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I. INTRODUCTION

In every spectroscopic experiment one perturbs the
sample (by incoming photons, electrons, etc.) and mea-
sures the response of the system to this perturbation. In
other words, the system is excited. Therefore it is in gen-
eral not sufficient to calculate ground-state properties in
order to interpret or predict results of experiments like
photoemission, electron-energy loss, absorption, etc.

Direct and inverse photoemission and absorption can
be taken as the prototype spectroscopies which one
would like to describe in this context. They are sche-
matically depicted in Fig. 1. In the photoemission pro-
cess the system absorbs a photon h# , and an electron is
ejected whose kinetic energy Ek is then measured at
some distance. If one considers this photoelectron to be
completely decoupled from the sample, energy and mo-
mentum conservation allow one to deduce the change in
total energy of the sample, which is interpreted as the
energy level of the ‘‘hole,’’ i.e., the level that was for-
merly occupied by the photoelectron. Hence as a first
approach one can state that photoemission measures the
density of occupied states. By analogy, inverse photo-
emission yields information about the density of unoc-
cupied states. In absorption experiments, an electron is
excited from an occupied state into a conduction state.
This process looks, at first glance, like the sum of a pho-

toemission and an inverse photoemission experiment
(creation of a hole and an electron). Instead, as shown in
Fig. 1, in the absorption measurement the excited elec-
tron remains inside the system and cannot be supposed
to be a free electron decoupled from the others. Hence
whereas direct and inverse photoemission results are of-
ten already well described by the density of occupied
and unoccupied states, respectively, one realizes that (i)
in absorption, the joint density of occupied and unoccu-
pied states must be considered, (ii) even over a small
range of excitation energies, transition probabilities can
vary considerably and must be taken into account, and
(iii) the excited electron and the hole cannot be treated
separately, since the electron feels the presence of the
hole. Point (iii) constitutes the main difficulty for a cor-
rect description of this type of experiment.

The interpretation of photoemission spectra as a den-
sity of occupied states is linked to the picture of inde-
pendent electrons which occupy some well-defined en-
ergy level in the system. Of course, electrons are not
independent, and it is clear that, for example, an elec-
tron that leaves the sample will lead the remaining elec-
trons to relax. This relaxation energy and other
quantum-mechanical contributions must be taken into
account if energy differences are to be calculated cor-
rectly. In other words, in photoemission the single-
electron energy levels are renormalized by the presence
of the other electrons. One can then still retain the pic-
ture of one-particle energy levels, but these particles are
quasielectrons and quasiholes, i.e., they contain the ef-
fects of all the other particles (Landau, 1957a, 1957b,
1959). They can still be described by a sort of one-
particle Schrödinger equation, which does, however,
contain rather complicated effective potentials (also
called optical potentials) reflecting these interactions.
Moreover, it is clear that, in the case of absorption, even
a very sophisticated one-quasiparticle Schrödinger equa-
tion would be inadequate, since the quasielectron and
quasihole must be described simultaneously, requiring

FIG. 1. Schematic representation of the excitations involved in
direct photoemission, inverse photoemission, and absorption
spectroscopies. Photoemission can be resolved in angle, spin,
and time; absorption can be resolved in polarization and time.
This allows a direct probing of the electronic and structural
properties of bulk and low-dimensional samples including dy-
namical effects. $E!Ef"Ef! , apart from phonons and radia-
tive losses.
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the ARPES experiment

scription of synchrotron radiation technology and appli-
cations see Koch et al., 1991), and the development of
the Scienta electron spectrometers (Beamson et al.,
1990; Martensson et al., 1994).

The configuration of a generic angle-resolved photo-
emission beamline is shown in Fig. 6. A beam of white
radiation is produced in a wiggler or an undulator (these
so-called ‘‘insertion devices’’ are the straight sections of
the electron storage ring where radiation is produced), is
monochromatized at the desired photon energy by a
grating monochromator, and is focused on the sample.
Alternatively, a gas-discharge lamp can be used as a ra-
diation source (once properly monochromatized, to
avoid complications due to the presence of different sat-
ellites and refocused to a small spot size, essential for
high angular resolution). However, synchrotron radia-
tion offers important advantages: it covers a wide spec-
tral range, from the visible to the x-ray region, with an
intense and highly polarized continuous spectrum, while
a discharge lamp provides only a few unpolarized reso-
nance lines at discrete energies. Photoemitted electrons
are then collected by the analyzer, where kinetic energy
and emission angle are determined (the whole system is
in high vacuum at pressures lower than 5!10"11 torr).

