measuring bandwidth with OpenCL

90

Size (MB) HtoD DtoH DtoD

1 3569 3718 71483

10 5198 5588 145985

100 7755 10336 166850

• Measure memory bandwidth versus increasing data size, for Host to

Device, Device to Host and Device to Device transfers

• Rely on the oclBandwidthTest provided into the nvidia-opencl-

examples-cuda.4.2.9.sdk directory:
./oclBandwidthTest --mode=range --start= --end= --

increment=

Galileo compute node

Exercise: measuring bandwidth with OpenCL

91

Size (MB) HtoD DtoH DtoD

1 6814 6970 71999

10 7120 7996 145582

100 9137 11099 166794

• Measure memory bandwidth versus increasing data size, for Host to

Device, Device to Host and Device to Device transfers

• Rely on the oclBandwidthTest provided into the nvidia-opencl-

examples-cuda.4.2.9.sdk directory:
./oclBandwidthTest --mode=range --start= --end= --

increment=

Galileo compute node Pinned Memory

Exercise: measuring bandwidth with OpenCL

92

Size (MB) HtoD DtoH DtoD

1 2481 2537 5090

10 1846 2164 3737

100 3055 3085 6112

• Measure memory bandwidth versus increasing data size, for Host to

Device, Device to Host and Device to Device transfers

• Rely on the oclBandwidthTest provided into the nvidia-opencl-

examples-cuda.4.2.9.sdk directory:
./oclBandwidthTest --mode=range --start= --end= --

increment=

MontBlanc proto

Exercise: measuring bandwidth with OpenCL

93

Size (MB) HtoD DtoH DtoD

1 2552 2585 5141

10 2998 3033 5985

100 3067 3098 5831

• Measure memory bandwidth versus increasing data size, for Host to

Device, Device to Host and Device to Device transfers

• Rely on the oclBandwidthTest provided into the nvidia-opencl-

examples-cuda.4.2.9.sdk directory:
./oclBandwidthTest --mode=range --start= --end= --

increment=

MontBlanc proto Pinned Memory

OpenCL Memory model

• Private Memory
– Per work-item

• Local Memory
– Shared within a

work-group

• Global/Constant
Memory
– Visible to all

work-groups

• Host memory
– On the CPU

Memory management is explicit:

You are responsible for moving data from

host → global → local and back

OpenCL Memory model

• Private Memory
– Fastest & smallest: O(10) words/WI

• Local Memory
– Shared by all WI’s in a work-group

– But not shared between work-
groups!

– O(1-10) Kbytes per work-group

• Global/Constant Memory
– O(1-10) Gbytes of Global memory

– O(10-100) Kbytes of Constant
memory

• Host memory
– On the CPU - GBytes

Memory management is explicit:

O(1-10) Gbytes/s bandwidth to discrete GPUs for

Host <-> Global transfers

Optimization issues: exploit memory

hierarchy
• Efficient use of resources

– Memory hierarchy

• Managing the memory hierarchy is one of the most important things to get right to achieve good

performance

Optimization issues: 1D NDRange

• Efficient use of resources

– 1D NDRange

• There may be significant overhead to manage work-items and work-groups.

• So let’s have each work-item compute a full row of C.

= x
A(i,:)

B(:,j)
C(i,j)

Dot product of a row of A and a column
of B for each element of C

• Global Dimensions: 2048 (1D)

Whole problem space (index space)

• Local Dimensions: 64 (work-items per work-group)

Only 2048/64 = 32 work-groups in total
2

0
4

8

6
4

Optimization issues: 1D NDRange

__kernel void mmul(

const int N,

__global float *A,

__global float *B,

__global float *C)

Matrix multiplication: One work item per row

of C
{

int j, k;

int i = get_global_id(0);

float tmp;

for (j = 0; j < N; j++) {

tmp = 0.0f;

for (k = 0; k < N; k++)

tmp += A[i*N+k]*B[k*N+j];

C[i*N+j] = tmp;

