
D. Sangalli
& the Yambo team

CNR-ISM, Division of Ultrafast
Processes in Materials (FLASHit),

Area della Ricerca di Roma 1,
Monterotondo Scalo, Italy

Bologna
4th Dec 2017

Yambo parallelization:
strategies & performance

outline

motivations: HPC, exascale

paradigms: MPI, OpenMP, and more

Yambo parallelization strategies

Performance

outline

motivations: HPC, exascale

paradigms: MPI, OpenMP, and more

Yambo parallelization strategies

Performance

Clock frequency did not
improve any more since 2005

from single core
to multi core
to HPC centers

HPC & exascale

EINFRA-5-2015 – Centres of Excellence for computing
applications

Specific challenge: Establishing a limited number of Centres of
Excellence (CoE) is necessary to ensure EU competitiveness in
the application of HPC for addressing scientific, industrial or
societal challenges. CoEs will be user-focused, develop a culture
of excellence, both scientific and industrial, placing computational
science and the harnessing of 'big data' at the centre of scientific
discovery and industrial competitiveness. […]

9 CoEs established
4 in Materials Science (and electronic structure)
+ weather, medicine, biochem, data
management, HPC profiling
MaX - Materials design at the exascale

Keywords

within the EU HPC ecosystem

HPC
exascale
big data
scientific SW
users
communities

HPC & exascale

HPC & exascale

the exascale challenge
in high performance computing

10^18 flops/s
10^18 Bytes
abrupt technology changes
action is needed for full
exploitation

The architecture may be non trivial

host host host host

dev dev dev dev

so what?

Higher
accuracy

Larger
systems

High throughput

A lot of computational resources. Will be even more so in the future
YAMBO parallel structure extensively developed in the past years
data and automation: interfacing with yambopy and AiiDA

New physics

non equilibrium physics
(not yet GPL)

QP vs KS energies
BSE vs IP absorption

Extend the limits of system size with both
DFT (5000 atoms?) and MBPT (200 atoms?)

Surfaces, interfaces,
nanostructures ab-initio

yambopy

outline

motivations: HPC, exascale

paradigms: MPI, OpenMP, and more

Yambo parallelization strategies

Performance

MPI

MPI: message passing interface (protocol)
one the most popular standards for parallel
computing (versions: MPI-2, MPI-3)
multiple processes (MPI tasks) are started at the
same time, and communicate by means of MPI
calls

Opportunities

Threats

memory and computation can be distributed
widely supported and available everywhere
arch optimized
both synchronous and asynchronous
communication

communication overheads
load unbalance
memory duplication

MPI

Typical usage

Control

2 nodes, each with 16 cores
32 cores in total
=> run with 32 MPI tasks (memory permitting)

8+8 8+8

running over 16 MPI tasks is achieved by:
mpirun -np 16 yambo -F file.in
safer to set

 export OMP_NUM_THREADS=1 (see next slides)

scheme of nodes
with two octacore CPUs

http://file.in/

OpenMP

OpenMP: open multi processing (API)
support share memory paradigm
multiple threads are forked/joined during
execution to run in parallel (over the same chunk
of memory) specific portions of the code
standard and widely supported (v3 and v4)

Opportunities

Threats

exploits computing power keeping memory under
control (no memory duplication)
can be combined with MPI

works within the node
fork/join processes lead to sensible time overheads
scalability to large number of threads not so easy

Typical usage

Control

2 nodes, each 16 cores
OMP can only be used within the node
=> run with 4 or 8 threads ok
=> run with 16 threads possible but less
 recommended (two sockets present)

8+8 8+8

running over 8 OpenMP threads is achieved by setting:

 export OMP_NUM_THREADS=8
if using MKL, also set:

 export MKL_NUM_THREADS=8

OpenMP

scheme of nodes
with two octacore CPUs

Typical usage

Control

2 nodes, each with 16 cores
OMP within the node, MPI intra and inter node
=> run with 8 MPI tasks, each using up to 4 OpenMP
threads

8+8 8+8

export OMP_NUM_THREADS=4
mpirun -np 8 yambo -F file.in

hybrid MPI+OpenMP

Yambo TIP:
use as many MPI tasks as possible
when memory is over use omg
threads to fill the node

http://file.in/

machine architectures

homogeneous arch

ex: Piz-Daint (CSCS, CH), #8 top500
(Intel Xeon + NVIDIA Tesla P100)
“Heterogeneity is there to stay”

heterogeneous arch

collections of
nodes with a given
number of cores
ex: most local
 clusters
ex: Marconi A2
 (Intel KNL),
 #12 top500

host host host host

dev dev dev dev

how to use GPUs?

