
GPU acceleration of plane-wave codes using SIRIUS library
MATERIAL SCIENCE CODES ON INNOVATIVE HPC ARCHITECHTURES: TARGETING EXASCALE
Anton Kozhevnikov, CSCS
December 05, 2017

Introduction

Hybrid supercomputers at CSCS

October 2011

Tödi
AMD Opteron + NVIDIA K20X

393 Teraflops

Hybrid supercomputers at CSCS

October 2011

Tödi
AMD Opteron + NVIDIA K20X

393 Teraflops

Novembre 2013

Piz Daint
Intel Sandy Bridge + NVIDIA K20X

7.787 Petaflops

Hybrid supercomputers at CSCS

October 2011

Tödi
AMD Opteron + NVIDIA K20X

393 Teraflops

Novembre 2013

Piz Daint
Intel Sandy Bridge + NVIDIA K20X

7.787 Petaflops

Novembre 2016

Piz Daint
Intel Haswell + NVIDIA P100

25.326 Petaflops

Piz Daint: #3 supercomputer in the world

Cray XC50, 5320 nodes

Intel Xeon E5-2690v3 12C, 2.6GHz, 64GB + NVIDIA Tesla P100 16GB
4.761 Teraflops / node

Piz Daint node layout

CPU
~500 Gigaflops

GPU
~4.2 Teraflops

16 Gb of
high

bandwidth
memory

64 GB of
DDR4 host

memory

732 GB/s
32 GB/s

bidirectional 
over

PCIe x16
~60 GB/s

Porting codes to GPUs

No magic “silver bullet” exists!

Porting codes to GPUs

No magic “silver bullet” exists!

Usual steps in porting codes to GPUs

▪ cleanup and refactor the code

▪ (possibly) change the data layout

▪ fully utilize CPU threads and prepare code for node-level parallelization

▪ move compute-intensive kernels to GPUs

Porting codes to GPUs

No magic “silver bullet” exists!

Usual steps in porting codes to GPUs

Porting codes to GPUs
▪ CUDA (C / C++ / Fortran)

▪ OpenACC

▪ OpenCL

▪ OpenMP 4.0

Porting codes to GPUs
▪ CUDA (C / C++ / Fortran)

▪ OpenACC

▪ OpenCL

▪ OpenMP 4.0

Electronic-structure codes

Electronic structure codes

Periodic Bloch functions
(plane-waves or similar) Localized orbitals

Full-potential
FLEUR
Wien2K
Exciting

Elk

FHI-aims
FPLO

Pseudo-potential

VASP
CPMD

Quantum ESPRESSO
Abinit
Qbox

CP2K
SIESTA
OpenMX

Atomic
potential treatment

Basis functions
for KS states

Atomic total energies with LAPW

Hydrogen Helium Lithium Beryllium Boron Carbon Nirogen Oxygen Fluorine Neon
NIST -0.478671 -2.834836 -7.343957 -14.447209 -54.136799 -128.233481
LAPW -0.478671 -2.834835 -7.343958 -14.447209 -24.356062 -37.470324 -54.136792 -74.531333 -99.114324 -128.233477
MADNESS -0.478671 -2.834836 -7.343957 -14.447209 -24.356065 -37.470329 -54.136798 -74.531345 -99.114902 -128.233481
NWCHEM -24.356064 -37.470328 -54.136799 -74.531344 -99.114901

1s1 1s2 2s1 2s2 2s2p1 2s2p2 2s2p3 2s2p4 2s2p5 2s2p6

▪ provides a very high accuracy of the DFT total energy
▪ designed for crystalline solids
▪ considered as a gold standard for electronic structure simulations

Linearized augmented plane-wave method (LAPW):

Delta DFT codes effort

Full-potential linearized augmented plane-wave method

Interstitial

atom #1
atom #2

▪ Unit cell is partitioned into “muffin-tin” spheres and interstitial region
▪ Inside MT spheres spherical harmonic expansion is used
▪ In the interstitial region functions are expanded in plane-waves

Full-potential linearized augmented plane-wave method

Interstitial

atom #1
atom #2

▪ Unit cell is partitioned into “muffin-tin” spheres and interstitial region
▪ Inside MT spheres spherical harmonic expansion is used
▪ In the interstitial region functions are expanded in plane-waves

Basis functions:

'G+k(r) =

8
>>><

>>>:

X

`m

O↵

X̀

⌫=1

A↵
`m⌫(G+ k)u↵

`⌫(r)Y`m(r̂) r 2 MT↵

1p
⌦
ei(G+k)r r 2 I

Full-potential linearized augmented plane-wave method

Interstitial

atom #1
atom #2

▪ Unit cell is partitioned into “muffin-tin” spheres and interstitial region
▪ Inside MT spheres spherical harmonic expansion is used
▪ In the interstitial region functions are expanded in plane-waves

Basis functions:

'G+k(r) =

8
>>><

>>>:

X

`m

O↵

X̀

⌫=1

A↵
`m⌫(G+ k)u↵

`⌫(r)Y`m(r̂) r 2 MT↵

1p
⌦
ei(G+k)r r 2 I

Potential and density:

V (r) =

8
>><

>>:

X

`m

V ↵
`m(r)Y`m(r̂) r 2 MT↵

X

G

V (G)eiGr r 2 I
⇢(r) =

8
>><

>>:

X

`m

⇢↵`m(r)Y`m(r̂) r 2 MT↵

X

G

⇢(G)eiGr r 2 I

Full-potential linearized augmented plane-wave method

▪ No approximation to atomic potential

▪ Core states are included

▪ Number of basis functions: ~100 / atom

▪ Number of valence states: ~15-20% of the total basis size

▪ Large condition number of the overlap matrix

▪ Full diagonalization of dense matrix is required (iterative subspace diagonalization schemes

are not efficient)

▪ Atomic forces can be easily computed

▪ Stress tensor can’t be easily computed (N-point numerical scheme is required)

Pseudopotential plane-wave method

▪ Unit cell is mapped to a regular grid
▪ All functions are expanded in plane-waves
▪ Atomic potential is replaced by a pseudopotential V̂PS = V

loc

(r) +
X

↵

X

⇠⇠

0

|�↵

⇠

iD↵

⇠⇠

0h�↵

⇠

0 |

Pseudopotential plane-wave method

▪ Unit cell is mapped to a regular grid
▪ All functions are expanded in plane-waves
▪ Atomic potential is replaced by a pseudopotential

Basis functions:

'G+k(r) =
1p
⌦
ei(G+k)r

V̂PS = V
loc

(r) +
X

↵

X

⇠⇠

0

|�↵

⇠

iD↵

⇠⇠

0h�↵

⇠

0 |

Pseudopotential plane-wave method

▪ Unit cell is mapped to a regular grid
▪ All functions are expanded in plane-waves
▪ Atomic potential is replaced by a pseudopotential

Basis functions:

'G+k(r) =
1p
⌦
ei(G+k)r

Potential and density:

V (r) =
X

G

V (G)eiGr ⇢(r) =
X

G

⇢(G)eiGr

V̂PS = V
loc

(r) +
X

↵

X

⇠⇠

0

|�↵

⇠

iD↵

⇠⇠

0h�↵

⇠

0 |

Pseudopotential plane-wave method

▪ Approximation to atomic potential

▪ Core states are excluded

▪ Number of basis functions: ~1000 / atom

▪ Number of valence states: ~0.001 - 0.01% of the total basis size

▪ Efficient iterative subspace diagonalization schemes exist

▪ Atomic forces can be easily computed

▪ Stress tensor can be easily computed

Common features of the FP-LAPW and PP-PW methods
▪ Definition of the unit cell (atoms, atom types, lattice vectors, symmetry

operations, etc.)

▪ Definition of the reciprocal lattice, plane-wave cutoffs, G vectors, G+k vectors

▪ Definition of the wave-functions

▪ FFT driver

▪ Generation of the charge density on the regular grid

▪ Generation of the XC-potential

▪ Symmetrization of the density, potential and occupancy matrices

▪ Low-level numerics (spherical harmonics, Bessel functions, Gaunt coefficients,
spline interpolation, Wigner D-matrix, linear algebra wrappers, etc.)

SIRIUS library

Motivation for a common domain specific library

Motivation for a common domain specific library

Computational
scientists

Code
developers

Users

Motivation for a common domain specific library

Supercomputer Code

Computational
scientists

Code
developers

Users

Motivation for a common domain specific library

Supercomputer Code

Computational
scientists

Code
developers

Users

Motivation for a common domain specific library

Supercomputer Code

Computational
scientists

Code
developers

Users

Motivation for a common domain specific library

Quantum ESPRESSO

inherent PW / PAW
implementation

BLAS, PBLAS, LAPACK, ScaLAPACK, FFT

Exciting / Elk

inherent LAPW
implementation

CPU

Extend the legacy Fortran codes with the API calls to a domain-specific library
which runs on GPUs and other novel architectures.