A conventional hemispherical analyzer consists of a
multielement electrostatic input lens, a hemispherical
deflector with entrance and exit slits, and an electron
detector (i.e., a channeltron or a multichannel detector).
The heart of the analyzer is the deflector, which consists
of two concentric hemispheres of radius R1 and R2 .
These are kept at a potential difference !V , so that only
those electrons reaching the entrance slit with kinetic
energy within a narrow range centered at the value
Epass#e!V/(R1 /R2"R2 /R1) will pass through this
hemispherical capacitor, thus reaching the exit slit and
then the detector. In this way it is possible to measure
the kinetic energy of the photoelectrons with an energy
resolution given by !Ea#Epass(w/R0$"2/4), where
R0#(R1$R2)/2, w is the width of the entrance slit, and
" is the acceptance angle. The role of the electrostatic
lens is to decelerate and focus the photoelectrons onto
the entrance slit. By scanning the lens retarding poten-

tial one can effectively record the photoemission inten-
sity versus the photoelectron kinetic energy. One of the
innovative characteristics of the Scienta analyzer is the
two-dimensional position-sensitive detector consisting of
two microchannel plates and a phosphor plate in series,
followed by a charge-coupled device (CCD) camera. In
this case, no exit slit is required: the electrons, which are
spread apart along the Y axis of the detector (Fig. 6) as
a function of their kinetic energy due to the travel
through the hemispherical capacitor, are detected simul-
taneously. In other words, a range of electron energies is
dispersed over one dimension of the detector and can be
measured in parallel; scanning the lens voltage is in prin-
ciple no longer necessary, at least for narrow energy win-
dows (a few percent of Epass). Furthermore, in contrast
to a conventional electron analyzer in which the mo-
mentum information is averaged over all the photoelec-
trons within the acceptance angle (typically %1°), the
Scienta system can be operated in angle-resolved mode,
which provides energy-momentum information not only
at a single k-point but along an extended cut in k space.
In particular, the photoelectrons within an angular win-
dow of #14° along the direction defined by the analyzer
entrance slit are focused on different X positions on the
detector (Fig. 6). It is thus possible to measure multiple
energy distribution curves simultaneously for different
photoelectron angles, obtaining a 2D snapshot of energy
versus momentum (Fig. 7).

The Scienta SES200 analyzer (R0#200 mm) typically
allows energy and angular resolutions of approximately
a few meV and 0.2°, respectively [for the 21.2-eV pho-
tons of the HeI" line, as one can obtain from Eq. (2),
0.2° corresponds to #1% of the cuprates’ Brillouin-
zone edge $/a]. Note, however, that in estimating the
total energy resolution achievable on a beamline, one
also has to take into account !Em of the monochro-
mator, which can be adjusted with entrance and exit
slits. The ultimate resolution a monochromator can de-
liver is given by its resolving power R#E/!Em ; it can
be as good as 1–2 meV for 20-eV photons but worsens
upon increasing photon energy. To maximize the signal
intensity at the desired total !E , monochromator and

FIG. 6. Generic beamline equipped with a plane grating monochromator and a Scienta electron spectrometer (Color).
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• incident photons (hw, angle, polarization) 

• the method measures the kinetic energy (and the 
exit angles) of outcoming electrons 

•allows to access electronic (band) structures



the ARPES experiment

Varykhalov et al, PRX 2, 041017 (2012)

contradict the structural models established for graphene on
fcc Ni(111) and hcp Co(0001) by theoretical and experi-
mental studies in recent decades and prompt a fundamental
question: Is sublattice symmetry breaking a sufficient con-
dition for the band gap in substrate-supported graphene?

Figure 2 shows the overall band structures of graphene
grown on Ni(111) [Fig. 2(a)] and Co(0001) [Fig. 2(b)]
sampled along the !M and !K lines of the surface
Brillouin zone of graphene. In both cases, the interaction
with the substrate shifts the ! band to higher binding

energies: Its bottom at the "! point is located at a much
higher binding energy (approximately 10:1 eV) as com-
pared to freestanding graphene (approximately 8:4 eV).
The intriguing behavior of the ! band is observed close
to the "K point, the exact location of which is determined

from the backfolding of the"2;3 band at the zone boundary.
One clearly sees that the ! band disperses upward into the
second Brillouin zone and that no band gap is visible at the
"K point. Bands of graphene on Co(0001) [Fig. 2(b)] exhibit
similar behavior but with additional contributions from
non-R0! rotational variants. The regions of interest
(dashed yellow area) are additionally magnified in the
insets and emphasized with a different color scale as well
as by the stacking of spectra [energy distribution curves
(EDCs)]. The full scenario of the!-band dispersion cannot
be seen from these data because the opposite side of the !
band is suppressed by the destructive interference of photo-

electrons along !K [35].
This effect is visible in a full photoemission mapping of

the ! band. Results for graphene on Ni(111) are presented
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FIG. 2. ARPES characterization of the gapless dispersion through the "K point from "!. Overall band structures of graphene on (a)
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of (a) and (b) emphasize the gapless dispersion of the ! band at the "K point.