}

}

__kernel void mmul(

const int N,

__global float *A,

__global float *B,

__global float *C)

Matrix multiplication: One work item per row

of C
{

int j, k;

int i = get_global_id(0);

float tmp;

for (j = 0; j < N; j++) {

tmp = 0.0f;

for (k = 0; k < N; k++)

tmp += A[i*N+k]*B[k*N+j];

C[i*N+j] = tmp;

}

}

Changes to host program:

1. 1D ND Range set to number of rows in the C matrix

2. Local Dimension set to 64 so number of work-groups should be 32

Optimizing matrix multiplication

• Notice that, in one row of C, each element reuses the same

row of A.

• Let’s copy that row of A into private memory of the work-item

that’s (exclusively) using it to avoid the overhead of loading it

from global memory for each C(i,j) computation.

= x
A(i,:)

B(:,j)
C(i,j)

Private memory of each

work-item

Private Memory

• Private Memory:

– A very scarce resource, only a few tens of 32-bit words per Work-Item at

most

– If you use too much it spills to global memory or reduces the number of

Work-Items that can be run at the same time, potentially harming

performance*

– Think of these like registers on the CPU

* Occupancy on a GPU

Why using too much private memory can be

a good thing

• In reality private memory is just hardware registers, so only dozens

of these are available per work-item

• Many kernels will allocate too many variables to private memory

• So the compiler already has to be able to deal with this

• It does so by spilling excess private variables to (global) memory

• You still told the compiler something useful – that the data will only

be accessed by a single work-item

• This lets the compiler allocate the data in such as way as to enable

more efficient memory access

Exercise 4: run serial and 1D NDRange and

private matMul OpenCL

• Goal:

– Use private directory

• Procedure:

– Enter in C directory. Modify host source in order to exploit 1D

NDRange decomposition. Try to set local dimension to 64.

– Modify the kernel so that each work-item copies its own row of A into

private memory

– Run make

– Run the executable

• Expected output:

– A message to standard output for serial and OpenCL matMul

executions (according to different local size)

__kernel void mmul(

const int N,

__global float *A,

__global float *B,

__global float *C)

{

int j, k;

int i =
get_global_id(0);

float tmp;

float Awrk[2048];

Matrix multiplication: (Row of A in private memory)

for (k = 0; k < N; k++)

Awrk[k] = A[i*N+k];

for (j = 0; j < N; j++) {

tmp = 0.0f;

for (k = 0; k < N; k++)

tmp += Awrk[k]*B[k*N+j];

C[i*N+j] += tmp;

}

}

(*Actually, this is using far more private memory than we’ll have and so Awrk[] will be spilled to global memory

Copy a row of A into private memory from global memory

before we start with the matrix multiplications.

Setup a work array for A in

private memory*

Matrix multiplication performance

(Galileo compute node, N=2048)

• Matrices are stored in global memory. 1D NDRange.
Each row of A in private memory

Case MFLOPS

CPU GPU

Sequential C (not OpenCL) 725 N/A

C(i,j) per work-item, all global. 1D

NDRange. Rows of A in private memory
N/A 16999

GPU Device is Kepler® K80 GPU from NVIDIA® with a max of 13 compute units,

2496 PEs

CPU Device is Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz

Altough not optimal 4 times faster than simple 1D NDRange

(which is not shown)

Matrix multiplication performance

(MontBlanc proto compute node, N=2048)

• Matrices are stored in global memory. 1D NDRange.
Each row of A in private memory

Case MFLOPS

CPU GPU

Sequential C (not OpenCL) 37.9 N/A

C(i,j) per work-item, all global 1D

NDRange. Rows of A in private memory N/A 173

GPU Device is Mali® T604 GPU with a max of 4 compute units

CPU Device is ARM(R) A15 @ 1.7GHz

Altough not optimal 2 times faster than simple 1D NDRange

(which is not shown)

Local Memory*

• Tens of KBytes per Compute Unit

– As multiple Work-Groups will be running on each CU, this means only a

fraction of the total Local Memory size is available to each Work-Group

• Assume O(1-10) KBytes of Local Memory per Work-Group

– Your kernels are responsible for transferring data between Local and

Global/Constant memories

– Use Local Memory to hold data that can be reused by all the work-items in a

work-group

• Access patterns to Local Memory affect performance in a similar way to

accessing Global Memory

– Have to think about things like coalescence & bank conflicts

* Typical figures for a 2013 GPU

Memory Consistency

• OpenCL uses a relaxed consistency memory model; i.e.

