

GPU acceleration of plane-wave codes using SIRIUS library

MATERIAL SCIENCE CODES ON INNOVATIVE HPC ARCHITECHTURES: TARGETING EXASCALE Anton Kozhevnikov, CSCS December 05, 2017

Introduction

Hybrid supercomputers at CSCS

Tödi AMD Opteron + NVIDIA K20X 393 Teraflops

October 2011

Hybrid supercomputers at CSCS

ETH zürich

Tödi AMD Opteron + NVIDIA K20X 393 Teraflops Piz Daint Intel Sandy Bridge + NVIDIA K20X 7.787 Petaflops

October 2011 Novembre 2013

Hybrid supercomputers at CSCS

Piz Daint: #3 supercomputer in the world

Cray XC50, 5320 nodes

Intel Xeon E5-2690v3 12C, 2.6GHz, 64GB + NVIDIA Tesla P100 16GB 4.761 Teraflops / node

Piz Daint node layout

No magic "silver bullet" exists!

No magic "silver bullet" exists!

Usual steps in porting codes to GPUs

No magic "silver bullet" exists!

Usual steps in porting codes to GPUs

- cleanup and refactor the code
- (possibly) change the data layout
- fully utilize CPU threads and prepare code for node-level parallelization
- move compute-intensive kernels to GPUs

CUDA (C / C++ / Fortran) OpenCL _global__ void add_pw_ekin_gpu_kernel(int num_gvec__, double alpha , 13 __kernel void vector_add(const int n, __global float *a, __global float *b, __global float *c) { 10 double const* pw_ekin_, 14 const int i = get global id(0); 11 cuDoubleComplex const* phi__, if (i < n) { 15 12 cuDoubleComplex const* vphi__, 16 c[i] = a[i] + b[i];13 cuDoubleComplex* hphi) 17 } 14 18 } 15 int ig = blockIdx.x * blockDim.x + threadIdx.x; 16 if (ig < num_gvec__) {</pre> 17 cuDoubleComplex z1 = cuCadd(vphi_[ig], make_cuDoubleComplex(alpha_ * pw_ekin_[ig] * phi_[ig].x, 18 alpha_ * pw_ekin_[ig] * phi_[ig].y)); 19 hphi__[ig] = cuCadd(hphi__[ig], z1); 20 } 21 }

OpenACC

- 76 acc = 0
 77 !\$acc parallel present(x)
- 78 !\$acc loop reduction(+:acc)
- 79 do i = 1, N
- 80 acc = acc + x(i) * x(i)
- 81 enddo
- 82 **!\$acc end parallel**
- 83 call mpi_allreduce(acc, accglobal, 1, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD, err)

OpenMP 4.0

```
#pragma omp target data map(tofrom: x[0:n],y[0:n])
{
    #pragma omp target
    #pragma omp for
    for (int i = 0; i < n; i++)
        y[i] += a * x[i];
}</pre>
```


Electronic-structure codes

Electronic structure codes

Basis functions for KS states Atomic potential treatment	Periodic Bloch functions (plane-waves or similar)	Localized orbitals		
Full-potential	FLEUR Wien2K Exciting Elk	FHI-aims FPLO		
Pseudo-potential	VASP CPMD Quantum ESPRESSO Abinit Qbox	CP2K SIESTA OpenMX		

Atomic total energies with LAPW

	Hydrogen	Helium	Lithium	Beryllium	Boron	Carbon	Nirogen	Oxygen	Fluorine	Neon
NIST	-0.478671	-2.834836	-7.343957	-14.447209			-54.136799			-128.233481
LAPW	-0.478671	-2.834835	-7.343958	-14.447209	-24.356062	-37.470324	-54.136792	-74.531333	-99.114324	-128.233477
MADNESS	-0.478671	-2.834836	-7.343957	-14.447209	-24.356065	-37.470329	-54.136798	-74.531345	-99.114902	-128.233481
NWCHEM					-24.356064	-37.470328	-54.136799	-74.531344	-99.114901	
	1s ¹	1s ²	2s ¹	2s ²	2s ² p ¹	2s ² p ²	2s ² p ³	2s²p4	2s ² p ⁵	2s²p ⁶

