
0

Introduction to
Scientific Programming
using GPGPU and CUDA

Day 2

Sergio Orlandini
s.orlandini@cineca.it

Luca Ferraro
l.ferraro@cineca.it

Rights & Credits

1

These slides are CINECA 2014 and are released under
the Attribution-NonCommercial-NoDerivs (CC BY-NC-
ND) Creative Commons license, version 3.0.

Uses not allowed by the above license need explicit,
written permission from the copyright owner. For
more information see:

http://creativecommons.org/licenses/by-nc-nd/3.0/

Slides and examples were authored by:

Isabella Baccarelli, Luca Ferraro, Sergio Orlandini

http://creativecommons.org/licenses/by-nc-nd/3.0/

 Memory Hierarchy on CUDA

• Global Memory
 caches

 type of global memory accesses

• Shared Memory
 Matrix-Matrix Product using

Shared Memory

• Constant Memory

• Texture Memory

• Registers and Local Memory

2

Memory Hierarchy

3

All CUDA threads in a block have access to:

 resources of the SM assigned to its
block:

• registers
• shared memory

NB: thread belonging to different blocks
cannot share these resources

 all memory type available on GPU:

• Global memory
• Costant Memory (read only)
• Texture Memory (read only)

NB: CPU can access and initialize both
constant and texture memory

NB: global, constant and texture memory
have persistent storage duration

(Device) Grid

Constant

Memory

Texture

Memory

Global

Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Global Memory

4

 Global Memory is the larger
memory available on a device

• Comparable to a RAM for CPU

• Its status is maintained among
different kernel launches

• Can be access both read/write
from all threads of the kernel grid

• Unique memory that can be used
in read/write access from the CPU

• Very high bandwidth

Throughput 240-760 GB/s

• Very high latency
about 400-800 clock cycles

(Device) Grid

Constant

Memory

Texture

Memory

Global

Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Declare Variable in Global Memory

5

__device__ type variable_name; // statica

or through dynamic allocation

type *pointer_to_variable; // dinamica

cudaMalloc((void **) &pointer_to_variable, size);

cudaFree(pointer_to_variable);

type, device :: variable_name

or through dynamic allocation

type, device, allocatable :: variable_name

allocate(variable_name, size)

deallocate(variable_name)

Cache Hierarchy for Global Memory Accesses

6

 Starting with the Fermi architecture, a
cache hierarchy has been introduced
in order to easy the need for space
and time data locality

 2 Levels of cache:
• L2 : shared among all SM

 Fermi 768 KB, Kepler 1MB, Pascal 4MB
 25% less latency than Global Memory

NB : all accesses to the global memory
pass through the L2 cache, also for
H2D and D2H memory transfers

• L1 : private to each SM
 [16/48 KB] configurable
 L1 + Shared Memory = 64 KB
 Kepler : configurable also as 32 KB

(Device) Grid

L2 cache (768 KB - 4 MB)

Global

Memory

Block (0, 0)

Shared

Memory

Threads

Registers

Block (1, 0)

Threads

Registers

Host

L1

cache
Shared

Memory

L1

cache

cudaFuncSetCacheConfig(kernel1, cudaFuncCachePreferL1); // 48KB L1 / 16KB ShMem

cudaFuncSetCacheConfig(kernel2, cudaFuncCachePreferShared); // 16KB L1 / 48KB ShMem

Cache Hierarchy for Global Memory Accesses

7

Just one type of store operation:

 when data should be updated in global
memory, its L1 copy is invalidated and
updated the L2 cache value

Two different type of load operations:

 Caching (default mode)

• when data is requested by some thread,
data is first searched in L1 cache,
then in L2 cache, last in global memory

• cache line lenght is 128-byte

 Non-caching (compile time selected)

• the L1 cache is disabled
• when data is requested by some thread,

data is first searched in L2 cache, then in
global memory

• cache line lenght is 32-bytes
• this mode is activated at compile time

using the compiler option:
–Xptxas –dlcm=cg

(Device) Grid

L2 cache (768 KB - 4 MB)

Global

Memory

Block (0, 0)

Shared

Memory

Threads

Registers

Block (1, 0)

Threads

Registers

Host

L1

cache
Shared

Memory

L1

cache

Global Memory Load/Store

8

// offset data copy

__global__ void offsetCopy(float *odata, float* idata, int offset) {

int xid = blockIdx.x * blockDim.x + threadIdx.x + offset;

odata[xid] = idata[xid];

}

// strided data copy

__global__ void strideCopy (float *odata, float* idata, int stride) {

int xid = (blockIdx.x*blockDim.x + threadIdx.x) * stride;

odata[xid] = idata[xid];

}

Stided based copy

Stride Bandwidth GB/s

1 106.6

2 34.8

8 7.9

16 4.9

32 2.7

Offset based copy

Offset Bandwidth GB/s

0 106.6

1 72.2

8 78.2

16 83.4

32 105.7

Measured on a M2070; Total elements = 16776960; Used Blocks = 65535; Block lenght = 256

s,

Load Operations from Global Memory

 All load/store requests in global memory are issued
per warp (as all other instructions)