– The state of memory visible to a work-item is not guaranteed to be consistent

across the collection of work-items at all times.

• Within a work-item:

– Memory has load/store consistency to the work-item’s private view of

memory, i.e. it sees its own reads and writes correctly

• Within a work-group:

– Local memory is consistent between work-items at a barrier.

• Global memory is consistent within a work-group at a barrier, but not guaranteed

across different work-groups!!

– This is a common source of bugs!

• Consistency of memory shared between commands (e.g. kernel invocations) is

enforced by synchronization (barriers, events, in-order queue)

Thread Synchronization

CUDA OpenCL

__syncthreads() barrier()

__threadfenceblock() mem_fence(
CLK_GLOBAL_MEM_FENCE |
CLK_LOCAL_MEM_FENCE)

No equivalent read_mem_fence()

No equivalent write_mem_fence()

__threadfence() Finish one kernel and start another

Work-Item

Synchronization
• Within a work-group

void barrier()

– Takes optional flags

CLK_LOCAL_MEM_FENCE and/or CLK_GLOBAL_MEM_FENCE

– A work-item that encounters a barrier() will wait until ALL work-items in its work-

group reach the barrier()

– Corollary: If a barrier() is inside a branch, then the branch must be taken by

either:

• ALL work-items in the work-group, OR

• NO work-item in the work-group

• Across work-groups

– No guarantees as to where and when a particular work-group will be executed

relative to another work-group

– Cannot exchange data, or have barrier-like synchronization between two

different work-groups! (Critical issue!)

– Only solution: finish the kernel and start another

Ensure correct order of memory

operations to local memory (with

flushes or queuing a memory fence)l

or global

Optimizing matrix multiplication

• We already noticed that, in one row of C, each element uses

the same row of A

• Each work-item in a work-group also uses the same columns

of B

• So let’s store the B columns in local memory (which is shared

by the work-items in the work-group)

= x
A(i,:)

B(:,j)
C(i,j)

Private memory of each

work-item Local memory for each

work-group

Declaring dynamic local/shared

memory

CUDA C

1. Define an array in the kernel source as extern

__shared__ int array[];

2. When executing the kernel, specify the third
parameter as size in bytes of shared memory

func<<<num_blocks,

num_threads_per_block,

shared_mem_size>>>(args);

OpenCL C

1. Have the kernel accept a local array as an
argument

__kernel void func(

__local int *array) {}

2. Specify the size by setting the kernel argument

clSetKernelArg(kernel, 0,

sizeof(int)*num_elements,

NULL);

Changes to host program:

1. Pass local memory to kernels.

1. This requires a change to the kernel argument lists … an

arg of type float is needed

2. Allocate the size of local memory

3. Update argument list in kernel functor

__kernel void mmul(

const int N,
__global float *A,

__global float *B,
__global float *C,

__local float *Bwrk)
{

int j, k;
int i =

get_global_id(0);

int iloc =
get_local_id(0);

int nloc =
get_local_size(0);

float tmp;
float Awrk[2048];

Matrix multiplication: B column shared between work-items

for (k = 0; k < N; k++)

Awrk[k] = A[i*N+k];

for (j = 0; j < N; j++) {

for (k=iloc; k<N; k+=nloc)
Bwrk[k] = B[k* N+j];

barrier(CLK_LOCAL_MEM_FENCE);

tmp = 0.0f;

for (k = 0; k < N; k++)
tmp += Awrk[k]*Bwrk[k];