Linearized augmented plane-wave method (LAPW):

- provides a very high accuracy of the DFT total energy
- designed for crystalline solids
- considered as a gold standard for electronic structure simulations

Delta DFT codes effort

• CSCS

Code	Version	Basis	Electron treatment	∆-value	Authors
WIEN2k	13.1	LAPW/APW+lo	all-electron	0 meV/atom	S. Cottenier [16] <mark></mark>
FHI-aims	081213	tier2 numerical orbitals	all-electron (relativistic atomic_zora scalar)	0.2 meV/atom	ASE [2,16] <mark></mark>
Exciting	development version	LAPW+xlo	all-electron	0.2 meV/atom	Exciting [10,16] <mark></mark>
Elk	3.1.5	APW+lo	all-electron	0.3 meV/atom	Elk [14,16] <mark>片</mark>
Quantum ESPRESSO	5.1	plane waves	SSSP Accuracy (mixed NC/US/PAW potential library)	0.3 meV/atom	QuantumESPRESSO [12,16]
FHI-aims	081213	tier2 numerical orbitals	all-electron (relativistic zora scalar 1e- 12)	0.3 meV/atom	ASE [2] 皆
VASP	5.2.12	plane waves	PAW 2015 GW-ready (5.4)	0.3 meV/atom	K. Lejaeghere [16] <mark></mark>
ABINIT	7.8.2	plane waves	PAW JTH v1.0	0.4 meV/atom	F. Jollet and M. Torrent Ѐ
FLEUR	0.26	LAPW (+lo)	all-electron	0.4 meV/atom	FLEUR [9,16] <mark></mark>

- Unit cell is partitioned into "muffin-tin" spheres and interstitial region
- Inside MT spheres spherical harmonic expansion is used
- In the interstitial region functions are expanded in plane-waves

- Unit cell is partitioned into "muffin-tin" spheres and interstitial region
- Inside MT spheres spherical harmonic expansion is used
- In the interstitial region functions are expanded in plane-waves

Basis functions:

$$\varphi_{\mathbf{G}+\mathbf{k}}(\mathbf{r}) = \begin{cases} \sum_{\ell m} \sum_{\nu=1}^{O_{\ell}^{\alpha}} A_{\ell m \nu}^{\alpha}(\mathbf{G}+\mathbf{k}) u_{\ell \nu}^{\alpha}(r) Y_{\ell m}(\hat{\mathbf{r}}) & \mathbf{r} \in \mathbf{MT}\alpha \\ \frac{1}{\sqrt{\Omega}} e^{i(\mathbf{G}+\mathbf{k})\mathbf{r}} & \mathbf{r} \in \mathbf{I} \end{cases}$$

- Unit cell is partitioned into "muffin-tin" spheres and interstitial region
- Inside MT spheres spherical harmonic expansion is used
- In the interstitial region functions are expanded in plane-waves

Basis functions:

$$\varphi_{\mathbf{G}+\mathbf{k}}(\mathbf{r}) = \begin{cases} \sum_{\ell m} \sum_{\nu=1}^{O_{\ell}^{\alpha}} A_{\ell m \nu}^{\alpha}(\mathbf{G}+\mathbf{k}) u_{\ell \nu}^{\alpha}(r) Y_{\ell m}(\hat{\mathbf{r}}) & \mathbf{r} \in \mathrm{MT}\alpha \\ \frac{1}{\sqrt{\Omega}} e^{i(\mathbf{G}+\mathbf{k})\mathbf{r}} & \mathbf{r} \in \mathrm{I} \end{cases}$$

Potential and density:

$$V(\mathbf{r}) = \begin{cases} \sum_{\ell m} V_{\ell m}^{\alpha}(r) Y_{\ell m}(\hat{\mathbf{r}}) & \mathbf{r} \in \mathrm{MT}\alpha \\ \sum_{\mathbf{G}} \ell m & V(\mathbf{G}) e^{i\mathbf{G}\mathbf{r}} & \mathbf{r} \in \mathrm{I} \end{cases} \qquad \rho(\mathbf{r}) = \begin{cases} \sum_{\ell m} \rho_{\ell m}^{\alpha}(r) Y_{\ell m}(\hat{\mathbf{r}}) & \mathbf{r} \in \mathrm{MT}\alpha \\ \sum_{\mathbf{G}} \ell m & \rho(\mathbf{G}) e^{i\mathbf{G}\mathbf{r}} & \mathbf{r} \in \mathrm{I} \end{cases}$$

