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What is a GPU
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 Graphics  Processing   Unit

a device equipped with an 
highly parallel microprocessor 
(many-core) and a private 
memory with very high 
bandwidth

 born in response to the 
growing demand for high 
definition 3D rendering 
graphic applications



CPU vs GPU Architectures
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 GPU hardware is specialized for problems which can be 
classified as intense data-parallel computations
• the same set of operations are executed on different data
• designed such that more transistors are devoted to data 

processing rather than data caching and flow control
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GPU Architecture Scheme
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A tipical GPU architecture
consists of

 main global memory 
• high bandwidth

 Streaming Processor
• grouping independent 

cores and control units

 each SM unit has
• many ALU cores
• instruction scheduler 

dispatchers
• a shared memory with 

very fast access to data

shared memory
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The concurrency revolution
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 CPU vendors tended to increase the computational power of single processing unit by 
increasing the working frequency and adding more higher level control logic and pipelines

 GPU increased the number of processing units, less logic, lowering frequency and dropping 
down power consumption



GPGPU (General Purpose GPU) and GPU computing
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 many applications that process large data sets can use a 
data-parallel programming model to speed up the 
computations

 many algorithms outside the field of image rendering are 
accelerated by data-parallel processing 

 ... so why not using GPU power for applications out of the 
graphic domain?

 many attemps where made by brave programmers and 
researchers in order to force GPU APIs to treat their scientific 
data (atoms, signals, events, etc) as pixel or vertex to be 
crunched by GPUs

 not many survived, yet the era of GPGPU computing was just 
begun ...



GPGPU Programming Tools
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 nVIDIA CUDA (Compute Unified Device Architecture)
• a set of extensions to higher level programming language to use GPU 

as a coprocessor for heavy parallel task
• a developer toolkit to compile, debug, profile programs and run them 

easily in a heterogeneous systems

 OpenCL (Open Computing Language): 
• a standard open-source programming model developed by major 

brands of hardware manufacters (Apple, Intel, AMD/ATI, nVIDIA). 
 like CUDA, provides extentions to C/C++ and a developer toolkit
 extensions for specific hardware (GPUs, FPGAs, MICs, etc)
 it’s very low level (verbose) programming

 Accelerator Directives Approach
• OpenACC
• OpenMP v4.x  accelerator directives
• you hope your compiler understand what you want, and do a good job

 Library Based: 
• MAGMA, CUDA Libraries, StarPu, ArrayFire, etc



GPGPU Programming Model
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 GPU is seen as an auxilirary coprocessor equiped with
• thousands of cores
• global memory with high bandwidth

 computational-intensive data-parallel regions of a program can 
be exectued on the GPU device
• thousands of threads will be executed on the GPU
• each thread will insist on a different GPU core
• each thread can acts on a different data element independently
• the GPU parallelism is very close to the SPMD paradigm

 the more the working thread, the better are the performances
• GPU threads are very light

 no penalty is paid in case of context-switch (each thread has its own registers)
 the more the threads, the more the chance to hide memory or computational 

latencies



CUDA Execution Model
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 serial parts of a program, or those with low level of parallelism, keep running on 
the CPU (host)

 data parallel and computational intensive parts are executed on the GPU (device)

 required data is moved on GPU memory and back to HOST memory

Codice (CPU)

Codice (CPU)

Kernel CUDA (GPU)

. . .

. . .