C[i*N+j] = tmp;

barrier(CLK_LOCAL_MEM_FENCE);

}
}

Pass a work array in local memory to hold a

column of B. All the work-items do the copy

“in parallel” using a cyclic loop distribution

(hence why we need iloc and nloc)

Matrix multiplication performance

(Galileo compute node, N=2048)

• Matrices are stored in global memory. 1D NDRange.
Each row of A in private memory, B col in shared

Case MFLOPS

CPU GPU

Sequential C (not OpenCL) 725 N/A

C(i,j) per work-item, all global. 1D

NDRange. Rows of A in private

memory, B col in shared

N/A 14939

GPU Device is Kepler® K80 GPU from NVIDIA® with a max of 13 compute units,

2496 PEs

CPU Device is Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz

Not really exciting performances. More or less near the previous

one

Matrix multiplication performance

(MontBlanc proto compute node, N=2048)

• Matrices are stored in global memory. 1D NDRange.
Each row of A in private memory, B col in shared

Case MFLOPS

CPU GPU

Sequential C (not OpenCL) 37.9 N/A

C(i,j) per work-item, all global 1D

NDRange. Rows of A in private

memory, B col in shared
N/A 1654

GPU Device is Mali® T604 GPU with a max of 4 compute units

CPU Device is ARM(R) A15 @ 1.7GHz

Altough not optimal 10 times faster than the previous one

Good result

Making matrix multiplication really fast

• Our goal has been to describe how to work with private, local and global memory.

We’ve ignored many well-known techniques for making matrix multiplication fast

– The number of work items must be a multiple of the fundamental machine

“vector width”. This is the wavefront on AMD, warp on NVIDIA, and the

number of SIMD lanes exposed by vector units on a CPU

– To optimize reuse of data, you need to use blocking techniques

• Decompose matrices into tiles

• Copy tiles into local memory

• Do the multiplication over the tiles

• Update global matrix

Changes to host program:

1. Back to the 2D decomposition

1. This requires a change to the kernel argument lists …

two args of type float are needed

2. Allocate the size of local memory

3. Update argument list in kernel functor

4. Set the local worksize to the “warp size”

Exercise 5: run serial and 2D NDRange and

shared memory matMul OpenCL

• Goal:

– Use private directory

• Procedure:

– Enter in C directory. Modify host source in order to set local

dimension to “warp size”.

– Modify the kernel filling each “dummy” assignment with correct syntax

– Run make

– Run the executable

• Expected output:

– A message to standard output for serial and OpenCL matMul

executions

#define blksz 32

__kernel void mmul(

const unsigned int N,

__global const float* restrict A,

__global const float* restrict B,

__global float* restrict C,

__local float* restrict Awrk,

__local float* restrict Bwrk)

{

int kloc, Kblk;

float Ctmp=0.0f;

// This work-item will compute element C(i,j)

const int i = get_global_id(0);

const int j = get_global_id(1);

// Element C(i,j) is in block C(Iblk,Jblk)

const int Iblk= get_group_id(0);

const int Jblk= get_group_id(1);

// C(i,j) is element C(iloc, j loc) of block C(Iblk, Jblk)

const int i loc = get_local_id(0);

const int j loc = get_local_id(1);

// The number of blocks are the same in each dimension

const int Num_BLK = N/blksz;

// Setup the upper-left-corner (base address) for the A and

// B blocks plus the increments to advance base addresses as

// we loop over blocks

int Abase = Iblk*N*blksz;

const int Ainc = blksz;

int Bbase = Jblk*blksz;

const int Binc = blksz*N;

Matrix multiplication: 2D tiles
// C(Iblk,Jblk) = (sum over Kblk) A(Iblk,Kblk)*B(Kblk,Jblk)

for (Kblk= 0; Kblk<Num_BLK; Kblk++)

{

// Load A(Iblk,Kblk) and B(Kblk,Jblk) into local memory.

// Each work-item loadsa single element of the two blocks

// which are shared with the entire work-group.