- No approximation to atomic potential
- Core states are included
- Number of basis functions: ~100 / atom
- Number of valence states: ~15-20% of the total basis size
- Large condition number of the overlap matrix
- Full diagonalization of dense matrix is required (iterative subspace diagonalization schemes are not efficient)
- Atomic forces can be easily computed
- Stress tensor can't be easily computed (N-point numerical scheme is required)

- Unit cell is mapped to a regular grid
- All functions are expanded in plane-waves
- All functions are expanded in plane trace. Atomic potential is replaced by a pseudopotential $\hat{V}_{PS} = V_{loc}(\mathbf{r}) + \sum \sum |\beta_{\xi}^{\alpha}\rangle D_{\xi\xi'}^{\alpha}\langle \beta_{\xi'}^{\alpha}|$

- Unit cell is mapped to a regular grid
- All functions are expanded in plane-waves
- Atomic potential is replaced by a pseudopotential $\hat{V}_{PS} = V_{loc}(\mathbf{r}) + \sum \sum |\beta_{\xi}^{\alpha}\rangle D_{\xi\xi'}^{\alpha}\langle \beta_{\xi'}^{\alpha}|$

Basis functions:

$$\varphi_{\mathbf{G}+\mathbf{k}}(\mathbf{r}) = \frac{1}{\sqrt{\Omega}} e^{i(\mathbf{G}+\mathbf{k})\mathbf{r}}$$

- Unit cell is mapped to a regular grid
- All functions are expanded in plane-waves
- Atomic potential is replaced by a pseudopotential $\hat{V}_{PS} = V_{loc}(\mathbf{r}) + \sum \sum |\beta_{\xi}^{\alpha}\rangle D_{\xi\xi'}^{\alpha}\langle \beta_{\xi'}^{\alpha}|$

Basis functions:

$$\varphi_{\mathbf{G}+\mathbf{k}}(\mathbf{r}) = \frac{1}{\sqrt{\Omega}} e^{i(\mathbf{G}+\mathbf{k})\mathbf{r}}$$

Potential and density:

$$V(\mathbf{r}) = \sum_{\mathbf{G}} V(\mathbf{G}) e^{i\mathbf{G}\mathbf{r}} \qquad \rho(\mathbf{r}) = \sum_{\mathbf{G}} \rho(\mathbf{G}) e^{i\mathbf{G}\mathbf{r}}$$

- Approximation to atomic potential
- Core states are excluded
- Number of basis functions: ~1000 / atom
- Number of valence states: ~0.001 0.01% of the total basis size
- Efficient iterative subspace diagonalization schemes exist
- Atomic forces can be easily computed
- Stress tensor can be easily computed

Common features of the FP-LAPW and PP-PW methods

- Definition of the unit cell (atoms, atom types, lattice vectors, symmetry operations, etc.)
- Definition of the reciprocal lattice, plane-wave cutoffs, **G** vectors, **G+k** vectors
- Definition of the wave-functions
- FFT driver
- Generation of the charge density on the regular grid
- Generation of the XC-potential
- Symmetrization of the density, potential and occupancy matrices
- Low-level numerics (spherical harmonics, Bessel functions, Gaunt coefficients, spline interpolation, Wigner D-matrix, linear algebra wrappers, etc.)

SIRIUS library

Computational scientists

Computational scientists

Supercomputer

CSCS

Extend the legacy Fortran codes with the API calls to a domain-specific library which runs on GPUs and other novel architectures.

Extend the legacy Fortran codes with the API calls to a domain-specific library which runs on GPUs and other novel architectures.

Where to draw the line?