1. each thread in a warp compute the address to access

2. load/store units select segments where data resides

3. load/store start transfer of needed segments

Warp requires 32 consecutive 4-byte word aligned to segment (total 128 bytes)

Caching Load Non-caching Load

all addresses belong to 1 line cache segment all addresses belong to 4 line cache segments

128 bytes are moved over the bus 128 bytes are moved over the bus

bus utilization: 100% bus utilization: 100%

Load Operations from Global Memory

Warp requires 32 consecutive 4-bytes words not alined to segment (total 128 bytes)

Caching Load Non-caching Load

addresses belong to 2 line cache segments addresses belong to 5 line cache segments

256 bytes are moved over the bus 160 are moved over the bus

bus utilization: 50% bus utilization: 80%

Warp requests 32 permuted 4-byte words alined to segment (total 128 bytes)

Caching Load Non-caching Load

addresses belong to 1 line cache segments addresses belong to 4 line cache segments

128 bytes are moved over the bus 128 bytes are moved over the bus

bus utilization: 100% bus utilization: 100%

Load Operations from Global Memory

Warp request 32 not contiguous 4-bytes words (total 128 bytes)

Caching Load Non-caching Load

addresses belong to N different line cache addresses belong to N different line cache

N*128 bytes are moved over the bus N*32 bytes are moved over the bus

bus utilization: 128 / (N*128) bus utilization: 128 / (N*32)

All threads in a warp request the same 4-byte word (total 4 bytes)

Caching Load Non-caching Load

address belongs to only one cache line segment address belongs to only one cache line segment

128 bytes are moved over the bus 32 bytes are moved over the bus

bus utilization: 3.125% bus utilization: 12.5%

Data alignment in Global Memory

12

// host code

int width = 64, heigth = 64; int pitch; float *devPtr;

cudaMallocPitch(&devPtr, &pitch, width * sizeof(float), height);

// device code

__global__ myKernel(float *devPtr, int pitch, int width, int height)

{

for (int r = 0; r < height; r++) {

float *row = devPtr + r * pitch;

for (int c = 0; c < width; c++)

float element = row[c];

}

...

}

 It is very important to align data in memory so to have aligned accesses
(coalesced) during load/store operation in global memory, reducing the number
of segments moved across the bus

• cudaMalloc() grants the alignment of first element in global memory,
useful for one dimensional arrays

• cudaMallocPitch() must be used to allocate 2d buffers
 elements are padded so each row is aligned for coalescing accesses
 returns an integer (pitch) which can be used as a stride to access row elements

Shared Memory

13

 The Shared Memory is a small,
but quite fast memory mounted
on each SM
• read/write access for threads of

blocks residing on the same SM
• a cache memory under the direct

control of the programmer
• its status is not mantained among

different kernel calls

 Specifications:
• Very low latency: 2 clock cycles
• Throughput: 32 bit every 2 cycles
• Dimension : 48 KB [default]

(Configurable : 16/48 KB)
Kepler : also 32 KB

(Device) Grid

Constant

Memory

Texture

Memory

Global

Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

 variables allocated in shared memory has storage
duration of the kernel launch (not persistent!)

 only accessible by threads of the same block

! statically inside the kernel

attribute(global)

subroutine myKernel(...)

...

type, shared:: variable_name

...

end subroutine

oppure

! dynamically sized

type, shared:: dynshmem(*)

attribute(global)

subroutine myKernel(...)

...

dynshmem(i) = ...

...

end subroutine

Shared Memory Allocation

14

// statically inside the kernel

__global__ myKernelOnGPU (...) {

...

__shared__ type shmem[MEMSZ];

...

}

or using dynamic allocation

// dynamically sized

extern __shared__ type *dynshmem;

__global__ myKernelOnGPU (...) {

...

dynshmem[i] = ... ;

...

}

void myHostFunction() {

...

myKernelOnGPU<<<gs,bs,MEMSZ>>>();

}

Thread Block Synchronization

15

 All threads in the same block can be synchronized using
the CUDA runtime API call:

__syncthreads() | call syncthreads()

which blocks execution until all other threads reach the
same call location

 can be used in conditional too, but only if all thread in the
block reach the same synchronization call

“... otherwise the code execution is likely to hang or produce
unintended side effects”

Using Shared Memory for Thread Cooperation

16

 Threads belonging to the same block can
cooperate togheter using the shared
memory to share data
• if a thread is in need of some data which has

been already retrived by another thread in the
same block, this data can be shared using the
shared memory

 typical Shared Memory usage pattern:

• declare a buffer residing on shared
memory (this buffer is per block)

• load data into shared memory buffer
• synchronize threads so to make sure all

needed data is present in the buffer
• performe operation on data
• synchronize threads so all operations

have been performed
• write back results to global memory

(Device) Grid

Constant

Memory

Texture

Memory

Global

Memory

Block (0, 0)

Shared Memory

Threads

Registers

Block (1, 0)