Awrk[jloc*blksz+iloc] = A[Abase+jloc*N+iloc];

Bwrk[jloc*blksz+iloc] = B[Bbase+jloc*N+iloc];

barrier(CLK_LOCAL_MEM_FENCE);

// Compute dot productsover local blocksto find

// the contribution to C(i,j) from thisblock

#pragma unroll

for (kloc=0; kloc<blksz; kloc++)

Ctmp += Awrk[j loc*blksz+kloc] * Bwrk[kloc*blksz+iloc];

barrier(CLK_LOCAL_MEM_FENCE);

Abase += Ainc;

Bbase += Binc;

}

// update global C matrix

C[j*N+i] = Ctmp;

}

“Warp Size”

Copy tiles to local

memory

Do the

multiplication over

the tiles
Update global

matrix

Matrix multiplication performance

(Galileo compute node, N=2048)

• Matrices are stored in global memory. 2D NDRange.
Shared memory tiles

Case MFLOPS

CPU GPU

Sequential C (not OpenCL) 725 N/A

C(i,j) per work-item, all global. 2D

NDRange. Shared memory tiles
N/A 227680

GPU Device is Kepler® K80 GPU from NVIDIA® with a max of 13 compute units,

2496 PEs

CPU Device is Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz

Exciting results

Matrix multiplication performance

(MontBlanc proto compute node, N=2048)

• Matrices are stored in global memory. 2D NDRange.
Shared memory tiles

Case MFLOPS

CPU GPU

Sequential C (not OpenCL) 37.9 N/A

C(i,j) per work-item, all global 2D

NDRange. Shared memory tiles N/A 980

GPU Device is Mali® T604 GPU with a max of 4 compute units

CPU Device is ARM(R) A15 @ 1.7GHz

Blksize setted to 8. What happens?

Not so good result

Local Memory

• Local Memory doesn’t always help…

– CPUs (Mali GPUs….) don’t have special hardware for it

– For example, Mali use global memory instead of local

– This can mean excessive use of Local Memory might slow down kernels

– So, your mileage may vary!

Vector operations

• Modern microprocessors include vector units:

Functional units that carry out operations on blocks of numbers

• For example, x86 CPUs have over the years introduced MMX, SSE, and AVX

instruction sets …

characterized in part by their widths (e.g. SSE operates on 128 bits at a time,

AVX 256 bits etc)

• To gain full performance from these processors it is important to exploit these
vector units

• Compilers can sometimes automatically exploit vector units.

Experience over the years has shown, however, that you all too often have to
code vector operations by hand.

• Example using 128 bit wide SSE:

#include "xmmintrin.h " // vector intrinsicsfrom gcc for SSE (128 bit wide)

__m128 ramp = _mm_setr_ps(0.5, 1.5, 2.5, 3.5); // pack 4 floats into vector register

__m128 vstep= _mm_load1_ps(&step); // pack step into a vector register

__m128 xvec; = _mm_mul_ps(ramp,vstep); // multiple corresponding 32 bit

// floats and assign to xvec

OpenCL Vector Types

• The OpenCL C kernel programming language provides a set of vector

instructions:

– These are portable between different vector instruction sets

• These instructions support vector lengths of 2, 4, 8, and 16 … for example:

– char2, ushort4, int8, float16, double2, …

• Properties of these types include:

– Endian safe

– Aligned at vector length

– Vector operations (elementwise) and built-in functions

Remember, double (and hence vectors of

double) are optional in OpenCL v1.1

Vector Operations

• Vector literal

• Vector components

• Vector ops

int4 vi0 = (int4) -7;

int4 vi1 = (int4) (0, 1, 2, 3);

vi0.lo = vi1.hi;

int8 v8 = (int8) (vi0, vi1.s01, vi1.odd);

vi0 += vi1;

vi0 = abs(vi0);

