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 Hands on:

• Compiling a CUDA program

• Environment and utility:
deviceQuery and nvidia-smi

• Vector Sum

• Matrix Sum



CUDA Compilation Workflow
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 each source file with CUDA extension should 
be compiler with a proper CUDA aware 
compiler
• nvcc CUDA C (NVIDIA)
• pgf90 -Mcuda CUDA Fortran (PGI)

 CUDA compiler processes the source code, 
separating device code from host code:
• host is modified replacing CUDA extensions by the 

necessary CUDA C runtime functions calls
• the resulting host code is output to a host compiler
• device code is compiled into the PTX assembly form

 starting from the PTX assembly code you can:
• generate one or more object forms (cubin) 

specialized for specific GPU architectures
• generate an executable which include both PTC 

code and object code
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Compute Capability
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 the compute capability of a device describes its architecture

• registers, memory sizes, features and capabilities

 the compute capability is identified by a code like “compute_Xy”
 major number (X): identifies base line chipset architecture
 minor number (y): indentifies variants and releases of the base line chipset

 a compute capability select the set of usable PTX instructions

compute capability feature support

compute_10 basic CUDA support

compute_13 improved memory accesses 
+ double precision + atomics

compute_20 FERMI architecture 
caches, fused multiply-add, 3D grids, surfaces, ECC, P2P, 
concurrent kernels/copies, function pointers, recursion

compute_30 KEPLER K10 architecture (support only single precision)

compute_35 KEPLER K20, K20X, K40 architectures 



Capability: resources constraints



How to compile a CUDA program
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 When compiling a CUDA executable, you must specify:

• compute capability: virtual architecture for PTX code

• architecture targets: real GPU architectures where the executable will run 
(using the cubin code)

nvcc -arch=compute_20 -code=sm_20,sm_21

• nvcc allows many shortcut switches as
nvcc -arch=sm_20  to target FERMI architecture

which is equivalent to:
nvcc -arch=compute_20 -code=sm_20

 CUDA Fortran: NVIDIA worked with The Portland Group (PGI) to develop a 
CUDA Fortran Compiler that provides Fortran language

• PGI CUDA Fortran does not require a new or separate compiler
• CUDA features are supported by the same PGI Fortran compiler
• Use –Mcuda option:  pgf90 –Mcuda=cc20

virtual architecture
(PTX code)

real GPU architecture 
(cubin)



Hands On
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 deviceQuery (from the CUDA SDK): show information on CUDA devices

 nvidia-smi (NVIDIA  System Management Interface): 
shows diagnostic informations on present CUDA enabled devices
(nvidia-smi –q –d UTILIZATION –l 1)

 nvcc –V shows current CUDA C compiler version

 Compile a CUDA program:

• cd Exercises/VectorAdd.  Try the following compiling commands:
• nvcc vectoradd_cuda.cu -o vectoradd_cuda

• nvcc –arch=sm_35 vectoradd_cuda.cu -o vectoradd_cuda 

• nvcc –arch=sm_35 –ptx vectoradd_cuda.cu

• nvcc –arch=sm_35 –keep vectoradd_cuda.cu -o vectoradd_cuda 

• nvcc –arch=sm_35 –keep -clean vectoradd_cuda.cu -o 
vectoradd_cuda

• Run resulting executable with:
• ./vectoradd_cuda



Hands On
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 deviceQuery (from the CUDA SDK): show information on CUDA devices

 nvidia-smi (NVIDIA  System Management Interface): 
shows diagnostic informations on present CUDA enabled devices
(nvidia-smi –q –d UTILIZATION –l 1)

 Compile a CUDA program:

• cd Exercises/VectorAdd.  Try the following compiling commands:

• pgf90 –Mcuda=cc10 vectoradd_cuda.f90 -o vectoradd_cuda

• pgf90 –Mcuda=cc35 vectoradd_cuda.f90 -o vectoradd_cuda 

• pgf90 –Mcuda=cc35,keepptx –ptx vectoradd_cuda.f90

• pgf90 –Mcuda=cc_35,keepbin vectoradd_cuda.f90 -o 

vectoradd_cuda 

• Run resulting executable with:

• ./vectoradd_cuda



Hands On
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 MatrixAdd:

• Write a program that performes square matrix sum: 
C = A + B

• Provide and compare results of CPU and CUDA versions
of the kernel

• Try CUDA version with different thread block sizes
(16,16) (32,32) (64,64)

 Home-works:

• Modify the previous kernel to let in-place sum:               
A = A + c*B
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 Control and performances:

• Error Handling

• Measuring Performances

 Hands on:

• Measure data transfer 
performances

• Matrix-Matrix product

 simple implementation

 performances



Checking CUDA Errors
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cudaError_t cerr = cudaMalloc(&d_a,size);

if (cerr != cudaSuccess) 

fprintf(stderr, “%s\n”, cudaGetErrorString(cerr));

 All CUDA API returns an error code of type cudaError_t

• Special value cudaSuccess means that no error occurred

 CUDA runtime has a convenience function that translates a CUDA error 
into a readable string with a human understandable description of the 
type of error occured

char* cudaGetErrorString(cudaError_t code)

 CUDA Asynchronous API returns an error which refers only on errors
which may occur during the call on host

 CUDA kernels are asynchronous and void type so they don’t return any 
error code



Checking Errors for CUDA kernels
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// reset internal state

cudaError_t cerr = cudaGetLastError();

// launch kernel

kernelGPU<<<dimGrid,dimBlock>>>(...);

cudaDeviceSynchronize();

cerr = cudaGetLastError();

if (cerr != cudaSuccess) 

fprintf(stderr, “%s\n”, cudaGetErrorString(cerr));

 The error status is also held in an internal variable, which is modified by each 
CUDA API call or kernel launch.

 CUDA runtime has a function that returns the status of internal error variable.

cudaError_t cudaGetLastError(void)

1. Returns the status of internal error variable (cudaSuccess or other)

2. Resets the internal error status to cudaSuccess 

• Error code from cudaGetLastError may refers to any other preceeding CUDA API 

runtime calls

• To check the error status of a CUDA kernel execution, we have to wait for kernel 
completition using the following synchronization API:
cudaDeviceSynchronize()



Checking CUDA Errors
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#define CUDA_CHECK(X) {\

cudaError_t _m_cudaStat = X;\

if(cudaSuccess != _m_cudaStat) {\

fprintf(stderr,"\nCUDA_ERROR: %s in file %s line %d\n",\

cudaGetErrorString(_m_cudaStat), __FILE__, __LINE__);\

exit(1);\

} }

...

CUDA_CHECK( cudaMemcpy(d_buf, h_buf, buffSize, cudaMemcpyHostToDevice) );

 Error checking is strongly encouraged during developer phase

 Error checking may introduce overhead and unpleasant
synchronizations during production run

 Error check code can become very verbose and tedious
A common approach is to define a assert style preprocessor macro 
which can be turned on/off in a simple manner



CUDA Events
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 CUDA Events are special objects which can be used 
as mark points in your code

 CUDA events markers can be used to:

• measure the elapsed time between two markers
(providing very high precision measures)

• indentify synchronization point in the code between 
CPU and GPU execution flow:

 for example we can prevent CPU to go any further until some 
or all preceeding CUDA kernels are really completed

 we will provide further information on synchronization 
techniques during the rest of the course



integer ierr

type (cudaEvent) :: start, stop

real elapsed

ierr = cudaEventCreate(start)

ierr = cudaEventCreate(stop)

ierr = cudaEventRecord(start, 0)

...

call kernel<<<grid,block>>>()

...

ierr = cudaEventRecord(stop, 0)

ierr = cudaEventSynchronize(stop)

ierr = cudaEventElapsedTime&

(elapsed,start, stop)

ierr = cudaEventDestroy(start)

ierr = cudaEventDestroy(stop)