Output:

wave-functions $\psi_j(\mathbf{r})$ and eigen energies ε_j charge density $\rho(\mathbf{r})$ and magnetization $\mathbf{m}(\mathbf{r})$ total energy E_{tot} , atomic forces \mathbf{F}_{α} and stress tensor $\sigma_{\alpha\beta}$

SIRIUS library

- full-potential (L)APW+lo
 - non-magnetic, collinear and non-collinear magnetic ground states
 - non-relativistic, ZORA and IORA valence solvers
 - Dirac solver for core states
- norm-conserving, ultrasoft and PAW pseudopotentials
 - non-magnetic, collinear and non-collinear magnetic ground states
 - spin-orbit correction
 - atomic forces
 - stress tensor
 - Gamma-point case

SIRIUS library

CSCS

https://github.com/electronic-structure/SIRIUS

SIRIUS is a collection of classes that abstract away the different building blocks of PW and LAPW codes. The class composition hierarchy starts from the most primitive classes (**Communicator**, **mdarray**, etc.) and progresses towards several high-level classes (**DFT_ground_state**, **Band**, **Potential**, etc.). The code is written in C++11 with MPI, OpenMP and CUDA programming models.

DFT_ground_state							
Band							
	Local_operator						
	Potential					_	
	D	Density					
K_poir	nt_set						
К_ро	oint						
Non_local_	_operator					_	
Beta_pro	ojectors	Periodi	c_function	Matc	hing_coefficients		
		Simulation_	context				
Unit_cell	Radial	_integrals	Au	Augmentation_operator			_function
Atom_type	Rad	dial_grid					
Atom	ę						
Eigensolver Wave functions							
dmatrix							
BLACS_grid	FFT3D						
MPI_grid	Gvec						
Communica	mdarray	splind	lex	matrix3d	veo	ctor3d	

Doxygen documentation

https://electronic-structure.github.io/SIRIUS-doc/

Do[Print[FullSimplify[D[Rlm[1, m, theta, phi], theta]]], {1, 0, 4}, {m, -1, 1}]

Do[Print[FullSimplify[TrigExpand[D[Rlm[1, m, theta, phi], phi]/Sin[theta]]]], {1, 0, 4}, {m, -1, 1}]

Potential class

Generate LDA / GGA exchange-correlation potential from the density

$$v^{XC}(\mathbf{r}) = \frac{\delta E^{XC}[\rho(\mathbf{r}), \mathbf{m}(\mathbf{r})]}{\delta \rho(\mathbf{r})} \qquad \qquad \mathbf{B}^{XC}(\mathbf{r}) = \frac{\delta E^{XC}[\rho(\mathbf{r}), \mathbf{m}(\mathbf{r})]}{\delta \mathbf{m}(\mathbf{r})}$$

Generate Hartree potential

$$v^{H}(\mathbf{r}) = \int \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}'$$

Generate local part of pseudo-potential

$$V_{loc}(\mathbf{G}) = \frac{1}{V} \sum_{\mathbf{T},\alpha} \int e^{-i\mathbf{G}\mathbf{r}} V_{loc}^{\alpha}(\mathbf{r} - \mathbf{T} - \tau_{\alpha}) d\mathbf{r}$$

Generate D-operator matrix

$$D^{\alpha}_{\xi\xi'} = \int V(\mathbf{r}) Q^{\alpha}_{\xi\xi'}(\mathbf{r}) d\mathbf{r}$$

Density class

Generate charge density and magnetization from the valence wave-functions

$$\boldsymbol{\rho}(\mathbf{r}) = \frac{1}{2} \Big(\mathbf{I} \rho(\mathbf{r}) + \boldsymbol{\sigma} \mathbf{m}(\mathbf{r}) \Big) = \frac{1}{2} \begin{pmatrix} \rho(\mathbf{r}) + m_z(\mathbf{r}) & m_x(\mathbf{r}) - im_y(\mathbf{r}) \\ m_x(\mathbf{r}) + im_y(\mathbf{r}) & \rho(\mathbf{r}) - m_z(\mathbf{r}) \end{pmatrix} = \sum_{j=1}^{occ} \begin{pmatrix} \psi_j^{\uparrow *}(\mathbf{r}) \psi_j^{\uparrow}(\mathbf{r}) & \psi_j^{\downarrow *}(\mathbf{r}) \psi_j^{\uparrow}(\mathbf{r}) \\ \psi_j^{\uparrow *}(\mathbf{r}) \psi_j^{\downarrow}(\mathbf{r}) & \psi_j^{\downarrow *}(\mathbf{r}) \psi_j^{\downarrow}(\mathbf{r}) \end{pmatrix}$$

