
0

Programming paradigms for
GPU devices

Day 1

Sergio Orlandini
s.orlandini@cineca.it

Luca Ferraro
l.ferraro@cineca.it

Rights & Credits

1

These slides are CINECA 2014 and are released under
the Attribution-NonCommercial-NoDerivs (CC BY-NC-
ND) Creative Commons license, version 3.0.

Uses not allowed by the above license need explicit,
written permission from the copyright owner. For
more information see:

http://creativecommons.org/licenses/by-nc-nd/3.0/

Slides and examples were authored by:

Isabella Baccarelli, Luca Ferraro, Sergio Orlandini

http://creativecommons.org/licenses/by-nc-nd/3.0/

2

 Hands on:

• Compiling a CUDA program

• Environment and utility:
deviceQuery and nvidia-smi

• Vector Sum

• Matrix Sum

CUDA Compilation Workflow

3

 each source file with CUDA extension should
be compiler with a proper CUDA aware
compiler
• nvcc CUDA C (NVIDIA)
• pgf90 -Mcuda CUDA Fortran (PGI)

 CUDA compiler processes the source code,
separating device code from host code:
• host is modified replacing CUDA extensions by the

necessary CUDA C runtime functions calls
• the resulting host code is output to a host compiler
• device code is compiled into the PTX assembly form

 starting from the PTX assembly code you can:
• generate one or more object forms (cubin)

specialized for specific GPU architectures
• generate an executable which include both PTC

code and object code

CUDA

Compiler

CUDA Source

Code

PTX Code

Virtual

CPU Code

PTX to Target
Compiler

G80 … GPU

cubin binary object

Physical

just-in-time

compilation

Compute Capability

4

 the compute capability of a device describes its architecture

• registers, memory sizes, features and capabilities

 the compute capability is identified by a code like “compute_Xy”
 major number (X): identifies base line chipset architecture
 minor number (y): indentifies variants and releases of the base line chipset

 a compute capability select the set of usable PTX instructions

compute capability feature support

compute_10 basic CUDA support

compute_13 improved memory accesses
+ double precision + atomics

compute_20 FERMI architecture
caches, fused multiply-add, 3D grids, surfaces, ECC, P2P,
concurrent kernels/copies, function pointers, recursion

compute_30 KEPLER K10 architecture (support only single precision)

compute_35 KEPLER K20, K20X, K40 architectures

Capability: resources constraints

How to compile a CUDA program

6

 When compiling a CUDA executable, you must specify:

• compute capability: virtual architecture for PTX code

• architecture targets: real GPU architectures where the executable will run
(using the cubin code)

nvcc -arch=compute_20 -code=sm_20,sm_21

• nvcc allows many shortcut switches as
nvcc -arch=sm_20 to target FERMI architecture

which is equivalent to:
nvcc -arch=compute_20 -code=sm_20

 CUDA Fortran: NVIDIA worked with The Portland Group (PGI) to develop a
CUDA Fortran Compiler that provides Fortran language

• PGI CUDA Fortran does not require a new or separate compiler
• CUDA features are supported by the same PGI Fortran compiler
• Use –Mcuda option: pgf90 –Mcuda=cc20

virtual architecture
(PTX code)

real GPU architecture
(cubin)

Hands On

7

 deviceQuery (from the CUDA SDK): show information on CUDA devices

 nvidia-smi (NVIDIA System Management Interface):
shows diagnostic informations on present CUDA enabled devices
(nvidia-smi –q –d UTILIZATION –l 1)

 nvcc –V shows current CUDA C compiler version

 Compile a CUDA program:

• cd Exercises/VectorAdd. Try the following compiling commands:
• nvcc vectoradd_cuda.cu -o vectoradd_cuda