Motivation for a common domain specific library

Quantum ESPRESSO

inherent PW / PAW
implementation

BLAS, PBLAS, LAPACK, ScaLAPACK, FFT

Exciting / Elk

inherent LAPW
implementation

CPU

SIRIUS domain specific library
LAPW / PW / PAW implementation

Quantum ESPRESSO

inherent PW / PAW
implementation

Exciting / Elk

inherent LAPW
implementation

BLAS, PBLAS, LAPACK, ScaLAPACK, FFT,
cuBLAS, MAGMA, PLASMA, cuFFT

CPU GPU

Extend the legacy Fortran codes with the API calls to a domain-specific library
which runs on GPUs and other novel architectures.

SIRIUS domain specific library
LAPW / PW / PAW implementation

Where to draw the line?

Effective potential construction

Density mixing

Density generation

Eigen-value problem⇣
� 1

2
�+ veff (r)

⌘
 j(r) = "j j(r)

⇢(r) = ↵⇢new(r) + (1� ↵)⇢old(r)

⇢new(r) =
X

j

| j(r)|2v
eff

(r) =

Z
⇢(r0)

|r0 � r|dr
0 + v

XC

[⇢](r) + v
ext

(r)

Output:

total energy , atomic forces and stress tensor

charge density and magnetization

wave-functions and eigen energies j(r) "j
⇢(r) m(r)

F↵E
tot

�↵�

SIRIUS library

▪ full-potential (L)APW+lo
▪ non-magnetic, collinear and non-collinear magnetic ground states
▪ non-relativistic, ZORA and IORA valence solvers
▪ Dirac solver for core states

▪ norm-conserving, ultrasoft and PAW pseudopotentials
▪ non-magnetic, collinear and non-collinear magnetic ground states
▪ spin-orbit correction
▪ atomic forces
▪ stress tensor
▪ Gamma-point case

SIRIUS library

mdarrayCommunicator splindex matrix3d vector3d

SIRIUS is a collection of classes that abstract away the different building blocks of PW and LAPW codes.
The class composition hierarchy starts from the most primitive classes (Communicator, mdarray, etc.) and
progresses towards several high-level classes (DFT_ground_state, Band, Potential, etc.). The code is
written in C++11 with MPI, OpenMP and CUDA programming models.

Atom Spline

Periodic_function

K_point

Step_function

Matching_coefficients

GvecMPI_grid

dmatrix
FFT3DBLACS_grid

linalg
Eigensolver Wave_functions

Atom_type Radial_grid
Unit_cell Radial_integrals Augmentation_operator

Simulation_context

Non_local_operator

Potential
Local_operator

Band
DFT_ground_state

Beta_projectors

Density
K_point_set

https://github.com/electronic-structure/SIRIUS

https://github.com/electronic-structure/SIRIUS

Doxygen documentation

https://electronic-structure.github.io/SIRIUS-doc/

https://electronic-structure.github.io/SIRIUS-doc/

Potential class
▪ Generate LDA / GGA exchange-correlation potential from the density

▪ Generate Hartree potential

▪ Generate local part of pseudo-potential

▪ Generate D-operator matrix

vH(r) =

Z
⇢(r0)

|r� r0|dr
0

vXC(r) =
�EXC [⇢(r),m(r)]

�⇢(r)
BXC(r) =

�EXC [⇢(r),m(r)]

�m(r)

V
loc

(G) =
1

V

X

T,↵

Z
e�iGrV ↵

loc

(r�T� ⌧
↵

)dr

D↵
⇠⇠0 =

Z
V (r)Q↵

⇠⇠0(r)dr

▪ Generate charge density and magnetization from the valence wave-functions

▪ Generate core charge density (full-potential case)
▪ Generate density matrix

▪ Augment charge density

▪ Symmetrize density and magnetization
▪ Mix density and magnetization

Density class

⇢(r) =
1

2

⇣
I⇢(r) + �m(r)

⌘
=

1

2

✓
⇢(r) +m

z

(r) m
x

(r)� im
y

(r)
m

x

(r) + im
y

(r) ⇢(r)�m
z

(r)

◆
=

occX

j

 "⇤
j

(r) "
j

(r) #⇤
j

(r) "
j

(r)