- Generate core charge density (full-potential case)
- Generate density matrix

$$d^{\alpha}_{\xi\xi'} = \langle \beta^{\alpha}_{\xi} | \hat{N} | \beta^{\alpha}_{\xi'} \rangle = \sum_{j\mathbf{k}} \langle \beta^{\alpha}_{\xi} | \Psi_{j\mathbf{k}} \rangle n_{j\mathbf{k}} \langle \Psi_{j\mathbf{k}} | \beta^{\alpha}_{\xi'} \rangle$$

- Augment charge density $\tilde{\rho}(\mathbf{G}) = \sum_{\alpha} \sum_{\xi \xi'} d^{\alpha}_{\xi \xi'} Q^{\alpha}_{\xi' \xi}(\mathbf{G})$
- Symmetrize density and magnetization
- Mix density and magnetization

Band class

Setup and solves the Kohn-Sham eigen-value problem

$$\hat{\mathbf{H}}|\Psi
angle=arepsilon|\Psi
angle$$

- Full-potential LAPW case: $Hx = \varepsilon Sx$, direct diagonalization of dense matrix
- Pseudopotential PW case: Hx=ɛx (norm-conserving pseudo) or Hx=ɛSx (ultrasoft pseudo), iterative diagonalization of dense matrix
 - Conjugate gradient
 - LOBPCG
 - RMM-DIIS
 - Chebyshev filtering method
 - Davidson algorithm

Band class

Setup and solves the Kohn-Sham eigen-value problem

$$\hat{\mathbf{H}}|\Psi
angle=arepsilon|\Psi
angle$$

- Full-potential LAPW case: $Hx = \varepsilon Sx$, direct diagonalization of dense matrix
- Pseudopotential PW case: Hx=ɛx (norm-conserving pseudo) or Hx=ɛSx (ultrasoft pseudo), iterative diagonalization of dense matrix
 - Conjugate gradient
 - LOBPCG
 - RMM-DIIS
 - Chebyshev filtering method
 - Davidson algorithm

All solvers were tried, Davidson method works the best

• We want to solve eigen-value problem ${f H} \tilde{\psi}_j = arepsilon_j \tilde{\psi}_j$

• We want to solve eigen-value problem $\mathbf{H} \tilde{\psi}_j = \varepsilon_j \tilde{\psi}_j$

We know how to apply Hamiltonian to the wave-functions

$$\tilde{h}_{\psi_j} = \mathbf{H}\tilde{\psi}_j = \int e^{-i\mathbf{Gr}}\hat{H}\psi_j(\mathbf{r})d\mathbf{r} \qquad \hat{H} = -\frac{1}{2}\Delta + v_{eff}(\mathbf{r}) + \sum_{\alpha}\sum_{\xi\xi'}|\beta_{\xi}^{\alpha}\rangle D_{\xi\xi'}^{\alpha}\langle\beta_{\xi'}^{\alpha}|$$

• We want to solve eigen-value problem ${f H} ilde{\psi}_j = arepsilon_j ilde{\psi}_j$

We know how to apply Hamiltonian to the wave-functions

$$\tilde{h}_{\psi_j} = \mathbf{H}\tilde{\psi}_j = \int e^{-i\mathbf{Gr}}\hat{H}\psi_j(\mathbf{r})d\mathbf{r} \qquad \hat{H} = -\frac{1}{2}\Delta + v_{eff}(\mathbf{r}) + \sum_{\alpha}\sum_{\xi\xi'}|\beta_{\xi}^{\alpha}\rangle D_{\xi\xi'}^{\alpha}\langle\beta_{\xi'}^{\alpha}|$$

Key idea of the Davidson iterative solver: start with a subspace spanned by a guess to ψ_j and expand it with preconditioned residuals.