Shared Memory

Threads

Registers

Shared Memory and Bank Accesses

17

 Shared memory has 32 banks organized such that successive 32-bit
words map to successive banks
• data are distributed every 4-bytes cycling over successive banks
• Shared memory accesses are per warp
• Multicast : if N threads of the same warp request the same element,

access is executed with only one transaction
• Broadcast : if ALL threads of the same warp request the same element,

accesso is executed with only one transaction
• Bank Conflict: if two or more threads requests different data belonging to

the same bank, each access is served separatelly (serialized)

No Bank Conflict 2-way Bank Conflicts 8-way Bank Conflicts

Avoid Bank Conflict

18

 A naive implementation of CUDA kernels using shared memory would use
a tile of size 32x32 floats

• each element resides on a single bank (4-byte)
• data are on the same back every 32 floats
• so read/write by columns will turn into the worst type of bank conflict

 Use a common trick: let’s size the tile using 33 elements

• now all elements belonging to the same column reside on different banks

__shared__ float tile[TILE_DIM][TILE_DIM+1];

Constant Memory

19

 Constant Memory is the ideal place
to store constant data in read-only
access from all threads

• constant memory data actually reside
in the global memory, but fetched
data is moved into a dedicated
constant-cache

• very effective when all thread of a
warp request the same memory
address

• it’s values are initialized from
host code using a special CUDA API

 Specifications:

• Dimension : 64 KB

• Throughput: 32 bits per warp every 2
clock cycles

(Device) Grid

Constant

Memory

Texture

Memory

Global

Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Accessing Constant Memory

20

Suppose a kernel is launched using 320 warps per SM and all threads
requests the same data

 if data is on global memory:
• all warp will request the same segment from global memory
• the first time segment is copied into L2 cache
• if other data pass through L2, there are good chances it will be lost
• there are good chances that data should be requested 320 times

 if data is in constant memory:
• during first warp request, data is copied in constant-cache
• since there is less traffic in constant-cache , there are good chances all other

warp will find the data already in cache, so no more traffic on the BUS

 data will reside in the constant memory address space

 has static storage duration (persists until the application ends)

 readable from all threads of a running kernel

Constant Memory Allocation

21

__constant__ type variable_name; // static

cudaMemcpyToSymbol(const_mem, &host_src, sizeof(type), cudaMemcpyHostToDevice);

// warning

// cannot be dynamically allocated

type, constant :: variable_name

! warning

! cannot be dynamically allocated

Texture Memory

22

 Texture Memory is afterall a remain
of basic graphic rendering
functionality needs

 as for constant memory, data actually
reside in the global memory, fetched
across dedicated texture-cache

 data is accessed in read-only using
special CUDA API function, called
texture fetch

 Specifications:

• address resolution is more efficient since
it is performed on dedicated hardware

 specialized hardware for:

• out-of-bound address resolution

• floating-point interpolation

• type conversion or bit operations

(Device) Grid

Constant

Memory

Texture

Memory

Global

Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Indirizzamento delle texture

Wrap: out-of-border coordinates are
replaced in the box using modulus
(available only for normalized indexing)

Clamp: out-of-border coordinates are
clamped to nearest box bound

0 1 2 3 4

1

2

3

0
(2.5, 0.5)

(1.0, 1.0)

0 1 2 3 4

1

2

3

0

(5.5, 2)

Texture Memory Addressing Features

 integer 1D: [0,N-1]

 normalized 1D: [0,1-1/N]

 available interpolation:

• floor, linear, bilinear

• weights are 9 bit

0 0.2 0.4 0.6 0.8

0.25

0.5

0.75

0

(1.2, 0.5)

I passi necessari per usare le textureSteps for Accessing Texture Memory

24

• Allocate global memory on the device (standard, pitched or as cudaArray)

cudaMalloc(&d_a, memsize);

• Create a “texture reference” object at file scope (static global variable):

texture<DataType, Type, ReadMode> d_a_texRef;

 DataType cannot be a double

 Type [optional] can be cudaTextureType{1,2}DLayered

 ReadMode [optional]

• Create a “channel descriptor” object to describe the return type of texture memory load:

cudaChannelFormatDesc d_a_desc = cudaCreateChannelDesc<datatype>();

• Bind the texture reference to memory

cudaBindTexture(0, d_a_texRef, d_a, d_a_desc);

• when finished: unbind the texture reference (there is a maximum number of usable textures):

cudaUnbindTexture(d_a_texRef);

• access data from CUDA kernels through “texture reference”:

 tex1Dfetch(d_a_texRef, indirizzo) - for linear memory

 tex1d(), tex2D(), tex3D() - for pitched linear texture and cudaArray:

CPU

GPU

Texture Usage Example (old way)

25

__global__ void shiftCopy(int N, int shift, float *odata, float *idata)

{

int xid = blockIdx.x * blockDim.x + threadIdx.x;

odata[xid] = idata[xid+shift];

}

texture<float, 1> texRef; // TEXTURE creation

__global__ void textureShiftCopy(int N, int shift, float *odata)

{

int xid = blockIdx.x * blockDim.x + threadIdx.x;

odata[xid] = tex1Dfetch(texRef, xid+shift); // TEXTURE FETCHING

}

...