 "⇤
j

(r) #
j

(r) #⇤
j

(r) #
j

(r)

!

d↵⇠⇠0 = h�↵
⇠ |N̂ |�↵

⇠0i =
X

jk

h�↵
⇠ | jkinjkh jk|�↵

⇠0i

⇢̃(G) =
X

↵

X

⇠⇠0

d↵⇠⇠0Q
↵
⇠0⇠(G)

Band class
▪ Setup and solves the Kohn-Sham eigen-value problem

▪ Full-potential LAPW case: Hx=εSx, direct diagonalization of dense matrix

▪ Pseudopotential PW case: Hx=εx (norm-conserving pseudo) or Hx=εSx (ultrasoft
pseudo), iterative diagonalization of dense matrix
▪ Conjugate gradient
▪ LOBPCG
▪ RMM-DIIS
▪ Chebyshev filtering method
▪ Davidson algorithm

Ĥ| i = "| i

Band class
▪ Setup and solves the Kohn-Sham eigen-value problem

▪ Full-potential LAPW case: Hx=εSx, direct diagonalization of dense matrix

▪ Pseudopotential PW case: Hx=εx (norm-conserving pseudo) or Hx=εSx (ultrasoft
pseudo), iterative diagonalization of dense matrix
▪ Conjugate gradient
▪ LOBPCG
▪ RMM-DIIS
▪ Chebyshev filtering method
▪ Davidson algorithm

Ĥ| i = "| i

All solvers were tried,
Davidson method
works the best

Davidson iterative solver
▪ We want to solve eigen-value problem H ̃j = "j ̃j

Davidson iterative solver

Ĥ = �1

2
�+ veff (r) +

X

↵

X

⇠⇠0

|�↵
⇠ iD↵

⇠⇠0h�↵
⇠0 |

▪ We know how to apply Hamiltonian to the wave-functions

h̃ j = H ̃j =

Z
e�iGrĤ j(r)dr

▪ We want to solve eigen-value problem H ̃j = "j ̃j

Davidson iterative solver

Ĥ = �1

2
�+ veff (r) +

X

↵

X

⇠⇠0

|�↵
⇠ iD↵

⇠⇠0h�↵
⇠0 |

▪ We know how to apply Hamiltonian to the wave-functions

h̃ j = H ̃j =

Z
e�iGrĤ j(r)dr

▪ We want to solve eigen-value problem H ̃j = "j ̃j

Key idea of the Davidson iterative solver: start with a subspace spanned by
a guess to and expand it with preconditioned residuals. j

Davidson iterative solver: application of the Hamiltonian
▪ Application of the Laplace operator (kinetic energy)

 ̃j(G)
FFT�1

�����! j(r) ! veff (r) j(r)
FFT���! h̃ j (G)

�1

2
� j(r) =

X

G

⇣
� 1

2
�eiGr

⌘
 ̃j(G) =

X

G

eiGrG
2

2
 ̃j(G)

▪ Application of the local part of potential

▪ Application of the non-local local part of potential

zgemm#1

zgemm#2

zgemm#3

X

↵⇠

�↵⇠ (G)
X

⇠0

D↵
⇠⇠0

X

G0

�↵⇤⇠0 (G
0) ̃j(G

0) ! h̃ j (G)

Davidson iterative solver: algorithm

•Initialize the trial basis set: �̃0j (̃j

Davidson iterative solver: algorithm

•Apply Hamiltonian to the basis functions: h̃�m
j
= H�̃m

j

•Initialize the trial basis set: �̃0j (̃j

Davidson iterative solver: algorithm

•Apply Hamiltonian to the basis functions: h̃�m
j
= H�̃m

j

•Compute reduced Hamiltonian matrix: hm
jj0 =

X

G

�̃m⇤
j (G)h̃m

�j0
(G)

•Initialize the trial basis set: �̃0j (̃j

Davidson iterative solver: algorithm

•Apply Hamiltonian to the basis functions: h̃�m
j
= H�̃m

j

•Compute reduced Hamiltonian matrix: hm
jj0 =

X

G

�̃m⇤
j (G)h̃m

�j0
(G)

•Initialize the trial basis set: �̃0j (̃j

•Diagonalize reduced Hamiltonian matrix
and get N lowest eigen pairs:

hmZm = ✏jZ
m

Davidson iterative solver: algorithm

•Apply Hamiltonian to the basis functions: h̃�m
j
= H�̃m

j

•Compute reduced Hamiltonian matrix: hm
jj0 =

X

G

�̃m⇤
j (G)h̃m

�j0
(G)