INTACT DIRAC CONES AT BROKEN SUBLATTICE . . . PHYS. REV. X 2, 041017 (2012)

041017-3

dicular to the sample surface are obtained from the po-
lar (!) and azimuthal (") emission angles.

Within the noninteracting electron picture, and by
taking advantage of total energy and momentum conser-
vation laws (note that the photon momentum can be
neglected at the low photon energies typically used in
ARPES experiments), one can relate the kinetic energy
and momentum of the photoelectron to the binding en-
ergy EB and crystal momentum #k inside the solid:

Ekin!h$"% "!EB!, (1)

p"!#k"!!2mEkin•sin ! . (2)

Here #k" is the component parallel to the surface of the
electron crystal momentum in the extended zone
scheme. Upon going to larger ! angles, one actually
probes electrons with k lying in higher-order Brillouin
zones. By subtracting the corresponding reciprocal-
lattice vector G, one obtains the reduced electron crystal
momentum in the first Brillouin zone. Note that the per-
pendicular component of the wave vector k! is not con-
served across the sample surface due to the lack of
translational symmetry along the surface normal. This
implies that, in general, even experiments performed for
all k" (i.e., by collecting photoelectrons at all possible
angles) will not allow a complete determination of the
total crystal wave vector k [unless some a priori assump-
tion is made for the dispersion E(k) of the electron final
states involved in the photoemission process]. In this re-

gard it has to be mentioned that several specific experi-
mental methods for absolute three-dimensional band
mapping have also been developed (see, for example,
Hüfner, 1995; Strocov et al., 1997, 1998).

A particular case in which the uncertainty in k! is less
relevant is that of the low-dimensional systems charac-
terized by an anisotropic electronic structure and, in par-
ticular, a negligible dispersion along the z axis [i.e.,
along the surface normal; see Fig. 3(a)]. The electronic
dispersion is then almost exclusively determined by k" ,
as in the case of the 2D copper oxide superconductors
which we shall focus on throughout this paper [note,
however, that possible complications arising from a finite
three-dimensionality of the initial and/or final states in-
volved in the photoemission process should always be
carefully considered (Lindroos et al., 2002)]. As a result,
one can map out in detail the electronic dispersion rela-
tions E(k") simply by tracking, as a function of p" , the
energy position of the peaks detected in the ARPES
spectra for different takeoff angles [as in Fig. 3(b),
where both direct and inverse photoemission spectra for
a single band dispersing through the Fermi energy EF
are shown]. As an additional bonus of the lack of z dis-
persion, one can directly identify the width of the pho-
toemission peaks with the lifetime of the photohole
(Smith et al., 1993), which contains information on the
intrinsic correlation effects of the system and is formally
described by the imaginary part of the electron self-
energy (see Sec. II.C). In contrast, in 3D systems the
linewidth contains contributions from both photohole
and photoelectron lifetimes, with the latter reflecting
final-state scattering processes and thus the finite prob-
ing depth; as a consequence, isolating the intrinsic many-
body effects becomes a much more complicated prob-
lem.

Before moving on to the discussion of some theoreti-
cal issues, it is worth pointing out that most ARPES
experiments are performed at photon energies in the
ultraviolet (in particular for h$#100 eV). The main rea-
son is that by working at lower photon energies it is
possible to achieve higher energy and momentum reso-
lution. This is easy to see for the case of the momentum
resolution & k" which, from Eq. (2) and neglecting the
contribution due to the finite energy resolution, is

& k"#!2mEkin /#2•cos !•& ! , (3)

where & ! corresponds to the finite acceptance angle of
the electron analyzer. From Eq. (3) it is clear that the
momentum resolution will be better at lower photon en-
ergy (i.e., lower Ekin), and for larger polar angles !
(note that one can effectively improve the momentum
resolution by extending the measurements to momenta
outside the first Brillouin zone). By working at low pho-
ton energies there are also some additional advantages:
first, for a typical beamline it is easier to achieve high-
energy resolution (see Sec. II.E); second, one can com-
pletely disregard the photon momentum '!2( /) in Eq.
(2), as for 100-eV photons the momentum is 3%
(0.05 Å"1) of the typical Brillouin-zone size of the cu-
prates (2( /a#1.6 Å"1), and at 21.2 eV (the HeI* line