ShiftCopy<<<nBlocks, NUM_THREADS>>>(N, shift, d_out, d_inp);

cudaChannelFormatDesc d_a_desc = cudaCreateChannelDesc<float>();

cudaBindTexture(0, texRef, d_a, d_a_desc); // BIND TEXTURE MEMORY

textureShiftCopy<<<nBlocks, NUM_THREADS>>>(N, shift, d_out);

Texture Memory in Kepler: aka Read-only Cache

26

__global__ void kernel_copy (float *odata, float *idata) {

int index = blockIdx.x * blockDim.x + threadIdx.x;

odata[index] = __ldg(idata[index]);

}

 Starting from Kepler GPU architecture (cc 3.5)
constant memory loads from global memory can pass
through the texture cache:

• without using an explicit texture binding

• without limits on the maximum allowed number of texture

__global__ void kernel_copy (float *odata, const __restrict__

float *idata) {

int index = blockIdx.x * blockDim.x + threadIdx.x;

odata[index] = idata[index];

}

Registers

27

 registers are used to store scalar or small array
variables with frequent access by each thread
• Fermi : 63 registers per thread / 32 KB
• Kepler : 255 registers per thread / 64 KB
• Pascal : same as Kepler

 WARNING:
• the less registers a kernel needs, the more blocks can

be assigned to a SM
• pay attention to Register Pressure: can be a limiting

factor for performances
• the number of register per kernel can be limited

during compile time:
--maxregcount max_registers

• the number of active blocks per kernel can be forced
using the CUDA special qualifier

__launch_bounds__

(Device) Grid

Constant

Memory

Texture

Memory

Global

Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

__global__ void

__launch_bounds__(maxThreadsPerBlock,

minBlocksPerMultiprocessor)

my_kernel(…) { … }

Local Memory

28

 Local Memory does not correspond to a real physical memory place

 Automatic variables are often placed in local memory by the compiler:
• large structures or arrays that would consume too much register space

 If a kernel uses more registers than available (register spilling), the compiler shall move
variables into local memory

 Local memory is often mapped to global memory
• using the same Caching hierachies (L1 for read-only variables)
• facing the same latency and bandwidth limitation of global memory

 In order to obtain information on how much local, constant, shared memory and registers
are required for each kernel, you can provide the following compiler options

--ptxas-options=-v

$ nvcc –arch=sm_20 –ptxas-options=-v my_kernel.cu

...

ptxas info : Used 34 registers, 60+56 bytes lmem, 44+40 bytes

smem, 20 bytes cmem[1], 12 bytes cmem[14]

...

29

 Matrix-Matrix Product
 limits of the global memory implementation

 using shared memory

 implementation guidelines

Matrix-matrix Product using Global Memory

30

 Each thread compute one element of C, using
2N elements (N from A, N from B) and
performing 2N floating-point operations (N
add , N mul)

 Yet every element of C sharing the same row
or colum retrive N times the same elements
from A or B

 This implementation results in 2N3 loads !!!

 We can avoid requesting the same elements
many times, sharing them through the shared
memory

• each thread can retrive just one data element
data in parallel and store it into shared memory

• when all thread have loaded needed data, they
can access all the elements by the threads
belonging to the same block, for example
sharing a full row or column

 Unfortunatly shared memory size is small

• 16/48 KB depending on the compute capability A

B

C

N

N

N

N





N

k

kjikij BAC
1

Matrix-matrix using Shared Memory
 Let’s solve the problem using blocks of (NB,NB) dimension

• each CUDA thread block compute the elements of a single
matrix block of size (NB·NB) of matrix C

• each resulting matrix block of matrix C is obteined as the
product of all sub-matrices of A and B

A

B

C

NB

NB

NB

NB

The kernel is divided in two phases:
1. thread load a block of A and B from global

memory to shared memory
2. thread compute the element of subblock C

reading from shared memory

 Elements of each subblock C are accumulated using
local variables in registers, then stored in global
memory

 Two thread synchronization are required

 after the load of subblock of matrix A and B,
so to grant all data is available for subblock
matrix product

 after the partial subblock matrix product, so
to grant that next load of other subblock will
not overwrite elements not yet used in
current block evaluation









NB

k

kjik

NBN

S

ij BsAsC
1

/

1

Matrix-matrix using Shared Memory: Flow
it = threadIdx.y

jt = threadIdx.x

ib = blockIdx.y

jb = blockIdx.x

Cij=0.

Cycle on block

kb=0, N/NB

As(it,jt) = A(ib*NB + it, kb*NB + jt)

Bs(it,jt) = B(kb*NB + it, jb*NB + jt)

Thread Synchronization

Cij=Cij+As(it,k)·Bs(k,jt)

Thread Synchronization

Cycle on block: k=1,NB

C(i,j)=Cij
A

B

N

N

NB

NB

C

it = threadIdx%x

jt = threadIdx%y

ib = blockIdx%x - 1

jb = blockIdx%y - 1

Matrix-matrix using Shared Memory: Kernel

33

// Matrix multiplication kernel called by MatMul_gpu()

__global__ void MatMul_kernel (float *A, float *B, float *C, int N)

{

// Shared memory used to store Asub and Bsub respectively

__shared__ float Asub[NB][NB];

__shared__ float Bsub[NB][NB];

// Block row and column

int ib = blockIdx.y;

int jb = blockIdx.x;