•Compute residuals (): R̃m
j = h̃�m

j
Zm � ✏j �̃

m
j Zm

Rj = Ĥ j � ✏j j

•Initialize the trial basis set: �̃0j (̃j

•Diagonalize reduced Hamiltonian matrix
and get N lowest eigen pairs:

hmZm = ✏jZ
m

Davidson iterative solver: algorithm

•Apply Hamiltonian to the basis functions: h̃�m
j
= H�̃m

j

•Compute reduced Hamiltonian matrix: hm
jj0 =

X

G

�̃m⇤
j (G)h̃m

�j0
(G)

•Compute residuals (): R̃m
j = h̃�m

j
Zm � ✏j �̃

m
j Zm

Rj = Ĥ j � ✏j j

•Apply preconditioner to the unconverged residuals,
orthogonalize and add the resulting functions to
the basis:

{�̃m+1
j } = {�̃m

j }
M

{PR̃m
j }

•Initialize the trial basis set: �̃0j (̃j

•Diagonalize reduced Hamiltonian matrix
and get N lowest eigen pairs:

hmZm = ✏jZ
m

Davidson iterative solver: algorithm

•Apply Hamiltonian to the basis functions: h̃�m
j
= H�̃m

j

•Compute reduced Hamiltonian matrix: hm
jj0 =

X

G

�̃m⇤
j (G)h̃m

�j0
(G)

•Compute residuals (): R̃m
j = h̃�m

j
Zm � ✏j �̃

m
j Zm

Rj = Ĥ j � ✏j j

•Apply preconditioner to the unconverged residuals,
orthogonalize and add the resulting functions to
the basis:

{�̃m+1
j } = {�̃m

j }
M

{PR̃m
j }

•Initialize the trial basis set: �̃0j (̃j

•Recompute the wave-functions: ̃j = �̃mj Zm

•Diagonalize reduced Hamiltonian matrix
and get N lowest eigen pairs:

hmZm = ✏jZ
m

Davidson iterative solver: algorithm

•Apply Hamiltonian to the basis functions: h̃�m
j
= H�̃m

j

•Compute reduced Hamiltonian matrix: hm
jj0 =

X

G

�̃m⇤
j (G)h̃m

�j0
(G)

•Compute residuals (): R̃m
j = h̃�m

j
Zm � ✏j �̃

m
j Zm

Rj = Ĥ j � ✏j j

•Apply preconditioner to the unconverged residuals,
orthogonalize and add the resulting functions to
the basis:

{�̃m+1
j } = {�̃m

j }
M

{PR̃m
j }

•Initialize the trial basis set: �̃0j (̃j

•Recompute the wave-functions: ̃j = �̃mj Zm

•Diagonalize reduced Hamiltonian matrix
and get N lowest eigen pairs:

hmZm = ✏jZ
m

=== QE output ===

Dynamical RAM for wfc: 2.50 MB

Dynamical RAM for <psi|beta>: 2.81 MB

Dynamical RAM for psi: 10.02 MB

Dynamical RAM for hpsi: 10.02 MB

Dynamical RAM for spsi: 10.02 MB

===========================

and psi is here
�̃j

Davidson iterative solver

�̃0
j h̃�0

j
= H�̃0

j

•Initialize subspace basis functions and apply Hamiltonian

pl
an

e-
w

av
e

in
de

x
G

Davidson iterative solver

×=
h0
jj0 �̃0⇤

j h̃�0
j

•Compute reduced Hamiltonian matrix

•Compute eigen-value probelem

= "j

Davidson iterative solver
•Compute residuals

= × - × ×

•Apply preconditioner: PR̃0
j (G) = (HGG � "j)

�1R̃0
j (G)

R̃0
j h̃0

�j
Z0 Z0 ✏j�jj0�̃0

j

Davidson iterative solver
•Expand variational space and apply Hamiltonian to new basis functions

pl
an

e-
w

av
e

in
de

x
G

h̃�1
j
= H�̃1

j
�̃1
j = �̃0

j

M
PR̃0

j

Davidson iterative solver

×=

•Compute reduced Hamiltonian matrix

•Compute eigen-value probelem

= "j

h1
jj0 �̃1⇤

j
h̃1
�j

Davidson iterative solver
•Compute residuals

= × - × ×

•Apply preconditioner:

R̃1
j h̃1

�j Z1 Z1 ✏j�jj0�̃1
j

PR̃1
j (G) = (HGG � "j)

�1R̃1
j (G)

Davidson iterative solver
•Continue to expand variational space

pl
an

e-
w

av
e

in
de

x
G

�̃2
j = �̃1

j

M
PR̃1

j
h̃�2

j
= H�̃2

j

Davidson iterative solver
•Continue to expand variational space

pl
an

e-
w

av
e

in
de

x
G

�̃2
j = �̃1

j

M
PR̃1

j
h̃�2

j
= H�̃2

j

Iterate until the convergence (all residuals are zero) is reached

Davidson iterative solver
•Recompute the wave-functions

= ×
 ̃j �̃m

j Zm

•Take from the last subspace diagonalization"j

SIRIUS-enabled Quantum ESPRESSO

Development cycle

QEF/q-e/master

/q-e/master

/q-e/sirius

Pull request Pull request

https://github.com/electronic-structure/q-e

https://github.com/electronic-structure/q-e

Example of QE/SIRIUS interoperability

QE SIRIUSInitialization phase
read input file, read pseudopotentials,
create a list of k-points, initialize data

structures, communicators, etc.

initialize simulation context

set k-points

initialize Density class

initialize Potential class

generate initial density

initialize DFT_ground_state class

set unit cell parameters (lattice vectors, atom types,
atomic positions, etc.), cutoffs and other parameters

initialize K_point_set class

get rho(G) and mag(G)

Example of QE/SIRIUS interoperability

QE SIRIUSInitialization phase
read input file, read pseudopotentials,
create a list of k-points, initialize data

structures, communicators, etc.

initialize simulation context

set k-points

initialize Density class

initialize Potential class

generate initial density

initialize DFT_ground_state class

set unit cell parameters (lattice vectors, atom types,
atomic positions, etc.), cutoffs and other parameters

initialize K_point_set class

get rho(G) and mag(G)

SCF cycle

set Veff(G) generate Veff(r) and Veff(G)

solve band problem and find KS orbitals

get band energies

find band occupancies set band occupancies

QE SIRIUS

generate unsymmetrized rho(G) and mag(G)

get rho(G) and mag(G)

symmetrize rho(G) and mag(G)

mix rho(G) and mag(G)

generate forcesget forces

generate stress tensorget stress tensor

Variable cell relaxation of Si63Ge
Ti

m
e

to
 s

ol
ut

io
n

(s
ec

)

0

500

1000

1500

2000

Number of nodes

1 2 5 10
138220

774

150240

480

900

298.44

519.5

1'020

1'800

400

637

1'934

QE-KNL (CINECA) QE-SIRIUS-KNL (CSCS) QE-SIRIUS-GPU (CSCS) QE-GPU (NVIDIA)

Performance benchmark of the QE, Cuda Fortran version of QE and SIRIUS-enabled QE codes for the 64-
atom unit cell of Si1-xGex The runs we performed on on hybrid nodes with 12-core Intel Haswell @2.5GHz +
NVIDIA Tesla P100 card (QE-GPU, QE-SIRIUS-GPU) and on nodes with 68-core Intel Xeon Phi processor
@1.4 GHz (QE-KNL). Time for the full ‘vc-relax’ calculation is reported.

Ground state of Pt-cluster in water
Ti

m
e

to
 s

ol
ut

io
n

(s
ec

.)

0

100

200

300

400

Number of nodes
18 32 50

136.78148.9
180.68

112.34125.07

166.49

240249.88

330.14

186.6
208.35

305.46

364.03

275.49

344.18

QE-v6.2-BW QE-sirius-BW QE-sirius-KNL QE-sirius-GPU QE-NVIDIA-GPU

Performance benchmark of the QE and SIRIUS-enabled QE codes for the 288-atom unit cell of Pt cluster
embedded in the water. The runs we performed on dual socket 18-core Intel Broadwell @2.1GHz nodes
(BW), on hybrid nodes with 12-core Intel Haswell @2.5GHz + NVIDIA Tesla P100 card (GPU) and on nodes
with 64-core Intel Xeon Phi processor @1.3 GHz (KNL). ELPA eigen-value solver was used for CPU runs.
Time for the SCF ground state calculation is reported.

Thank you for your attention.