-7 -7 -7 -7

0 1 2 3

2 3 -7 -7

2 3 -7 -7 0 1 1 3

2 3 -7 -7

0 1 2 3

2 4 -5 -4

+

2 4 5 4

Making matrix multiplication vectorized

• Our goal has been to describe how to work with vectorization

– The vectorised matrix multiplication sketch

• Matrix A consists of N,
N

4
submatrix of 1× 4 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠

• Matrix B consists of
N

4
,
N

4
submatrix of of 4× 4 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠

• Matrix C consists of N,
N

4
submatrix of of 1× 4 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠

Changes to host program:

1. 2D decomposition

2. Set:

1. const int NV4=N>>2

2. const size_t global[2] = {NV4, N};

Before clEnqueueNDRangeKernel call

__kernel void mmul(
const int N,
__global float4* A,
__global float4* B,
__global float4* C)

{
uint j = get_global_id (0);
uint i = get_global_id (1);
uint nv4 = N >> 2;
if ((i < N) && (j < nv4))

{
float4 accum = (float4) 0.0;
for (uint k = 0; k < nv4 ; ++k)

{
float4 a = A[i*nv4 + k];
float4 b0 = B[(4*k +0)* nv4 + j];
float4 b1 = B[(4*k +1)* nv4 + j];
float4 b2 = B[(4*k +2)* nv4 + j];
float4 b3 = B[(4*k +3)* nv4 + j];
accum +=

a.s0*b0+a.s1*b1+a.s2*b2+a.s3*b3;
}
C[i*nv4 + j] = accum;

}
}

Matrix multiplication: 2D vector

“Packed-4” input and output arrays

“Packed-4” consecutive elements of A starting at address

i*nv4+k

“Packed-4x4” consecutive elements of B starting at

addresses (4*k+0/1/2/3)*nv4+j

“Vector” operations

__kernel void mmul(

const int N,
__global float* A,

__global float* B,
__global float* C)

{
uint j = get_global_id (0);

uint i = get_global_id (1);
uint nv4 = N >> 2;

if ((i < N) && (j < nv4))
{

{
float4 accum = (float4) 0.0;

for (uint k = 0; k < nv4 ; ++k)
{

float4 a = vload4(0,&A[i*nv4 + k]);
float4 b0 = vload4(0,&B[(4*k +0)* nv4 + j]);

float4 b1 = vload4(0,&B[(4*k +1)* nv4 + j]);
float4 b2 = vload4(0,&B[(4*k +2)* nv4 + j]);

float4 b3 = vload4(0,&B[(4*k +3)* nv4 + j]);
accum +=

a.s0*b0+a.s1*b1+a.s2*b2+a.s3*b3;

}
vstore4(accum,i*nv4 + j,C);

}
}

Matrix multiplication: 2D vector with

vload4/vstore4 intrinsic

Input and output arrays

“Packed-4” consecutive elements of A starting at address

i*nv4+k

“Packed-4x4” consecutive elements of B starting at

addresses (4*k+0/1/2/3)*nv4+j

“Vector” operations

Matrix multiplication performance

(Galileo compute node, N=2048)

• Matrices are stored in global memory. 2D NDRange
Vectorised.

Case MFLOPS

CPU GPU

Sequential C (not OpenCL) 725 N/A

C(i,j) per work-item, all global. 2D

NDRange. Vectorised
N/A 97910

GPU Device is Kepler® K80 GPU from NVIDIA® with a max of 13 compute units,

2496 PEs

CPU Device is Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz

Good result

Matrix multiplication performance

(MontBlanc proto compute node, N=2048)

• Matrices are stored in global memory. 2D NDRange.
Vectorised

Case MFLOPS

CPU GPU

Sequential C (not OpenCL) 37.9 N/A

C(i,j) per work-item, all global 2D

NDRange. Vectorised N/A 3136

GPU Device is Mali® T604 GPU with a max of 4 compute units

CPU Device is ARM(R) A15 @ 1.7GHz

Best result

What happens? Vectorisation is the key of success

for the Mali GPU

Credits

Among the others:

• Simon McIntosh Smith

• MontBlanc/MontBlanc2 project (EU FP7)