FIG. 2. Energetics of the photoemission process. The electron
energy distribution produced by incoming photons and mea-
sured as a function of the kinetic energy Ekin of the photoelec-
trons (right) is more conveniently expressed in terms of the
binding energy EB (left) when one refers to the density of
states inside the solid (EB!0 at EF). From Hüfner, 1995.
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model realistic system
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theoretical treatment
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sudden approximation
see Hedin, Michiels, Inglesfield, PRB 58,  (1998) 
      Damascelli et al, RMP 75, 473 (2003)
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the 3 steps model

S. Hufner, Photoelectron Spectroscopy, Third Edition. 
see also Slides from Matthias Kreier, Humboldt Uni (2007)

Motivation Angle Resoved Photoelectron Spectroscopy Zero Gap Semiconductor Measurements and Results Summary and Outlook

Energy Relations and Analysis

Energy Relations during Measuring Process

Kinetic Energy

Ekin =
⌅p2

2me
=

me

2
⌅v2

Lorentz Force
⌅F = q(⌅E + ⌅v � ⌅B)

B ⇥ 0.25µT

Example

�⇥ = 21.2eV He-I

� =4 .8eV Au

Ekin = 16.4eV EF

Matthias Kreier (Humboldt Universität, AG EES) Determination of Bandstructure by Photoemission 14. 5. 2007 9 / 30

•(1) photoexcitation  
  intrinsic losses are accounted  
  for (satellite structures) 

•(2) transport to the surface  
  extrinsic losses 

•(3) transmission through the 
surface



connecting to the GF’s

Angle-resolved photoemission studies of the cuprate superconductors
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The last decade witnessed significant progress in angle-resolved photoemission spectroscopy
(ARPES) and its applications. Today, ARPES experiments with 2-meV energy resolution and 0.2°
angular resolution are a reality even for photoemission on solids. These technological advances and
the improved sample quality have enabled ARPES to emerge as a leading tool in the investigation of
the high-Tc superconductors. This paper reviews the most recent ARPES results on the cuprate
superconductors and their insulating parent and sister compounds, with the purpose of providing an
updated summary of the extensive literature. The low-energy excitations are discussed with emphasis
on some of the most relevant issues, such as the Fermi surface and remnant Fermi surface, the
superconducting gap, the pseudogap and d -wave-like dispersion, evidence of electronic
inhomogeneity and nanoscale phase separation, the emergence of coherent quasiparticles through the
superconducting transition, and many-body effects in the one-particle spectral function due to the
interaction of the charge with magnetic and/or lattice degrees of freedom. Given the dynamic nature
of the field, we chose to focus mainly on reviewing the experimental data, as on the experimental side
a general consensus has been reached, whereas interpretations and related theoretical models can vary
significantly. The first part of the paper introduces photoemission spectroscopy in the context of
strongly interacting systems, along with an update on the state-of-the-art instrumentation. The second
part provides an overview of the scientific issues relevant to the investigation of the low-energy
electronic structure by ARPES. The rest of the paper is devoted to the experimental results from the
cuprates, and the discussion is organized along conceptual lines: normal-state electronic structure,
interlayer interaction, superconducting gap, coherent superconducting peak, pseudogap, electron
self-energy, and collective modes. Within each topic, ARPES data from the various copper oxides are
presented.
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I. INTRODUCTION

The discovery of superconductivity at 30 K in the
LaBaCuO ceramics by Bednorz and Müller (1986)
opened the era of high-Tc superconductivity, changing
the history of a phenomenon that had before been con-
fined to very low temperatures [until 1986 the maximum
value of Tc was limited to the 23.2 K observed in Nb3Ge
(Gavaler, 1973; Testardi et al., 1974)]. This unexpected
result prompted intense activity in the field of ceramic
oxides and has led to the synthesis of compounds with
increasingly higher Tc , all characterized by a layered
crystal structure with one or more CuO2 planes per unit
cell, and a quasi-two-dimensional (2D) electronic struc-
ture. By 1987, a Tc of approximately 90 K (i.e., higher
than the boiling point of liquid nitrogen at 77 K) was
already observed in YBa2Cu3O7!" (Wu et al., 1987).
The record Tc of 133.5 K (at atmospheric pressure) was
later obtained in the trilayer system HgBa2Ca2Cu3O8"x
(Schilling et al., 1993).