host host host host

dev dev dev dev

usually, 1 MPI task per accelerator
need to handle the transfer of data from host to device(s)
with nvidia GPUs, CUDA and CUDA-Fortran can be used
some support is there, not as spread as MPI/OpenMP,
solutions designed for specific hardware,
not as universal as MPI/OpenMP
GPUs support under development in YAMBO ... stay tuned

outline

motivations: HPC, exascale

paradigms: MPI, OpenMP, and more

Yambo parallelization strategies

Performance

yambo implements a hybrid MPI+OpenMP
paradigm

MPI works over several (3 to 5) different
levels, according to the runlevel

OpenMP usually (not always) works at a lower
level, reaching very different levels of efficiency

parallel linear algebra is supported
(ScaLapack, SLEPC, PETSC)

overall, yambo is quite parallel oriented

yambo: parallelism

+

“You can run yambo
on 32'768 cores”

yambo: parallelism

Fermi blue gene Q

Carlo

How Carlo explained it to Andrea

Andrea

yambo: parallelism

blue ginFermi blue gene Q

call mpi_allreduce(x)
among almost 50'000 cores...

Are you sure you want to do it?

How Andrea got it

We do need a hierarchy
among the Cores

yambo: parallelism

Fermi blue gene Q

call mpi_allreduce(x)
among almost 50'000 cores...

Are you sure you want to do it?

How Andrea got it

Action to do:

60 MPI tasks

yambo: parallelism

1
2 2 gr

60 MPI tasks with a 2.3.5.2 scheme

yambo: parallelism

1
2 2 gr

1.1 1.2 1.3

2.1 2.2 2.3

3 sgr

60 MPI tasks with a 2.3.5.2 scheme

yambo: parallelism

1
2 2 gr

1.1 1.2 1.3

2.1 2.2 2.3
1.1.1

3 sgr

1.1.2 1.1.3 1.1.4 1.1.5

2.1.1 2.1.2 2.1.3 2.1.4 2.1.5

1.2.1 1.2.2 1.2.3 1.2.4 1.2.5

2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.3.1 2.3.2 2.3.3 2.3.4 2.3.5

1.3.1 1.3.2 1.3.3 1.3.4 1.3.5

5 sgr

60 MPI tasks with a 2.3.5.2 scheme

yambo: parallelism

1
2 2 gr

1.1 1.2 1.3

2.1 2.2 2.3
1.1.1

3 sgr

1.1.2 1.1.3 1.1.4 1.1.5

2.1.1 2.1.2 2.1.3 2.1.4 2.1.5

1.2.1 1.2.2 1.2.3 1.2.4 1.2.5

2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.3.1 2.3.2 2.3.3 2.3.4 2.3.5

1.3.1 1.3.2 1.3.3 1.3.4 1.3.5

5 sgr

2*3*5*2=60

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2 1 2 1 21 2 1 2 1 2 1 21 2 1 2 1 2
2 sgr

60 MPI tasks with a 2.3.5.2 scheme

Each number in the hierarchy will be distributed on specific variables

yambo: parallelism

1
2 2 gr

1.1 1.2 1.3

2.1 2.2 2.3
1.1.1

3 sgr

1.1.2 1.1.3 1.1.4 1.1.5

2.1.1 2.1.2 2.1.3 2.1.4 2.1.5

1.2.1 1.2.2 1.2.3 1.2.4 1.2.5

2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.3.1 2.3.2 2.3.3 2.3.4 2.3.5

1.3.1 1.3.2 1.3.3 1.3.4 1.3.5

5 sgr

2*3*5*2*8=480

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2 1 2 1 21 2 1 2 1 2 1 21 2 1 2 1 2
2 sgr

60 MPI tasks with a 2.3.5.2 scheme

Each number in the hierarchy will be distributed on specific variables

8 OMP
Threads

yambo: parallelism

We are using 480 cores in total
a) thanks to OpenMP only 60 MPI tasks
b) yambo can exploit parallelism
 on different variables

1
2 2 gr

1.1 1.2 1.3

2.1 2.2 2.3

1.1.1

3 sgr

1.1.2 1.1.3 1.1.4 1.1.5 1.2.1 1.2.2 1.2.3 1.2.4 1.2.5 1.3.1 1.3.2 1.3.3 1.3.4 1.3.5
5 sgr

2*3*5*2*8=480

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2 1 2 1 21 2 1 2 1 2 1 21 2 1 2 1 2
2 sgr