Using CUDA Events for Measuring Elapsed Time
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cudaEvent_t start, stop;

cudaEventCreate(&start);

cudaEventCreate(&stop);

cudaEventRecord(start);

...

kernel<<<grid, block>>>(...);

...

cudaEventRecord(stop);

cudaEventSynchronize(stop);

float elapsed;

// execution time between events

// in milliseconds

cudaEventElapsedTime(&elapsed, 

start, stop); 

cudaEventDestroy(start);

cudaEventDestroy(stop);



Flops:
Floating point operations per second

• A common metric for measuring
performances of a computational
intensive kernel (compute-buond
kernel)

• Common units are: Mflops, Gflops, …

Performances
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Which metric should we use to measure performances?

Bandwidth:
Amount of data transfered per second

• A common metric for kernel that spent the 
most of time in executing memory 
instructions (memory-bound kernel).

• Common unit of performance is GB/s.
Reference value depends on peak 
bandwidth performances provided by the 
bus or network hardware involved in the 
data transfer

(s) Time Elapsed

(flop) N

flops
OPERATIONS   POINTFLOATING


(s) Time Elapsed

(byte)data  d transfereof Size

bandwidth 



D2H and H2D Data Transfers

 GPU devices are connected to the host with a PCIe bus

• PCIe bus is characterized by very low latency, but also by a 
low bandwidth with respect to other bus

 Data transfers can easily become a bottleneck in 
heterogeneous environment equipped with accelerators

• Best Practice: minimize transfers between host and device or execute 
them in overlap with computations

Technology Peak Bandwidth

PCIex GEN2 (16x, full duplex) 8 GB/s (peak)

PCIex GEN3 (16x, full duplex) 16 GB/s (peak)

DDR3 (full duplex) 26 GB/s (single channel)

17



Hands on: measuring bandwidth
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Size (MB) HtoD DtoH DtoD

1

10

100

1024

 Measure memory bandwidth versus increasing data size, for 
Host to Device, Device to Host and Device to Device transfers

1. Write a simple program using CUDA events

2. Use bandwidthTest provided with CUDA SDK

./bandwidthTest --mode=range --start=<B> --end=<B> --increment=<B>



Hands on: measuring bandwidth
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 Measure memory bandwidth versus increasing data size, for 
Host to Device, Device to Host and Device to Device transfers

1. Write a simple program using CUDA events

2. Use bandwidthTest provided with CUDA SDK

./bandwidthTest --mode=range --start=<B> --end=<B> --increment=<B>

Size (MB) HtoD DtoH DtoD

1

10

100

1024

Size (MB) HtoD DtoH DtoD

1 2059 2024 69198

10 3493 3076 83274

100 3317 2869 86284

1024 3548 3060 86650



Matrix-Matrix product: HOST Kernel

void MatrixMulOnHost (float* M, float* N, float* P, int Width) 

{

// loop on rows

for (int row = 0; row < Width; ++row) {

// loop on columns

for (int col = 0; col < Width; ++col) {

// accumulate element-wise products

float pval = 0;

for (int k = 0; k < Width; ++k) {

float a = M[row * Width + k];

float b = N[k * Width + col];

pval += a * b;

}

// store final results

P[row * Width + col] = pval;

}

}

}

P = M * N



Matrix-Matrix product: CUDA Kernel

__global__ void MMKernel (float* dM, float *dN, float *dP,

int width)

{

// row,col from built-in thread indeces (2D block of threads)

int col = threadIdx.x;

int row = threadIdx.y;

// accumulate element-wise products

// NB: pval stores the dP element computed by the thread

float pval = 0;

for (int k=0; k < width; k++) {

float a = dM[row * width + k];

float b = dN[k * width + col];

pval += a * b;

}

// store final results (each thread writes one element)

dP[row * width + col] = Pvalue;