Kernel CUDA (GPU)



GPU Thread Hierarchy
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 In order to compute N elements 
on the GPU in parallel, at least N 
concurrent threads must be 
created on the device

 GPU threads are grouped togheter 
in teams or blocks of threads

 Threads belonging to the same 
block or team can cooperate 
togheter exchanging data through
a shared memory cache area 
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more on the GPU Execution Model
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when a GPU kernel is invoked:

 each thread block is assigned to a SM in a round-
robin mode

• a maximum number of blocks can be assigned to each SM, 
depending on hardware generation and on how many 
resorces each block needs to be executed (registers, shared 
memory, etc)

• the runtime system maintains a list of blocks that need to 
execute and assigns new blocks to SMs as they complete the 
execution of blocks previously assigned to them

• once a block is assigned to a SM, it remains on that SM until 
the work for all threads in the block is completed

• each block execution is independent from the other
(no synchronization is possible among them)

 thread of each block are partitioned into warps of 
32 threads each, so to map each thread with a 
unique consecutive thread index in the block, 
starting from index 0.

 the scheduler select for execution a warp from one 
of the residing blocks in each SM.

 A warp execute one common instruction at a time
• each GPU core take care of one thread in the warp
• fully efficiency when all threads agree on their execution path
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Trasparent Scalability

12

 the GPU runtime system can execute blocks in any 
order relative to each other

 This flexibility enables to execute the same application 
code on hardware with different numbers of SM
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Data movement 
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 data must be moved from HOST to DEVICE memory in order 
to be processed by a CUDA kernel

 when data is processed, and no more needed on the GPU, 
it is transferred back to HOST

HOST RAM

CUDA 

KERNEL

. . .

GPU RAM



Connection Scheme of host/device
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D2H and H2D Data Transfers

 GPU devices are connected to the host with a PCIe bus

• PCIe bus is characterized by very low latency, but also by a 
low bandwidth with respect to other bus

 data transfer can easily become a bottleneck in heterogeneous 
environment equipped with accelerators

• strive to minimize transfers or execute them in overlap with 
computations (advanced technique, more on this later)

Technology Peak Bandwidth

PCIex GEN2 (16x, full duplex) 8 GB/s (peak)

PCIex GEN3 (16x, full duplex) 16 GB/s (peak)

DDR3 (full duplex) 26 GB/s (single channel)
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 nVIDIA GPU HPC Architectures

• FERMI, KEPLER and PASCAL generation

• computing capability

• more on GPU Execution Model



NVIDIA Architectures naming
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 Mainstream & laptops: GeForce

• Target: videogames and multi-media

 Workstation: Quadro

• Target: professional graphic applications such as CAD, 
modeling 3D, animation and visual effects

 GPGPU: Tesla

• Target: High Performance Computing



NVIDIA Fermi Architecture (2009)
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 16 Streaming Multiprocessors (SM)

 4-6 GB global memory with ECC

 first model with a cache hierarchy:

• L1 (16-48KB) per SM

• L2 (768KB) shared among all SM

 2 independent controllers for data 
transfer from/to host through PCI-
Express

 Global thread scheduler 
(GigaThread global scheduler) which 
manage and distribute thread blocks 
to be processed on SM resources



Fermi Streaming Multiprocessor (SM)
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Streaming Multiprocessor 
sports:

 32/48 CUDA cores with an 
arithmetic logic unit (ALU) and a 
floating point unit (FPU) fully 
pipelined

 floating point operations are fully  
IEEE 754-2008 a 32-bit e a 64-bit
• fused multiply-add (FMA) for both 

single and double precision

 32768 registers (32-bit)

 64KB configurable L1
shared-memory/cache 
• 48-16KB or 16-48KB shared/L1 cache

 16 load/store units

 4 Special Function Unit (SFU) to 
handle trascendental mathematical 
functions (sin, sqrt, recp-sqrt,..)



NVIDIA Kepler Architecture (2012)
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 x3 performance/watt
with respect to FERMI 
• 28nm litography

 192 CUDA cores

 4 warp scheduler (2 dispatcher)
• 2 independent instruction/warp

 standard IEEE 754-2008 

 65536 registers per SM (32-bit)

 32 load/store units

 32 Special Function Unit

 1534KB L2 cache (x2 vs Fermi)

 64KB shared-memory/cache 
+ 48KB read-only L1 cache

 16 texture units (x4 vs Fermi)



