
0

 Programming Paradigms
for GPU devices

1-3 March 2017

CINECA (Roma)

Rights & Credits

1

These slides are CINECA 2014 and are released under
the Attribution-NonCommercial-NoDerivs (CC BY-NC-
ND) Creative Commons license, version 3.0.

Uses not allowed by the above license need explicit,
written permission from the copyright owner. For
more information see:

http://creativecommons.org/licenses/by-nc-nd/3.0/

Slides and examples were authored by:

Isabella Baccarelli, Luca Ferraro, Sergio Orlandini

http://creativecommons.org/licenses/by-nc-nd/3.0/

What is a GPU

2

 Graphics Processing Unit

a device equipped with an
highly parallel microprocessor
(many-core) and a private
memory with very high
bandwidth

 born in response to the
growing demand for high
definition 3D rendering
graphic applications

CPU vs GPU Architectures

3

 GPU hardware is specialized for problems which can be
classified as intense data-parallel computations
• the same set of operations are executed on different data
• designed such that more transistors are devoted to data

processing rather than data caching and flow control

Cache

ALU

Control

ALU

ALU

ALU

DRAM

CPU

DRAM

GPU

GPU Architecture Scheme

4

A tipical GPU architecture
consists of

 main global memory
• high bandwidth

 Streaming Processor
• grouping independent

cores and control units

 each SM unit has
• many ALU cores
• instruction scheduler

dispatchers
• a shared memory with

very fast access to data

shared memory

G
P

U

M

A
IN

M

E
M

O
R

Y

The concurrency revolution

5

 CPU vendors tended to increase the computational power of single processing unit by
increasing the working frequency and adding more higher level control logic and pipelines

 GPU increased the number of processing units, less logic, lowering frequency and dropping
down power consumption

GPGPU (General Purpose GPU) and GPU computing

6

 many applications that process large data sets can use a
data-parallel programming model to speed up the
computations

 many algorithms outside the field of image rendering are
accelerated by data-parallel processing

 ... so why not using GPU power for applications out of the
graphic domain?

 many attemps where made by brave programmers and
researchers in order to force GPU APIs to treat their scientific
data (atoms, signals, events, etc) as pixel or vertex to be
crunched by GPUs

 not many survived, yet the era of GPGPU computing was just
begun ...

GPGPU Programming Tools

7

 nVIDIA CUDA (Compute Unified Device Architecture)
• a set of extensions to higher level programming language to use GPU

as a coprocessor for heavy parallel task
• a developer toolkit to compile, debug, profile programs and run them

easily in a heterogeneous systems

 OpenCL (Open Computing Language):
• a standard open-source programming model developed by major

brands of hardware manufacters (Apple, Intel, AMD/ATI, nVIDIA).
 like CUDA, provides extentions to C/C++ and a developer toolkit
 extensions for specific hardware (GPUs, FPGAs, MICs, etc)
 it’s very low level (verbose) programming

 Accelerator Directives Approach
• OpenACC
• OpenMP v4.x accelerator directives
• you hope your compiler understand what you want, and do a good job

 Library Based:
• MAGMA, CUDA Libraries, StarPu, ArrayFire, etc

GPGPU Programming Model

8

 GPU is seen as an auxilirary coprocessor equiped with
• thousands of cores
• global memory with high bandwidth

 computational-intensive data-parallel regions of a program can
be exectued on the GPU device
• thousands of threads will be executed on the GPU
• each thread will insist on a different GPU core
• each thread can acts on a different data element independently
• the GPU parallelism is very close to the SPMD paradigm

 the more the working thread, the better are the performances
• GPU threads are very light

 no penalty is paid in case of context-switch (each thread has its own registers)
 the more the threads, the more the chance to hide memory or computational

latencies

CUDA Execution Model

9

 serial parts of a program, or those with low level of parallelism, keep running on
the CPU (host)

 data parallel and computational intensive parts are executed on the GPU (device)

 required data is moved on GPU memory and back to HOST memory

Codice (CPU)

Codice (CPU)

Kernel CUDA (GPU)

. . .

. . .