}



Matrix-Matrix product: HOST code

void MatrixMultiplication (float* hM, float *hN, float *hP,

int width) {

float *dM, *dN, *dP;

cudaMalloc((void**)&dM, width*width*sizeof(float));

cudaMalloc((void**)&dN, width*width*sizeof(float));

cudaMalloc((void**)&dP, width*width*sizeof(float));

cudaMemcpy(dM, hM, size, cudaMemcpyHostToDevice);

cudaMemcpy(dN, hN, size, cudaMemcpyHostToDevice);

dim3 gridDim(1,1);

dim3 blockDim(width,width);

MMKernel<<<dimGrid, dimBlock>>>(dM, dN, dP, width);

cudaMemcpy(hP, dP, size, cudaMemcpyDeviceToHost);

cudaFree(dM); cudaFree(dN); cudaFree(dP);

}



Matrix-Matrix product: launch grid

WARNING: 

 there’s a limit on the maximum number of allowed threads per block

• depends on the compute capability

How to select an appropriate (or best) thread grid ?

 respect compute capability limits for threads per block

 select the block grid so to cover all elements to be processed

 select block size so that each thread can process one or more data elements 
without raise conditions with other threads 

• use builtin variables blockIdx and blockDim to identify which matrix subblock belong to 
current thread block



Matrix-Matrix product: launch grid

i = blockIdx.x * blockDim.x + threadIdx.x;

j = blockIdx.y * blockDim.y + threadIdx.y;

index = j * MatrixWidth + i;

Matrix

(0,0) (1,0) (2,0)

(0,1) (1,1) (2,1)

(0,2) (1,2) (2,2)

(0,3) (1,3) (2,3)

i

j

gridDim.x * blockDim.x

* index

MatrixWidth



Matrix-Matrix product: CUDA Kernel

__global__ void MMKernel (float* dM, float *dN, float *dP,

int width) {

// row,col from built-in thread indeces(2D block of threads)

int col = blockIdx.x * blockDim.x + threadIdx.x;

int row = blockIdx.y * blockDim.y + threadIdx.y;

// check if current CUDA thread is inside matrix borders

if (row < width && col < width) {

// accumulate element-wise products

// NB: pval stores the dP element computed by the thread

float pval = 0;

for (int k=0; k < width; k++)

pval += dM[row * width + k] * dN[k * width + col];

// store final results (each thread writes one element)

dP[row * width + col] = Pvalue;

}

}



Matrix-Matrix product: HOST code

void MatrixMultiplication (float* hM, float *hN, float *hP,

int width) {

float *dM, *dN, *dP;

cudaMalloc((void**)&dM, width*width*sizeof(float));

cudaMalloc((void**)&dN, width*width*sizeof(float));

cudaMalloc((void**)&dP, width*width*sizeof(float));

cudaMemcpy(dM, hM, size, cudaMemcpyHostToDevice);

cudaMemcpy(dN, hN, size, cudaMemcpyHostToDevice);

dim3 blockDim( TILE_WIDTH, TILE_WIDTH );

dim3 gridDim( (width-1)/TILE_WIDTH+1,(width-1)/TILE_WIDTH+1 );

MMKernel<<<dimGrid, dimBlock>>>(dM, dN, dP, width);

cudaMemcpy(hP, dP, size, cudaMemcpyDeviceToHost);

cudaFree(dM); cudaFree(dN); cudaFree(dP);

}



Resources per Thread Block
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 each CUDA kernel needs a specific 
amount of resources to run

 Once blocks are assigned to the SM, 
registers are assigned to each thread 
block, depending on kernel required 
resources

 Once assigned, registers will belong to 
that thread until the thread block 
complete its work

 so that each thread can access only its 
own assigned registers

 allow for zero-overload schedule when 
content switching among different warp 
execution 



Assigning Thread Blocks to SM
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 Let’s provide an example of block assignmend 
on a SM:
• Fermi architecture: 32768 register per SM
• CUDA kernel grid with 32x8 thread blocks
• CUDA kernel needs 30 registers