// Thread row and column within Csub

int it = threadIdx.y;

int jt = threadIdx.x;

int a_offset , b_offset, c_offset;

// Each thread computes one element of Csub

// by accumulating results into Cvalue

float Cvalue = 0;

// Loop over all the sub-matrices of A and B that are

// required to compute Csub

// Multiply each pair of sub-matrices together

// and accumulate the results

for (int kb = 0; kb < (A.width / NB); ++kb) {

// Get the starting address of Asub and Bsub

a_offset = get_offset (ib, kb, N);

b_offset = get_offset (kb, jb, N);

// Load Asub and Bsub from device memory to shared memory

// Each thread loads one element of each sub-matrix

Asub[it][jt] = A[a_offset + it*N + jt];

Bsub[it][jt] = B[b_offset + it*N + jt];

// Synchronize to make sure the sub-matrices are loaded

// before starting the computation

__syncthreads();

// Multiply Asub and Bsub together

for (int k = 0; k < NB; ++k) {

Cvalue += Asub[it][k] * Bsub[k][jt];

}

// Synchronize to make sure that the preceding

// computation is done

__syncthreads();

}

// Get the starting address (c_offset) of Csub

c_offset = get_offset (ib, jb, N);

// Each thread block computes one sub-matrix Csub of C

C[c_offset + it*N + jt] = Cvalue;

}

34

 Matrix Transpose

• evaluating performance

• using shared memory for
coalesed-accesses

• avoiding bank-conflicts

Matrix Transpose

35

 Let's implement matrix transpose with the
following simple design:

• out-of-place buffers

• square matrices with size modulo 32 elements

 This is a memory-bounded kernel

• no computation on elements

• just load and stores

 We will use effective bandwidth (GB/s) as a metric
to measure the performance of such kernels

Simple Copy Kernel

36

__global__ void copy (float *idata, float *odata, int width, int height)

{

int xIndex = blockIdx.x * TILE_DIM + threadIdx.x;

int yIndex = blockIdx.y * TILE_DIM + threadIdx.y;

int index_in = width * yIndex + xIndex;

int index_out = index_in;

odata[index_out] = idata[index_in];

}

 We can use a simple copy kernel as a reference

• TILE_DIM is the size of the square sub-matrix block

• we map CUDA blocks to sub-matrix blocks

matrix sub-block size == CUDA thread block size

Naive Transpose

37

__global__ void transposeNaive(float *idata, float *odata, int width, int height)

{

int xIndex = blockIdx.x * TILE_DIM + threadIdx.x;

int yIndex = blockIdx.y * TILE_DIM + threadIdx.y;

int index_in = width * yIndex + xIndex;

int index_out = height * xIndex + yIndex;

odata[index_out] = idata[index_in];

}

attributes(global) subroutine transposeNaive (idata, odata, width, height)

integer, intent(in), value :: width, height

real, intent(in) :: idata(width,height)

real, intent(out) :: odata(height,width)

i = (blockIdx%x - 1) * TILE_DIM + threadIdx%x

j = (blockIdx%y - 1) * TILE_DIM + threadIdx%y

odata(j,i) = idata(i,j)

end subroutine

Measuring Performance

38

// take measurements for loop over kernel launches

cudaEventRecord(start);

for (int i=0; i < NUM_REPS; i++)

kernel<<<grid, threads>>>(

d_idata, d_odata, width, height);

cudaEventRecord(stop);

cudaEventSyncronize(stop);

float outerTime;

cudaEventElapsedTime(&outerTime, start, stop);

// take measurements for loop inside kernel

cudaEventRecord(start);

kernel<<<grid, threads>>>(

d_idata, d_odata, width, height, NUM_REPS);

cudaEventRecord(stop);

cudaEventSyncronize(stop);

float innerTime;

cudaEventElapsedTime(&innerTime, start, stop);

Effective Bandwidth (GB/s)
on 2048x2048 S2050

kernel
Performance

[GB/s]

Copy 60.9

Naive 22.4

... what is happening?

Accessi non coalesced

39

 All loads from input matrix are coalesced:

• each warp reads a line of contiguous elements
 32 float belonging to the same cache line

 yet all stores into transposed matrix are not coalesced:

• the copy kernel store by lines

• the naive transpose kernel store by columns

 threads in a warp write an elements into different segments

 the matrix stride rules how distant those segments are

 the naive transpose kernel performs 32 different stores
per row

Coalesced Transpose

40

 To avoid non-coalesced store we should store by row:

• let's fill a tile in shared memory with data to be transposed

• we don't get any penalty writing elements by columns into shared-
memory

• the transpose operation is now performed in shared-memory

• once the tile is filled, we write back info global memory by rows

Coalesced Transpose

41

__global__ void transposeCoalesced(float *idata, float *odata, int width, int

height)

{

__shared__ float tile[TILE_DIM][TILE_DIM];

int xIndex = blockIdx.x * TILE_DIM + threadIdx.x;

int yIndex = blockIdx.y * TILE_DIM + threadIdx.y;

int index_in = width * yIndex + xIndex;

xIndex = blockIdx.y * TILE_DIM + threadIdx.x;

yIndex = blockIdx.x * TILE_DIM + threadIdx.y;

int index_out = height * yIndex + xIndex;

tile[threadIdx.y][threadIdx.x] = idata[index_in];