Davidson iterative solver: application of the Hamiltonian

Application of the Laplace operator (kinetic energy)

$$-\frac{1}{2}\Delta\psi_j(\mathbf{r}) = \sum_{\mathbf{G}} \left(-\frac{1}{2}\Delta e^{i\mathbf{G}\mathbf{r}}\right) \tilde{\psi}_j(\mathbf{G}) = \sum_{\mathbf{G}} e^{i\mathbf{G}\mathbf{r}} \frac{G^2}{2} \tilde{\psi}_j(\mathbf{G})$$

• Application of the local part of potential

$$\tilde{\psi}_j(\mathbf{G}) \xrightarrow{FFT^{-1}} \psi_j(\mathbf{r}) \to v_{eff}(\mathbf{r})\psi_j(\mathbf{r}) \xrightarrow{FFT} \tilde{h}_{\psi_j}(\mathbf{G})$$

• Application of the non-local local part of potential

$$\sum_{\substack{\alpha \xi \\ \xi'}} \beta_{\xi}^{\alpha}(\mathbf{G}) \sum_{\substack{\xi' \\ \xi'}} D_{\xi\xi'}^{\alpha} \sum_{\substack{\alpha \ast \\ \mathbf{G}' \\ \mathbf{G}' \\ \mathbf{gemm#1} \\ \mathbf{zgemm#2} \\ \mathbf{zgemm#3}}} \tilde{\mu}_{\psi_j}(\mathbf{G}') \rightarrow \tilde{h}_{\psi_j}(\mathbf{G})$$

Initialize the trial basis set:

$$\tilde{\phi}_j^0 \Leftarrow \tilde{\psi}_j$$

Initialize the trial basis set:

$$\tilde{\phi}_j^0 \Leftarrow \tilde{\psi}_j$$

• Apply Hamiltonian to the basis functions:

$$\tilde{h}_{\phi_j^m} = \mathbf{H} \tilde{\phi}_j^m$$

- Initialize the trial basis set:
- Apply Hamiltonian to the basis functions:
- Compute reduced Hamiltonian matrix:

$$\begin{split} \tilde{\phi}_{j}^{0} &\Leftarrow \tilde{\psi}_{j} \\ \tilde{h}_{\phi_{j}^{m}} &= \mathbf{H} \tilde{\phi}_{j}^{m} \\ h_{jj'}^{m} &= \sum_{\mathbf{G}} \tilde{\phi}_{j}^{m*}(\mathbf{G}) \tilde{h}_{\phi_{j'}}^{m}(\mathbf{G}) \end{split}$$

- Initialize the trial basis set:
- Apply Hamiltonian to the basis functions:
- Compute reduced Hamiltonian matrix:
- Diagonalize reduced Hamiltonian matrix and get N lowest eigen pairs:

$$\begin{split} \tilde{\phi}_{j}^{0} &\Leftarrow \tilde{\psi}_{j} \\ \tilde{h}_{\phi_{j}^{m}} = \mathbf{H} \tilde{\phi}_{j}^{m} \\ h_{jj'}^{m} &= \sum_{\mathbf{G}} \tilde{\phi}_{j}^{m*}(\mathbf{G}) \tilde{h}_{\phi_{j'}}^{m}(\mathbf{G}) \\ \mathbf{h}^{m} \mathbf{Z}^{m} &= \epsilon_{j} \mathbf{Z}^{m} \end{split}$$

- Initialize the trial basis set:
- Apply Hamiltonian to the basis functions:
- Compute reduced Hamiltonian matrix:
- Diagonalize reduced Hamiltonian matrix and get N lowest eigen pairs:

$$ullet$$
 Compute residuals ($R_j=\hat{H}\psi_j-\epsilon_j\psi_j$):

$$\begin{split} \tilde{\phi}_{j}^{0} &\Leftarrow \tilde{\psi}_{j} \\ \tilde{h}_{\phi_{j}^{m}} = \mathbf{H} \tilde{\phi}_{j}^{m} \\ h_{jj'}^{m} &= \sum_{\mathbf{G}} \tilde{\phi}_{j}^{m*}(\mathbf{G}) \tilde{h}_{\phi_{j'}}^{m}(\mathbf{G}) \\ \mathbf{h}^{m} \mathbf{Z}^{m} &= \epsilon_{j} \mathbf{Z}^{m} \\ \tilde{R}_{j}^{m} &= \tilde{h}_{\phi_{j}^{m}} \mathbf{Z}^{m} - \epsilon_{j} \tilde{\phi}_{j}^{m} \mathbf{Z}^{m} \end{split}$$