Kernel CUDA (GPU)

GPU Thread Hierarchy

10

 In order to compute N elements
on the GPU in parallel, at least N
concurrent threads must be
created on the device

 GPU threads are grouped togheter
in teams or blocks of threads

 Threads belonging to the same
block or team can cooperate
togheter exchanging data through
a shared memory cache area

Grid

Block
(0,1)

Block
(1,1)

Block
(2,1)

Block
(0,0)

Block
(1,0)

Block
(2,0)

Thread
(0,0)

Thread
(1,0)

Thread
(2,0)

Thread
(3,0)

Thread
(4,0)

Thread
(0,1)

Thread
(1,1)

Thread
(2,1)

Thread
(3,1)

Thread
(4,1)

Thread
(0,2)

Thread
(1,2)

Thread
(2,2)

Thread
(3,2)

Thread
(4,2)

Thread
(0,3)

Thread
(1,3)

Thread
(2,3)

Thread
(3,3)

Thread
(4,3)

more on the GPU Execution Model

11

when a GPU kernel is invoked:

 each thread block is assigned to a SM in a round-
robin mode

• a maximum number of blocks can be assigned to each SM,
depending on hardware generation and on how many
resorces each block needs to be executed (registers, shared
memory, etc)

• the runtime system maintains a list of blocks that need to
execute and assigns new blocks to SMs as they complete the
execution of blocks previously assigned to them

• once a block is assigned to a SM, it remains on that SM until
the work for all threads in the block is completed

• each block execution is independent from the other
(no synchronization is possible among them)

 thread of each block are partitioned into warps of
32 threads each, so to map each thread with a
unique consecutive thread index in the block,
starting from index 0.

 the scheduler select for execution a warp from one
of the residing blocks in each SM.

 A warp execute one common instruction at a time
• each GPU core take care of one thread in the warp
• fully efficiency when all threads agree on their execution path

Software Hardware

Thread

GPU

core

Thread Block
Streaming

Multiprocessor

...

Grid GPU

Trasparent Scalability

12

 the GPU runtime system can execute blocks in any
order relative to each other

 This flexibility enables to execute the same application
code on hardware with different numbers of SM

Device

SM1

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Kernel grid

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Device

SM1 SM2 SM3 SM4

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7time

SM2

Data movement

13

 data must be moved from HOST to DEVICE memory in order
to be processed by a CUDA kernel

 when data is processed, and no more needed on the GPU,
it is transferred back to HOST

HOST RAM

CUDA

KERNEL

. . .

GPU RAM

Connection Scheme of host/device

14

D2H and H2D Data Transfers

 GPU devices are connected to the host with a PCIe bus

• PCIe bus is characterized by very low latency, but also by a
low bandwidth with respect to other bus

 data transfer can easily become a bottleneck in heterogeneous
environment equipped with accelerators

• strive to minimize transfers or execute them in overlap with
computations (advanced technique, more on this later)

Technology Peak Bandwidth

PCIex GEN2 (16x, full duplex) 8 GB/s (peak)

PCIex GEN3 (16x, full duplex) 16 GB/s (peak)

DDR3 (full duplex) 26 GB/s (single channel)

15

17

 nVIDIA GPU HPC Architectures

• FERMI, KEPLER and PASCAL generation

• computing capability

• more on GPU Execution Model

NVIDIA Architectures naming

18

 Mainstream & laptops: GeForce

• Target: videogames and multi-media

 Workstation: Quadro

• Target: professional graphic applications such as CAD,
modeling 3D, animation and visual effects

 GPGPU: Tesla

• Target: High Performance Computing

NVIDIA Fermi Architecture (2009)

19

 16 Streaming Multiprocessors (SM)

 4-6 GB global memory with ECC

 first model with a cache hierarchy:

• L1 (16-48KB) per SM

• L2 (768KB) shared among all SM

 2 independent controllers for data
transfer from/to host through PCI-
Express

 Global thread scheduler
(GigaThread global scheduler) which
manage and distribute thread blocks
to be processed on SM resources

Fermi Streaming Multiprocessor (SM)

20

Streaming Multiprocessor
sports:

 32/48 CUDA cores with an
arithmetic logic unit (ALU) and a
floating point unit (FPU) fully
pipelined

 floating point operations are fully
IEEE 754-2008 a 32-bit e a 64-bit
• fused multiply-add (FMA) for both

single and double precision

 32768 registers (32-bit)

 64KB configurable L1
shared-memory/cache
• 48-16KB or 16-48KB shared/L1 cache

 16 load/store units

 4 Special Function Unit (SFU) to
handle trascendental mathematical
functions (sin, sqrt, recp-sqrt,..)

NVIDIA Kepler Architecture (2012)