__syncthreads();

odata[index_out] = tile[threadIdx.x][threadIdx.y];

}

Coalesced Matrix Transpose

42

Effective Bandwidth (GB/s)
on 2048x2048 S2050

kernel Performance [GB/s]

Copy 60.9

Naive 22.4

Coalesced 24.1

... mmm, we are still missing something

Avoiding Bank Conflict

43

 our new coalesced transpose use a shared memory tile of 32x32 float

• each element resides on successive bank (4-byte)
• accessing elements with a 32 size stride will fetch them from the same bank
• any read/write access to this tile by column will get a 32 bank conflict

 use the trick! a new tile of 32x33 elements

• element of the same tile column will resides on different banks
• no more bank conflicts at all

__shared__ float tile[TILE_DIM][TILE_DIM+1];

Avoiding Bank Conflict

44

Effective Bandwidth (GB/s)
on 2048x2048 S2050

kernel Performance [GB/s]

Copy 60.9

Naive 22.4

Coalesced 24.1

no Bank
Conflicts

46.6

 Synchronous and Asynchronous

 Concurrent Execution

 CPU and GPU interaction

• concurrent execution on CPU and GPU

• overlapping transfers and kernels

 Managing multi-device

 GPU/GPU interactions

45

Connection Scheme of host/device

46

Blocking and Non-blocking Functions

 blocking (synchronous):
return control to host thread after
execution is completed on device

• all memory transfer > 64KB

• all memory allocation on device

• allocation of page locked memory on host

47

 every CUDA action is submitted to an execution queue on the device

 CUDA runtime functions can be divided in two categories:

 Non-blocking (asynchronous):
return control to host immediatelly,
while its execution proceeds on device

• all kernel launch are asynchronous

• all memory transfers < 64KB

• memory initialization on device (cudaMemset)

• memory copies from device to device

• explicit asynchronous memory transfers

 CUDA API provides asynchronous versions of their counterpart synchronous
functions

 Asynchronous functions allow to set up concurrent execution of many operations
on host and device

Concurrent and Asynchronous Execution

Asynchronous functions allows to
expose concurrent execution:

1. Overlap computation on host
and on device

2. execution of more than on
kernel on the same device

3. data transfers between host
and device while executing a
kernel

4. data transfers from host to
device, while transfering data
from device to host

4848

Example of Concurrent Execution

49

cudaSetDevice(0)

kernel <<<threads, Blocks>>> (a, b, c)

// execute some work on CPU while GPU keeps on computing

CPU_Function()

// blocks CPU until GPU has finished its work

cudaDeviceSynchronize()

// CPU can use data resulting from the GPU computation

CPU_uses_the_GPU_kernel_results()

Since CUDA kernel invocation is an asynchronous operation,
CPU can proceed and evalutate the CPU_Function()while
the GPU is involved in kernel execution (concurrent execution).

Before using the results from you CUDA kernel, some form of
synchronization among host and device is required.

CUDA Streams

50

 GPU operations are implementated in CUDA using
execution queues, called streams

 any operation pushed in a stream will be executed
only after all other operations in the same stream
are completed (FIFO queue behaviour)

 operations assigned to different streams can be
executed in any order with respect to each other

 The CUDA runtime provides a default stream
(stream 0) which will be the default queue of all
operation if not explicitly declared otherwise

CUDA Streams

51

 All operations assigned to the default stream will be executed only after
all preceeding operations already assigned to other streams are
completed

 Any further operation assigned to other stream different from the default
will begin only after all operations on the default stream are completed

 operations assigned to the default stream act as implicit synchronization
barriers among other streams

Synchronization

52

 Explicit Synchronizations :
• cudaDeviceSynchronize()

 Blocks host code until all operations on the device are completed

• cudaStreamSynchronize(stream)
 Blocks host code until all operations on a stream are completed

• cudaStreamWaitEvent(stream, event)
 Blocks all operations assigned to a stream until event is reached

 Implicit Synchronizations :
• All operations assigned to the default stream
• All page-locked memory allocations
• All memory allocations on device
• All settings operation on device
• …

Managing CUDA Streams

53

 Stream management:

• Constructor: cudaStreamCreate()

• Synchronization: cudaStreamSynchronize()

• Destructor: cudaStreamDestroy()

 Stream allows for several execution modes,
depending on the compute capability:

• concurrent execution of more than one kernel per GPU

• concurrent asynchronous data transfers in both H2D
and D2H directions

• concurrent execution on device/host and data transfers
from host and device

Kernel Concurrent Execution

54

cudaSetDevice(0)

cudaStreamCreate(stream1)

cudaStreamCreate(stream2)

// lancio concorrente dello stesso kernel

Kernel_1<<<blocks, threads, SharedMem, stream1>>>(inp_1, out_1)

Kernel_1<<<blocks, threads, SharedMem, stream2>>>(inp_2, out_2)