- Initialize the trial basis set:
- Apply Hamiltonian to the basis functions:
 - Compute reduced Hamiltonian matrix:
 - Diagonalize reduced Hamiltonian matrix and get N lowest eigen pairs:

$$ullet$$
 Compute residuals ($R_j=\hat{H}\psi_j-\epsilon_j\psi_j$):

 Apply preconditioner to the unconverged residuals, orthogonalize and add the resulting functions to the basis:

$$\begin{split} \tilde{\phi}_{j}^{0} &\Leftarrow \tilde{\psi}_{j} \\ \tilde{h}_{\phi_{j}^{m}} = \mathbf{H} \tilde{\phi}_{j}^{m} \\ h_{jj'}^{m} &= \sum_{\mathbf{G}} \tilde{\phi}_{j}^{m*}(\mathbf{G}) \tilde{h}_{\phi_{j'}}^{m}(\mathbf{G}) \\ \mathbf{h}^{m} \mathbf{Z}^{m} &= \epsilon_{j} \mathbf{Z}^{m} \\ \tilde{R}_{j}^{m} &= \tilde{h}_{\phi_{j}^{m}} \mathbf{Z}^{m} - \epsilon_{j} \tilde{\phi}_{j}^{m} \mathbf{Z}^{m} \end{split}$$

$$\{\tilde{\phi}_j^{m+1}\} = \{\tilde{\phi}_j^m\} \bigoplus \{P\tilde{R}_j^m\}$$

- Initialize the trial basis set:
- Apply Hamiltonian to the basis functions:
 - Compute reduced Hamiltonian matrix:
 - Diagonalize reduced Hamiltonian matrix and get N lowest eigen pairs:
 - Compute residuals $(R_j = \hat{H}\psi_j \epsilon_j\psi_j)$:
- Apply preconditioner to the unconverged residuals, orthogonalize and add the resulting functions to the basis:
 - Recompute the wave-functions:

$$\tilde{\phi}_j^0 \Leftarrow \tilde{\psi}_j$$

$$\tilde{h}_{\phi_j^m} = \mathbf{H} \tilde{\phi}_j^m$$

$$h_{jj'}^m = \sum_{\mathbf{G}} \tilde{\phi}_j^{m*}(\mathbf{G}) \tilde{h}_{\phi_{j'}}^m(\mathbf{G})$$

$$\mathbf{h}^m \mathbf{Z}^m = \epsilon_j \mathbf{Z}^m$$

$$\tilde{R}_j^m = \tilde{h}_{\phi_j^m} \mathbf{Z}^m - \epsilon_j \tilde{\phi}_j^m \mathbf{Z}^m$$

$$\{\tilde{\phi}_j^{m+1}\} = \{\tilde{\phi}_j^m\} \bigoplus \{P\tilde{R}_j^m\}$$

$$\tilde{\psi}_j = \tilde{\phi}_j^m \mathbf{Z}^m$$

- Initialize the trial basis set:
- Apply Hamiltonian to the basis functions:
 - Compute reduced Hamiltonian matrix:
 - Diagonalize reduced Hamiltonian matrix and get N lowest eigen pairs:
 - Compute residuals $(R_i = \hat{H}\psi_i \epsilon_i\psi_i)$:
- Apply preconditioner to the unconverged residuals, orthogonalize and add the resulting functions to the basis:
 - Recompute the wave-functions:

$$\tilde{\phi}_j^0 \Leftarrow \tilde{\psi}_j$$

$$\tilde{h}_{\phi_j^m} = \mathbf{H} \tilde{\phi}_j^m$$

$$h_{jj'}^m = \sum_{\mathbf{G}} \tilde{\phi}_j^{m*}(\mathbf{G}) \tilde{h}_{\phi_{j'}}^m(\mathbf{G})$$