• nvcc –arch=sm_35 vectoradd_cuda.cu -o vectoradd_cuda

• nvcc –arch=sm_35 –ptx vectoradd_cuda.cu

• nvcc –arch=sm_35 –keep vectoradd_cuda.cu -o vectoradd_cuda

• nvcc –arch=sm_35 –keep -clean vectoradd_cuda.cu -o
vectoradd_cuda

• Run resulting executable with:
• ./vectoradd_cuda

Hands On

8

 deviceQuery (from the CUDA SDK): show information on CUDA devices

 nvidia-smi (NVIDIA System Management Interface):
shows diagnostic informations on present CUDA enabled devices
(nvidia-smi –q –d UTILIZATION –l 1)

 Compile a CUDA program:

• cd Exercises/VectorAdd. Try the following compiling commands:

• pgf90 –Mcuda=cc10 vectoradd_cuda.f90 -o vectoradd_cuda

• pgf90 –Mcuda=cc35 vectoradd_cuda.f90 -o vectoradd_cuda

• pgf90 –Mcuda=cc35,keepptx –ptx vectoradd_cuda.f90

• pgf90 –Mcuda=cc_35,keepbin vectoradd_cuda.f90 -o

vectoradd_cuda

• Run resulting executable with:

• ./vectoradd_cuda

Hands On

9

 MatrixAdd:

• Write a program that performes square matrix sum:
C = A + B

• Provide and compare results of CPU and CUDA versions
of the kernel

• Try CUDA version with different thread block sizes
(16,16) (32,32) (64,64)

 Home-works:

• Modify the previous kernel to let in-place sum:
A = A + c*B

10

 Control and performances:

• Error Handling

• Measuring Performances

 Hands on:

• Measure data transfer
performances

• Matrix-Matrix product

 simple implementation

 performances

Checking CUDA Errors

11

cudaError_t cerr = cudaMalloc(&d_a,size);

if (cerr != cudaSuccess)

fprintf(stderr, “%s\n”, cudaGetErrorString(cerr));

 All CUDA API returns an error code of type cudaError_t

• Special value cudaSuccess means that no error occurred

 CUDA runtime has a convenience function that translates a CUDA error
into a readable string with a human understandable description of the
type of error occured

char* cudaGetErrorString(cudaError_t code)

 CUDA Asynchronous API returns an error which refers only on errors
which may occur during the call on host

 CUDA kernels are asynchronous and void type so they don’t return any
error code

Checking Errors for CUDA kernels

12

// reset internal state

cudaError_t cerr = cudaGetLastError();

// launch kernel

kernelGPU<<<dimGrid,dimBlock>>>(...);

cudaDeviceSynchronize();

cerr = cudaGetLastError();

if (cerr != cudaSuccess)

fprintf(stderr, “%s\n”, cudaGetErrorString(cerr));

 The error status is also held in an internal variable, which is modified by each
CUDA API call or kernel launch.

 CUDA runtime has a function that returns the status of internal error variable.

cudaError_t cudaGetLastError(void)

1. Returns the status of internal error variable (cudaSuccess or other)

2. Resets the internal error status to cudaSuccess

• Error code from cudaGetLastError may refers to any other preceeding CUDA API

runtime calls

• To check the error status of a CUDA kernel execution, we have to wait for kernel
completition using the following synchronization API:
cudaDeviceSynchronize()

Checking CUDA Errors

13

#define CUDA_CHECK(X) {\

cudaError_t _m_cudaStat = X;\

if(cudaSuccess != _m_cudaStat) {\

fprintf(stderr,"\nCUDA_ERROR: %s in file %s line %d\n",\

cudaGetErrorString(_m_cudaStat), __FILE__, __LINE__);\

exit(1);\

} }

...

CUDA_CHECK(cudaMemcpy(d_buf, h_buf, buffSize, cudaMemcpyHostToDevice));

 Error checking is strongly encouraged during developer phase

 Error checking may introduce overhead and unpleasant
synchronizations during production run

 Error check code can become very verbose and tedious
A common approach is to define a assert style preprocessor macro
which can be turned on/off in a simple manner

CUDA Events

14

 CUDA Events are special objects which can be used
as mark points in your code

 CUDA events markers can be used to:

• measure the elapsed time between two markers
(providing very high precision measures)