// lancio concorrente di kernel diversi

Kernel_1<<<blocks, threads, SharedMem, stream1>>>(inp, out_1)

Kernel_2<<<blocks, threads, SharedMem, stream2>>>(inp, out_2)

cudaStreamDestroy(stream1)

cudaStreamDestroy(stream2)

Asynchronous Data Transfers

55

 host memory must be of page-locked type (a.k.a pinned) in order to
perform asynchronous data transfers between host and device

 CUDA runtime provides the following functions to handle page-locked
memory:
• cudaMallocHost()allocate page-locked memory on host
• cudaFreeHost()free page-locked allocated memory
• cudaHostRegister()turn host allocated memory into page-locked
• cudaHostUnregister()turn page-locked memory into ordinary memory

 the cudaMemcpyAsync()function explicitly performes asynchronous
data transfers between host and device memory

 data transfer operations should be queued into a stream different from the
default one in order to be asynchronous

 Using page-locked memory allows data transfers between host and device
memory with higher bandwidth performances

Asynchronous Data Transfers

56

cudaStreamCreate(stream_a)

cudaStreamCreate(stream_b)

cudaMallocHost(h_buffer_a, buffer_a_size)

cudaMallocHost(h_buffer_b, buffer_b_size)

cudaMalloc(d_buffer_a, buffer_a_size)

cudaMalloc(d_buffer_b, buffer_b_size)

// trasferimento asincrono e concorrente H2D e D2H

cudaMemcpyAsync(d_buffer_a, h_buffer_a, buffer_a_size,

cudaMemcpyHostToDevice, stream_a)

cudaMemcpyAsync(h_buffer_b, d_buffer_b, buffer_b_size,

cudaMemcpyDeviceToHost, stream_b)

cudaStreamDestroy(stream_a)

cudaStreamDestroy(stream_b)

cudaFreeHost(h_buffer_a)

cudaFreeHost(h_buffer_b)

Asynchronous Data Transfers

57

cudaStream_t stream[4];

for (int i=0; i<4; ++i) cudaStreamCreate(&stream[i]);

float* hPtr; cudaMallocHost((void**)&hPtr, 4 * size);

for (int i=0; i<4; ++i) {

cudaMemcpyAsync(d_inp + i*size, hPtr + i*size,

size, cudaMemcpyHostToDevice, stream[i]);

MyKernel<<<100, 512, 0, stream[i]>>>(d_out+i*size, d_inp+i*size, size);

cudaMemcpyAsync(hPtr + i*size, d_out + i*size,

size, cudaMemcpyDeviceToHost, stream[i]);

}

cudaDeviceSynchronize();

for (int i=0; i<4; ++i) cudaStreamDestroy(&stream[i]);

Concurrency

58

 Concurrency: when two or more CUDA operations proceed at the same time

• Fermi : up to 16 kernel CUDA / Kepler : up to 32 kernel CUDA

• 2 data transfers host/device (duplex)

• concurrency with host operations

 Requirements for concurrency:

• operations must be assigned to streams different from the default stream

• host/device data transfers should be asynchronous and host memory must be page-locked

• only if there are enough hw resources left to use (SharedMem, Registers, Blocks, PCIe bus, …)

 No kernel concurrency if all SM on the device are in use

 data transfers won’t take place if other transfers are still going on

Serial :

2 way concurrency :

3 way concurrency :

4 way concurrency :

4/+ way concurrency :

Stream Priorities

59

 Relative priorities of streams can be specified at creation

 If not specified, all streams get the same priority

 runtime will choose which operation start first among equivalent priority
streams

// get the range of stream priorities for this device

int priority_high, priority_low;

cudaDeviceGetStreamPriorityRange(&priority_low, &priority_high);

// create streams with highest and lowest priorities

cudaStream_t st_high, st_low;

cudaStreamCreateWithPriority(&st_high, cudaStreamNonBlocking,

priority_high);

cudaStreamCreateWithPriority(&st_low, cudaStreamNonBlocking,

priority_low);

Device Management

60

CUDA runtime allows to control more than one GPU
device available on a computing node (multi-GPU
programming):

• CUDA 3.2 and previuos versions
 a multi-thread or multi-process parallel paradigm was

required to access and use more than one device

• CUDA 4.0 and later versions
 new runtime API to select and to control all available devices

from a serial program (single host core)

 you can still use a parallel programming approach (multi-
thread or multi-process):

o each process or thread will be always able to access all devices

o you can select which devices a thread/process can control

Device Management

61

cudaDeviceCount(number_gpu)

cudaGetDeviceProperties(gpu_property, gpu_ID)

cudaSetDevice(0)

kernel_0 <<<threads, Blocks>>> (a, b, c)

cudaSetDevice(1)

kernel_1 <<<threads, Blocks>>> (d, e, f)

For each device:

cudaSetDevice(device)

cudaDeviceSynchronize()

CUDA runtime has API to :

 get information on available CUDA enabled devices

 get specifics of each CUDA enable device (cc, memory sizes, clock, etc)

 select a device and queue CUDA operations on that device

 manage synchronization among available devices

Peer to Peer Transfers

62

 A device can directly transfer or access data to/from another
device

 This kind of direct transfer is called Peer to Peer (P2P)