 $\mathbf{h}^m \mathbf{Z}^m = \epsilon_j \mathbf{Z}^m$

 $\tilde{\psi}_i = \tilde{\phi}_i^m \mathbf{Z}^m$

$$\tilde{R}_j^m = \tilde{h}_{\phi_j^m} \mathbf{Z}^m - \epsilon_j \tilde{\phi}_j^m \mathbf{Z}^m$$

 $\{\tilde{\phi}_{i}^{m+1}\} = \{\tilde{\phi}_{i}^{m}\} \bigoplus \{P\tilde{R}_{i}^{m}\}$

Dynamical RAM for wfc: 2.50 MB
Dynamical RAM for : 2.81 MB
Dynamical RAM for psi: 10.02 MB
Dynamical RAM for hpsi: 10.02 MB
Dynamical RAM for spsi: 10.02 MB
and psi is
$$\tilde{\phi}_{j}$$
 here
$$\tilde{\phi}_{j}$$
 here

=== QE output ===

Initialize subspace basis functions and apply Hamiltonian

plane-wave index G

$$\tilde{h}_{\phi_j^0} = \mathbf{H} \tilde{\phi}_j^0$$

Compute reduced Hamiltonian matrix

Compute residuals

CSCS

• Expand variational space and apply Hamiltonian to new basis functions

$$\tilde{h}_{\phi_j^1} = \mathbf{H} \tilde{\phi}_j^1$$

Compute reduced Hamiltonian matrix

Compute residuals

• Apply preconditioner: $P\tilde{R}_{j}^{1}(\mathbf{G}) = (H_{\mathbf{GG}} - \varepsilon_{j})^{-1}\tilde{R}_{j}^{1}(\mathbf{G})$

Continue to expand variational space

 $\tilde{h}_{\phi_j^2} = \mathbf{H} \tilde{\phi}_j^2$

Continue to expand variational space

 $\tilde{\phi}_j^2 = \tilde{\phi}_j^1 \bigoplus P \tilde{R}_j^1$ plane-wave index G

 $\tilde{h}_{\phi_j^2} = \mathbf{H}\tilde{\phi}_j^2$

Iterate until the convergence (all residuals are zero) is reached

Recompute the wave-functions

• Take ε_j from the last subspace diagonalization

SIRIUS-enabled Quantum ESPRESSO

Development cycle

https://github.com/electronic-structure/q-e

Example of QE/SIRIUS interoperability

QE	Initialization	phase	SIRIUS					
read input create a lis structur	file, read pseudop st of k-points, initia es, communicator	otentials, Ilize data s, etc.						
set unit c atomic po	set unit cell parameters (lattice vectors, atom types, atomic positions, etc.), cutoffs and other parameters							
		initialize s	simulation context					
	set k-points							
		initialize ł	<_point_set class					
		initia	lize Density class					
	initialize Potential cla							
initialize DFT_ground_state class								
generate initial dens								
get rho(G) and mag(G)								

Example of QE/SIRIUS interoperability

ETH zürich

Variable cell relaxation of Si₆₃Ge

Performance benchmark of the QE, Cuda Fortran version of QE and SIRIUS-enabled QE codes for the 64atom unit cell of Si_{1-x}Ge_x The runs we performed on on hybrid nodes with 12-core Intel Haswell @2.5GHz + NVIDIA Tesla P100 card (QE-GPU, QE-SIRIUS-GPU) and on nodes with 68-core Intel Xeon Phi processor @1.4 GHz (QE-KNL). Time for the full 'vc-relax' calculation is reported.

Ground state of Pt-cluster in water

Performance benchmark of the QE and SIRIUS-enabled QE codes for the 288-atom unit cell of Pt cluster embedded in the water. The runs we performed on dual socket 18-core Intel Broadwell @2.1GHz nodes (BW), on hybrid nodes with 12-core Intel Haswell @2.5GHz + NVIDIA Tesla P100 card (GPU) and on nodes with 64-core Intel Xeon Phi processor @1.3 GHz (KNL). ELPA eigen-value solver was used for CPU runs. Time for the SCF ground state calculation is reported.

Thank you for your attention.