• indentify synchronization point in the code between
CPU and GPU execution flow:

 for example we can prevent CPU to go any further until some
or all preceeding CUDA kernels are really completed

 we will provide further information on synchronization
techniques during the rest of the course

integer ierr

type (cudaEvent) :: start, stop

real elapsed

ierr = cudaEventCreate(start)

ierr = cudaEventCreate(stop)

ierr = cudaEventRecord(start, 0)

...

call kernel<<<grid,block>>>()

...

ierr = cudaEventRecord(stop, 0)

ierr = cudaEventSynchronize(stop)

ierr = cudaEventElapsedTime&

(elapsed,start, stop)

ierr = cudaEventDestroy(start)

ierr = cudaEventDestroy(stop)

Using CUDA Events for Measuring Elapsed Time

15

cudaEvent_t start, stop;

cudaEventCreate(&start);

cudaEventCreate(&stop);

cudaEventRecord(start);

...

kernel<<<grid, block>>>(...);

...

cudaEventRecord(stop);

cudaEventSynchronize(stop);

float elapsed;

// execution time between events

// in milliseconds

cudaEventElapsedTime(&elapsed,

start, stop);

cudaEventDestroy(start);

cudaEventDestroy(stop);

Flops:
Floating point operations per second

• A common metric for measuring
performances of a computational
intensive kernel (compute-buond
kernel)

• Common units are: Mflops, Gflops, …

Performances

16

Which metric should we use to measure performances?

Bandwidth:
Amount of data transfered per second

• A common metric for kernel that spent the
most of time in executing memory
instructions (memory-bound kernel).

• Common unit of performance is GB/s.
Reference value depends on peak
bandwidth performances provided by the
bus or network hardware involved in the
data transfer

(s) Time Elapsed

(flop) N

flops
OPERATIONS POINTFLOATING


(s) Time Elapsed

(byte)data d transfereof Size

bandwidth 

D2H and H2D Data Transfers

 GPU devices are connected to the host with a PCIe bus

• PCIe bus is characterized by very low latency, but also by a
low bandwidth with respect to other bus

 Data transfers can easily become a bottleneck in
heterogeneous environment equipped with accelerators

• Best Practice: minimize transfers between host and device or execute
them in overlap with computations

Technology Peak Bandwidth

PCIex GEN2 (16x, full duplex) 8 GB/s (peak)

PCIex GEN3 (16x, full duplex) 16 GB/s (peak)

DDR3 (full duplex) 26 GB/s (single channel)

17

Hands on: measuring bandwidth

18

Size (MB) HtoD DtoH DtoD

1

10

100

1024

 Measure memory bandwidth versus increasing data size, for
Host to Device, Device to Host and Device to Device transfers

1. Write a simple program using CUDA events

2. Use bandwidthTest provided with CUDA SDK

./bandwidthTest --mode=range --start= --end= --increment=

Hands on: measuring bandwidth

19

 Measure memory bandwidth versus increasing data size, for
Host to Device, Device to Host and Device to Device transfers

1. Write a simple program using CUDA events

2. Use bandwidthTest provided with CUDA SDK

./bandwidthTest --mode=range --start= --end= --increment=

Size (MB) HtoD DtoH DtoD

1

10

100

1024

Size (MB) HtoD DtoH DtoD

1 2059 2024 69198

10 3493 3076 83274

100 3317 2869 86284

1024 3548 3060 86650

Matrix-Matrix product: HOST Kernel

void MatrixMulOnHost (float* M, float* N, float* P, int Width)

{

// loop on rows

for (int row = 0; row < Width; ++row) {

// loop on columns

for (int col = 0; col < Width; ++col) {

// accumulate element-wise products

float pval = 0;

for (int k = 0; k < Width; ++k) {

float a = M[row * Width + k];

float b = N[k * Width + col];

pval += a * b;

}

// store final results

P[row * Width + col] = pval;

}

}

}

P = M * N

Matrix-Matrix product: CUDA Kernel

__global__ void MMKernel (float* dM, float *dN, float *dP,

int width)

{

// row,col from built-in thread indeces (2D block of threads)

int col = threadIdx.x;

int row = threadIdx.y;