 P2P transfers are more efficient and do not require a host buffer
• direct access avoid host memory copy

No Peer To Peer Peer To Peer

Peer to Peer Transfer Pseudocode

63

gpuA=0, gpuB=1

cudaSetDevice(gpuA)

cudaMalloc(buffer_A, buffer_size)

cudaSetDevice(gpuB)

cudaMalloc(buffer_B, buffer_size)

cudaSetDevice(gpuA)

cudaDeviceCanAccessPeer(answer, gpuA, gpuB)

If answer is true:

cudaDeviceEnablePeerAccess(gpuB, 0)

// la gpuA esegue la copia da gpuA a gpuB

cudaMemcpyPeer(buffer_B, gpuB, buffer_A, gpuA, buffer_size)

// la gpuA esegue la copia da gpuB a gpuA

cudaMemcpyPeer(buffer_A, gpuA, buffer_B, gpuB, buffer_size)

Peer to Peer Direct Access Pseudocode

64

gpuA=0, gpuB=1

cudaSetDevice(gpuA)

cudaMalloc(buffer_A, buffer_size)

cudaSetDevice(gpuB)

cudaMalloc(buffer_B, buffer_size)

cudaSetDevice(gpuA)

cudaDeviceCanAccessPeer(answer, gpuA, gpuB)

If answer is true:

cudaDeviceEnablePeerAccess(gpuB, 0)

// la gpuA esegue il kernel che accede sia alla sua memoria

// che direttamente alla memoria di gpuB

kernel<<<threads, blocks>>>(buffer_A, buffer_B)

Hands-on Streams: naive version

65

Write a C or F90 program which performs the following operations:

 Allocate h_A, h_B, h_C single precision arrays of nSize elements on host

 Initializareh_A and h_B arrays using the initArrayData()function in C or
the RANDOM_NUMBER() subroutine in F90

 Allocate d_A, d_B, d_C single precision arrays on the device

 Transfer data from h_A and h_B arrays on the d_A and d_B arrays

 Launch the arrayFunc() kernel which combine data from d_A and d_B eand
write results onto array d_C

 Copy back d_C array from device in h_C array on host

 Measure the total elapsed time to perform both kernel and memory transfers
using cudaEvents

 Execute the funcArrayCPU() function which replicates the same CUDA
kernel on host for result comparison

 Measure the elapsed time of the funcArrayCPU() function

 Compute the Speed Up of GPU implementation as CPU time / GPU time

Hands-on Streams: naive version

66

Hands-on Streams: using cudaStreams

67

Write a C or F90 program which performs the following operations:

 Allocate h_A, h_B, h_C single precision arrays of nSize elements on host

 Initializareh_A and h_B arrays using the initArrayData()function in C or
the RANDOM_NUMBER() subroutine in F90

 Split the elaboration of h_A, h_B arrays into chunks of chunk_size size elements

 Create streams_number of cudaStream

 Allocate d_A, d_B, d_C of chunk_size * streams_number size on the device

 Assign to each cudaStream the elaboration of each chunk. Each stream will:

 copy a chunk of data from h_A and h_B on d_A and d_B buffers

 Launch the kernel arrayFunc

 Copy back to host the results from d_C into h_C

 Measure execution time and compare the speedup with respect naïve
implementation

 Try to change the number of active streams, the chunk size, etc…

Hands-on Streams: using cudaStreams

68

Hands-on Streams: using cudaStreams

69

Hands-on Streams: using cudaStreams

70

Hands-on Streams: using cudaStreams

71

CUDA Runtime functions to implement the code (CUDA FORTRAN):
• integer function cudaStreamCreate(stream)

integer :: stream

• integer function cudaStreamDestroy(stream)

integer :: stream

• integer function cudaDeviceSynchronize()

• integer function cudaMemcpyAsync(dst, src, nelements, kind,

stream)

CUDA Runtime functions to implement the code (C for CUDA):
• cudaError_t cudaStreamCreate(cudaStream_t *stream)

• cudaError_t cudaStreamDestroy(cudaStream_t stream)

• cudaError_t cudaDeviceSynchronize(void)

• cudaErrot_t cudaMemcpyAsync(void* dst, void* src, size_t

nbyte, enum cudaMemcpyKind kind,cudaStream_t stream)

Hands-on Streams: cudaStreams and Multi-GPU

72

Write a C or F90 program which performs the following operations:

 Allocate h_A, h_B, h_C single precision arrays of nSize elements on host

 Initializareh_A and h_B arrays using the initArrayData()function in C or
the RANDOM_NUMBER() subroutine in F90

 Split the elaboration of h_A, h_B arrays into chunks of chunk_size size elements

 Assign to each available GPU device a balanced number of chunks to process

 Create streams_number of cudaStream

 Allocate d_A, d_B, d_C of chunk_size * streams_number size on the device

 Assign to each cudaStream the elaboration of each chunk. Each stream will:

 copy a chunk of data from h_A and h_B on d_A and d_B buffers

 Launch the kernel arrayFunc

 Copy back to host the results from d_C into h_C

 Measure execution time and compare the speedup with respect single GPU
implementation