21

 x3 performance/watt
with respect to FERMI
• 28nm litography

 192 CUDA cores

 4 warp scheduler (2 dispatcher)
• 2 independent instruction/warp

 standard IEEE 754-2008

 65536 registers per SM (32-bit)

 32 load/store units

 32 Special Function Unit

 1534KB L2 cache (x2 vs Fermi)

 64KB shared-memory/cache
+ 48KB read-only L1 cache

 16 texture units (x4 vs Fermi)

NVIDIA Pascal Architecture (2016)

22

 SM composed of two
independent blocks

 each block sports:

• 1 warps x 2 dispatchers

• 32 ALU SIMD units

• 16FP64 units

• 8 Load/Store units

• 8 SFU units

• 32768 32bits registers

 each block accesses:

• 64KB shared memory

• L1 64KB cache

• 4 texture units

NVIDIA Pascal Architecture (2016)

23

 6 Compute Graphic
Clusters (CGC) with 10
SM each

 16nm litography
• 2X Watt/Flop respect

Kepler architecture

 4MB L2 cache

 High Bandwidth Memory

• 16GB RAM

• 760 GB/s bandwidth

 NVLink tecnology

• 80GB/s bandwidth to host
data transfers

• 5X respect PCIe Gen3 16x

Peak Performance: 5,7 TFlops

Compute Capability

24

 the compute capability of a device describes its architecture

• registers, memory sizes, features and capabilities

 the compute capability is identified by a code like “compute_Xy”
 major number (X): identifies base line chipset architecture
 minor number (y): indentifies variants and releases of the base line chipset

 a compute capability select the set of usable PTX instructions

compute capability feature support

compute_20 FERMI architecture

compute_30 KEPLER K10 architecture (only single precision)

compute_35 KEPLER K20, K20X, K40 architectures

compute_37 KEPLER K80 architecture (two K40 on a single board)

compute_53 MAXWELL GM200 architecture (only single precision)

compute_60 PASCAL GP100 architecture

Capability: resources constraints

Warps

26

 The GPU multiprocessor creates, manages, schedules, and executes threads in
groups of 32 parallel threads called warps.

 Individual threads composing a warp start together at the same program address,
but they have their own instruction address counter and register state and are
therefore free to branch and execute independently

 each warp can execute
instructions on

 SM cores

 load/store units

 SFUs units

Hiding Latencies

27

 What is latency?

• the number of clock cycles needed to complete an istruction
• ... that is, the number of cycles I need to wait for before another dependent

operation can start
 arithmetic latency (~ 18-24 cycles)
 memory access latency (~ 400-800 cycles)

 We cannot discard latencies (it’s an hardware design effect), but we can
lesser their effect and hide them.

• saturating computational pipelines in computational bound problems
• saturating bandwidth in memory bound problems

 We can organize our code so to provide the scheduler a sufficient number
of independent operations, so that the more the warp are available, the
more context-switch can hide latencies and proceed with other useful
operations

 There are two possible ways and paradigms to use (can be combined too!)

• Thread-Level Parallelism (TLP)
• Instruction-Level Parallelism (ILP)

Thread-Level Parallelism (TLP)

28

 Strive for high SM occupancy: that is try to provide as much
threads per SM as possible, so to easy the scheduler find a
warp ready to execute, while the others are still busy

 This kind of approach is effective when there is a low level of
independet operations per CUDA kernels

Instruction-Level Parallelism (ILP)

29

 Strive for multiple independent operations inside you CUDA
kernel: that is, let your kernel act on more than one data

 this will grant the scheduler to stay on the same warp and
fully load each hardware pipeline

 note: the scheduler will
not select a new warp
untill there are eligible
instructions ready to
execute on the current
warp

Coalesced Access to GPU Memory

 All load/store requests in global memory are issued per warp (as
all other instructions)

1. each thread in a warp compute the address to access
2. load/store units select segments where data resides
3. load/store start transfer of needed segments

 It is very important to align data in memory so to have aligned
accesses (coalesced) during load/store operation in global
memory, reducing the number of segments moved across the bus

Stided based copy

Stride Bandwidth GB/s

1 106.6

2 34.8

8 7.9

16 4.9

32 2.7

Offset based copy

Offset Bandwidth GB/s

0 106.6

1 72.2

8 78.2

16 83.4

32 105.7