// accumulate element-wise products

// NB: pval stores the dP element computed by the thread

float pval = 0;

for (int k=0; k < width; k++) {

float a = dM[row * width + k];

float b = dN[k * width + col];

pval += a * b;

}

// store final results (each thread writes one element)

dP[row * width + col] = Pvalue;

}

Matrix-Matrix product: HOST code

void MatrixMultiplication (float* hM, float *hN, float *hP,

int width) {

float *dM, *dN, *dP;

cudaMalloc((void**)&dM, width*width*sizeof(float));

cudaMalloc((void**)&dN, width*width*sizeof(float));

cudaMalloc((void**)&dP, width*width*sizeof(float));

cudaMemcpy(dM, hM, size, cudaMemcpyHostToDevice);

cudaMemcpy(dN, hN, size, cudaMemcpyHostToDevice);

dim3 gridDim(1,1);

dim3 blockDim(width,width);

MMKernel<<<dimGrid, dimBlock>>>(dM, dN, dP, width);

cudaMemcpy(hP, dP, size, cudaMemcpyDeviceToHost);

cudaFree(dM); cudaFree(dN); cudaFree(dP);

}

Matrix-Matrix product: launch grid

WARNING:

 there’s a limit on the maximum number of allowed threads per block

• depends on the compute capability

How to select an appropriate (or best) thread grid ?

 respect compute capability limits for threads per block

 select the block grid so to cover all elements to be processed

 select block size so that each thread can process one or more data elements
without raise conditions with other threads

• use builtin variables blockIdx and blockDim to identify which matrix subblock belong to
current thread block

Matrix-Matrix product: launch grid

i = blockIdx.x * blockDim.x + threadIdx.x;

j = blockIdx.y * blockDim.y + threadIdx.y;

index = j * MatrixWidth + i;

Matrix

(0,0) (1,0) (2,0)

(0,1) (1,1) (2,1)

(0,2) (1,2) (2,2)

(0,3) (1,3) (2,3)

i

j

gridDim.x * blockDim.x

* index

MatrixWidth

Matrix-Matrix product: CUDA Kernel

__global__ void MMKernel (float* dM, float *dN, float *dP,

int width) {

// row,col from built-in thread indeces(2D block of threads)

int col = blockIdx.x * blockDim.x + threadIdx.x;

int row = blockIdx.y * blockDim.y + threadIdx.y;

// check if current CUDA thread is inside matrix borders

if (row < width && col < width) {

// accumulate element-wise products

// NB: pval stores the dP element computed by the thread

float pval = 0;

for (int k=0; k < width; k++)

pval += dM[row * width + k] * dN[k * width + col];

// store final results (each thread writes one element)

dP[row * width + col] = Pvalue;

}

}

Matrix-Matrix product: HOST code

void MatrixMultiplication (float* hM, float *hN, float *hP,

int width) {

float *dM, *dN, *dP;

cudaMalloc((void**)&dM, width*width*sizeof(float));

cudaMalloc((void**)&dN, width*width*sizeof(float));

cudaMalloc((void**)&dP, width*width*sizeof(float));

cudaMemcpy(dM, hM, size, cudaMemcpyHostToDevice);

cudaMemcpy(dN, hN, size, cudaMemcpyHostToDevice);

dim3 blockDim(TILE_WIDTH, TILE_WIDTH);

dim3 gridDim((width-1)/TILE_WIDTH+1,(width-1)/TILE_WIDTH+1);

MMKernel<<<dimGrid, dimBlock>>>(dM, dN, dP, width);

cudaMemcpy(hP, dP, size, cudaMemcpyDeviceToHost);

cudaFree(dM); cudaFree(dN); cudaFree(dP);

}

Resources per Thread Block

28

 each CUDA kernel needs a specific
amount of resources to run

 Once blocks are assigned to the SM,
registers are assigned to each thread
block, depending on kernel required
resources

 Once assigned, registers will belong to
that thread until the thread block
complete its work

 so that each thread can access only its
own assigned registers

 allow for zero-overload schedule when
content switching among different warp
execution