60 MPI tasks with a 2.3.5.2 scheme

Each number in the hierarchy will be distributed on specific variables

8 OMP
Threads

yambo: parallelism

We are using 480 cores in total
a) thanks to OpenMP only 60 MPI tasks
b) yambo can exploit parallelism
 on different variables
c) the number of communications is limited

This enables to overcome limits
of MPI communications which do not

work up to any number of cores

2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.3.1 2.3.2 2.3.3 2.3.4 2.3.5

Linear Response

q transferred
momenta (MPI q)

Xo bands
(MPI c,v)

k momenta
(MPI k)

space variables

X_all_q_ROLEs= “q k c v” # CPUs roles (q,k,c,v)
X_all_q_CPU = “1 2 4 2” # CPUs for each role
X_Threads = 4 # num threads

MPI-cv best memory distribution
MPI-k as efficient, some mem dupl
MPI-q may lead to load unbalance,
 and memory duplication
OpenMP efficient, need extra mem

Linear Response

q transferred
momenta (MPI q)

Xo bands
(MPI c,v)

k momenta
(MPI k)

space variables

X_all_q_ROLEs= “q k c v” # CPUs roles (q,k,c,v)
X_all_q_CPU = “1 2 4 2” # CPUs for each role
X_Threads = 4 # num threads

MPI-cv best memory distribution
MPI-k as efficient, some mem dupl
MPI-q may lead to load unbalance,
 and memory duplication
OpenMP efficient, need extra mem

X_all_q_LinAlg_INV = 64 # CPUs for Linear Alg

Linear Response

q transferred
momenta (MPI q)

Xo bands
(MPI c,v)

k momenta
(MPI k)

space variables

X_all_q_ROLEs= “q k c v” # CPUs roles (q,k,c,v)
X_all_q_CPU = “1 2 4 2” # CPUs for each role
X_Threads = 4 # num threads

MPI-cv best memory distribution
MPI-k as efficient, some mem dupl
MPI-q may lead to load unbalance,
 and memory duplication
OpenMP efficient, need extra mem

X_all_q_LinAlg_INV = 64 # CPUs for Linear Alg

Recent changes: OpenMP at higher level → better performance at price of memory
To come soon: MPI also at lower level → better memory distribution

Exchange self-energy

q transferred
momenta (MPI q)

G bands
(MPI b)

QP states
(MPI qp)

space variables
(OMP SE_T)

SE_ROLEs= “q qp b” # CPUs roles (q,qp,b)
SE_CPU = “1 2 8” # CPUs for each role
SE_Threads = 4 # num threads for
 self-energy calc

MPI-b best memory distribution VALENCE
MPI-qp no communication, mem repl
MPI-q usually leads to load unbalance
OpenMP very efficient up to large
 number of threads

GW (corr) self-energy

q transferred
momenta (MPI q)

G bands
(MPI b)

QP states
(MPI qp)

space variables
(OMP SE_T)

SE_ROLEs= “q qp b” # CPUs roles (q,qp,b)
SE_CPU = “1 2 8” # CPUs for each role
SE_Threads = 4 # num threads for
 self-energy calc

MPI-b best memory distribution
MPI-qp no communication, mem repl
MPI-q usually leads to load unbalance
OpenMP very efficient up to large
 number of threads

outline

motivations: HPC, exascale

paradigms: MPI, OpenMP, and more

Yambo parallelization strategies

Performance

yambo scaling on BGQ

blue gin

Very first scaling tests … now some years old

yambo scaling on BGQ

blue gin

Very first scaling tests … now some years old

yambo scaling on BGQ

Using 16 threads per node

yambo scaling on BGQ

Using 16 threads per node

“What did I tell you?
You can run yambo

on 32'768 cores”
Carlo

Oh yeah, we made it!
2 racks of BGQ

Andrea

yambo scaling on BGQ

yambo: scalapack
LinRes functions

a real life example

Yambo single GW calculation
scaling up to 1000 KNL nodes
(~ 3 Pfl/s, 65’536 cores)

hybrid MPI+OpenMP+scaLapack

Calculations relevant for an
active research field
(graphene nanoribbons)

Performed on a brand new architecture
(Intel KNL @ Marconi)

www.yambo-code.org
en.wikipedia.org/wiki/YAMBO_code

www.facebook.com/yambocode

plus.google.com/+YambocodeOrgPage

Thank you for your attention

github.com/yambo-code
github.com/henriquemiranda/yambopy

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