NVIDIA Pascal Architecture (2016)
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 SM composed of two 
independent blocks

 each block sports:

• 1 warps x 2 dispatchers

• 32 ALU SIMD units

• 16FP64 units

• 8 Load/Store units

• 8 SFU units

• 32768 32bits registers

 each block accesses:

• 64KB shared memory

• L1 64KB cache

• 4 texture units



NVIDIA Pascal Architecture (2016)
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 6 Compute Graphic 
Clusters (CGC) with 10 
SM each

 16nm litography
• 2X Watt/Flop respect 

Kepler architecture

 4MB L2 cache

 High Bandwidth Memory

• 16GB RAM

• 760 GB/s bandwidth

 NVLink tecnology

• 80GB/s bandwidth to host 
data transfers

• 5X respect PCIe Gen3 16x

Peak Performance: 5,7 TFlops



Compute Capability
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 the compute capability of a device describes its architecture

• registers, memory sizes, features and capabilities

 the compute capability is identified by a code like “compute_Xy”
 major number (X): identifies base line chipset architecture
 minor number (y): indentifies variants and releases of the base line chipset

 a compute capability select the set of usable PTX instructions

compute capability feature support

compute_20 FERMI architecture 

compute_30 KEPLER K10 architecture (only single precision)

compute_35 KEPLER K20, K20X, K40 architectures 

compute_37 KEPLER  K80 architecture  (two K40 on a single board)

compute_53 MAXWELL GM200 architecture (only single precision)

compute_60 PASCAL  GP100 architecture



Capability: resources constraints



Warps
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 The GPU multiprocessor creates, manages, schedules, and executes threads in 
groups of 32 parallel threads called warps. 

 Individual threads composing a warp start together at the same program address, 
but they have their own instruction address counter and register state and are 
therefore free to branch and execute independently

 each warp can execute 
instructions on 

 SM cores

 load/store units

 SFUs units



Hiding Latencies
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 What is latency?

• the number of clock cycles needed to complete an istruction
• ... that is, the number of cycles I need to wait for before another dependent 

operation can start
 arithmetic latency (~ 18-24 cycles)
 memory access latency (~ 400-800 cycles)

 We cannot discard latencies (it’s an hardware design effect), but we can 
lesser their effect and hide them.

• saturating computational pipelines in computational bound problems
• saturating bandwidth in memory bound problems

 We can organize our code so to provide the scheduler a sufficient number 
of independent operations, so that the more the warp are available, the 
more context-switch can hide latencies and proceed with other useful 
operations

 There are two possible ways and paradigms to use (can be combined too!)

• Thread-Level Parallelism (TLP)
• Instruction-Level Parallelism (ILP)



Thread-Level Parallelism (TLP)
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 Strive for high SM occupancy: that is try to provide as much 
threads per SM as possible, so to easy the scheduler find a 
warp ready to execute, while the others are still busy

 This kind of approach is effective when there is a low level of 
independet operations per CUDA kernels



Instruction-Level Parallelism (ILP)
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 Strive for multiple independent operations inside you CUDA 
kernel: that is, let your kernel act on more than one data

 this will grant the scheduler to stay on the same warp and 
fully load each hardware pipeline

 note: the scheduler will 
not select a new warp 
untill there are eligible 
instructions ready to 
execute on the current 
warp



Coalesced Access to GPU Memory

 All load/store requests in global memory are issued per warp (as 
all other instructions)

1. each thread in a warp compute the address to access
2. load/store units select segments where data resides
3. load/store start transfer of needed segments

 It is very important to align data in memory so to have aligned 
accesses (coalesced) during load/store operation in global 
memory, reducing the number of segments moved across the bus

Stided based copy

Stride Bandwidth GB/s

1 106.6

2 34.8

8 7.9

16 4.9

32 2.7

Offset based copy

Offset Bandwidth GB/s

0 106.6

1 72.2

8 78.2

16 83.4

32 105.7