Assigning Thread Blocks to SM

29

 Let’s provide an example of block assignmend
on a SM:
• Fermi architecture: 32768 register per SM
• CUDA kernel grid with 32x8 thread blocks
• CUDA kernel needs 30 registers

 How many thread blocks can host a single SM?
• each block requires

30x32x8 = 7680 registers
• 32768/7680 = 4 blocks + “reminder”
• only 4 blocks can be hosted (out of 8)

 What happen if we modify the kernel a little bit,
moving to an implementation which requires 33
registers?
• each block now requires

33x32x8 = 8448 registers
• 32768/8448 = 3 blocks + “reminder”
• only 3 blocks! (out of 8)

 25% reduction of potential parallelism

4 blocks 3 blocks

Matrix-Matrix product: selecting optimum thread block size

30

Which is the best thread block size to select (i.e. TILE_WIDTH)?

On Fermi architectures: each SM can handle up to 1536 total
threads

 TILE_WIDTH = 8
8x8 = 64 threads >>> 1536/64 = 24 blocks needed to fully load a SM
… yet there is a limit of maximum 8 resident blocks per SM for cc 2.x
so we end up with just 64x8 = 512 threads per SM on a maximum of 1536
(only 33% occupancy)

 TILE_WIDTH = 16
16x16 = 256 threads >>> 1536/256 = 6 blocks to fully load a SM
6x256 = 1536 threads per SM … reaching full occupancy per SM!

 TILE_WIDTH = 32
32x32 = 1024 threads >>> 1536/1024 = 1.5 = 1 block fully loads SM
1024 threads per SM (only 66% occupancy)

TILE_WIDTH = 16

Matrix-Matrix product: selecting optimum thread block size

31

Which is the best thread block size to select (i.e. TILE_WIDTH)?

On Kepler architectures: each SM can handle up to 2048 total
threads

 TILE_WIDTH = 8
8x8 = 64 threads >>> 2048/64 = 32 blocks needed to fully load a SM
… yet there is a limit of maximum 16 resident blocks per SM for cc 3.x
so we end up with just 64x16 = 1024 threads per SM on a maximum of
2048 (only 50% occupancy)

 TILE_WIDTH = 16
16x16 = 256 threads >>> 2048/256 = 8 blocks to fully load a SM
8x256 = 2048 threads per SM … reaching full occupancy per SM!

 TILE_WIDTH = 32
32x32 = 1024 threads >>> 2048/1024 = 2 blocks fully load a SM
2x1024 = 2048 threads per SM … reaching full occupancy per SM!

TILE_WIDTH = 16 or 32

Matrix-matrix product: checking error

32

mycudaerror=cudaGetLastError() ;

<chiamata kernel>

cudaDeviceSynchronize() ;

mycudaerror=cudaGetLastError() ;

if(mycudaerror != cudaSuccess)

fprintf(stderr,”%s\n”,

cudaGetErrorString(mycudaerror)) ;

Hands on: matrix-matrix product

Use the proper CUDA API to check error codes

use cudaGetLastError() to check that kernel has been completed with no errors

mycudaerror=cudaGetLastError()

<chiamata kernel>

ierr = cudaDeviceSynchronize()

mycudaerror=cudaGetLastError()

if(mycudaerror .ne. 0) write(*,*) &

‘Error in kernel: ‘,mycudaerror

Try to use block size greater than 32x32. What kind of error is
reported?

Matrix-matrix product: performances

33

Measure performances of matrix-matrix product, both for CPU and GPU version, using
CUDA Events

Follow these steps:

Decleare a start and stop cuda event and initialize them with: cudaEventCreate

Plase start and stop events at proper place in the code

Record the start event using: cudaEventRecord

Launch the CPU or GPU (remember to check for errors)

Record the stop event using: cudaEventRecord

Synchronize host code just after the stop event with: cudaEventSynchronize

Measure the elapsed time between events with: cudaEventElapsedTime

Destroy events with: cudaEventDestroy

Express performance metric using Gflops, knowing that the matrix-matrix product
algorithm requres 2N3 operations

C

Gflops

Fortran