 How many thread blocks can host a single SM?
• each block requires

30x32x8 = 7680 registers
• 32768/7680 = 4 blocks + “reminder”
• only 4 blocks can be hosted (out of 8)

 What happen if we modify the kernel a little bit, 
moving to an implementation which requires 33 
registers?
• each block now requires 

33x32x8 = 8448 registers
• 32768/8448 = 3 blocks + “reminder”
• only 3 blocks! (out of 8)

 25% reduction of potential parallelism

4 blocks 3 blocks



Matrix-Matrix product: selecting optimum thread block size
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Which is the best thread block size to select (i.e. TILE_WIDTH)?

On Fermi architectures: each SM can handle up to 1536 total 
threads

 TILE_WIDTH = 8
8x8 = 64 threads  >>>  1536/64 = 24 blocks needed to fully load a SM
… yet there is a limit of maximum 8 resident blocks per SM for cc 2.x
so we end up with just 64x8 = 512 threads per SM on a maximum of 1536 
(only 33% occupancy)

 TILE_WIDTH = 16
16x16 = 256 threads  >>>  1536/256 = 6 blocks to fully load a SM
6x256 = 1536 threads per SM … reaching full occupancy per SM!

 TILE_WIDTH = 32
32x32 = 1024 threads  >>>  1536/1024 = 1.5 = 1 block fully loads SM
1024 threads per SM (only 66% occupancy)

TILE_WIDTH = 16



Matrix-Matrix product: selecting optimum thread block size
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Which is the best thread block size to select (i.e. TILE_WIDTH)?

On Kepler architectures: each SM can handle up to 2048 total 
threads

 TILE_WIDTH = 8
8x8 = 64 threads  >>>  2048/64 = 32 blocks needed to fully load a SM
… yet there is a limit of maximum 16 resident blocks per SM for cc 3.x
so we end up with just 64x16 = 1024 threads per SM on a maximum of 
2048 (only 50% occupancy)

 TILE_WIDTH = 16
16x16 = 256 threads  >>>  2048/256 = 8 blocks to fully load a SM
8x256 = 2048 threads per SM … reaching full occupancy per SM!

 TILE_WIDTH = 32
32x32 = 1024 threads  >>>  2048/1024 = 2 blocks fully load a SM
2x1024 = 2048 threads per SM … reaching full occupancy per SM!

TILE_WIDTH = 16 or 32



Matrix-matrix product: checking error
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mycudaerror=cudaGetLastError() ;

<chiamata kernel>

cudaDeviceSynchronize() ;

mycudaerror=cudaGetLastError() ;

if(mycudaerror != cudaSuccess)  

fprintf(stderr,”%s\n”, 

cudaGetErrorString(mycudaerror)) ;

Hands on: matrix-matrix product

Use the proper CUDA API to check error codes

use cudaGetLastError() to check that kernel has been completed with no errors

mycudaerror=cudaGetLastError()

<chiamata kernel>

ierr = cudaDeviceSynchronize()

mycudaerror=cudaGetLastError()

if(mycudaerror .ne. 0) write(*,*)  & 

‘Error in kernel: ‘,mycudaerror

Try to use block size greater than 32x32. What kind of error is 
reported?



Matrix-matrix product: performances
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Measure performances of matrix-matrix product, both for CPU and GPU version, using 
CUDA Events

Follow these steps: 

Decleare a start and stop cuda event and initialize them with: cudaEventCreate

Plase start and stop events at proper place in the code

Record the start event using: cudaEventRecord

Launch the CPU or GPU (remember to check for errors)

Record the stop event using: cudaEventRecord

Synchronize host code just after the stop event with:  cudaEventSynchronize

Measure the elapsed time between events with: cudaEventElapsedTime

Destroy events with: cudaEventDestroy

Express performance metric using Gflops, knowing that the matrix-matrix product 
algorithm requres 2N3 operations

C 

Gflops

Fortran 