One may wonder whether the impact of the discovery
by Bednorz and Müller (1986) would have been some-
what overlooked if MgB2 , with its recently ascertained
39 K Tc , had already been discovered [Nagamatsu et al.
(2001); for a review see Day (2001)]. However, indepen-
dent of the values of Tc the observation of superconduc-
tivity in the ceramic copper oxides was in itself an unex-
pected and surprising result. In fact, ceramic materials
are typically insulators, and this is also the case for the
undoped copper oxides. However, when doped the latter
can become poor metals in the normal state and high-
temperature superconductors upon reducing the tem-
perature (see in Fig. 1 the phenomenological phase dia-
gram of electron- and hole-doped high-temperature
superconductors, here represented by Nd2!xCexCuO4
and La2!xSrxCuO4 , respectively). In addition, the de-
tailed investigation of their phase diagram revealed that
the macroscopic properties of the copper oxides are pro-
foundly influenced by strong electron-electron correla-
tions (i.e., large Coulomb repulsion U). Naively, this is
not expected to favor the emergence of superconductiv-
ity, for which electrons must be bound together to form
Cooper pairs. Even though the approximate T2 depen-
dence of the resistivity observed in the overdoped me-
tallic regime was taken as evidence for Fermi-liquid be-
havior, the applicability of Fermi-liquid theory (which
describes electronic excitations in terms of an interacting

gas of renormalized quasiparticles; see Sec. II.C) to the
‘‘normal’’ metallic state of high-temperature supercon-
ductors is questionable, because many properties do not
follow canonical Fermi-liquid behavior (Orenstein and
Millis, 2000). This breakdown of Fermi-liquid theory
and of the single-particle picture becomes most dramatic
upon approaching the undoped line of the phase dia-
gram (x#0 in Fig. 1), where one finds the antiferromag-
netic Mott insulator (see Sec. III). On top of this com-
plexity, it has long been recognized that also the
interplay between electronic and lattice degrees of free-
dom as well as the tendencies towards phase separation
are strong in these componds (Sigmund and Müller,
1993; Müller, 2000).

The cuprate high-temperature superconductors have
attracted great interest not only for the obvious applica-
tion potential related to their high Tc , but also for their
scientific significance. This stems from the fact that they
highlight a major intellectual crisis in the quantum
theory of solids, which, in the form of one-electron band
theory, has been very successful in describing good met-
als (like Cu) but has proven inadequate for strongly cor-
related electron systems. In turn, the Bardeen-Cooper-
Schrieffer (BCS) theory (Bardeen et al., 1957; see also
Schrieffer, 1964), which was developed for Fermi-liquid-
like metals and has been so successful in describing con-
ventional superconductors, does not seem to have the
appropriate foundation for the description of high-Tc
superconductivity. In order to address the scope of the
current approach in the quantum theory of solids and
the validity of the proposed alternative models, a de-
tailed comparison with those experiments that probe the
electronic properties and the nature of the elementary
excitations is required.

In this context, angle-resolved photoemission spec-
troscopy (ARPES) plays a major role because it is the
most direct method of studying the electronic structure
of solids (see Sec. II). Its large impact on the develop-
ment of many-body theories stems from the fact that this
technique provides information on the single-particle
Green’s function, which can be calculated starting from a

FIG. 1. Phase diagram of n- and p-type superconductors,
showing superconductivity (SC), antiferromagnetic (AF),
pseudogap, and normal-metal regions.
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Figure 2.3: Matrix elements of the spectral functions of interacting (dashed
line) and non-interacting (solid line) electron systems.

2.7 Quasiparticles and spectral functions

To interpret more easily the interacting spectral function, let us assume that
both Σ and G are diagonal in the basis of one-particle wavefunctions (this
assumption is in most cases harmless [14]). Then, from equation (2.38), one
can write

⟨i|A(ω)|i⟩ =
1

π
Im

{
1

(ω − ϵi) − Σii(ω)

}
. (2.41)

The resulting spectral function is depicted in figure 2.3 with a dashed line.
The main peak or quasiparticle peak has moved to Ei, which is called the
quasiparticle energy,

Ei = ϵi + ReΣii(Ei). (2.42)

The width of the quasiparticle peak is given by ImΣii(Ei) and can be in-
terpreted as the inverse of the lifetime of the excitation i. When the energy
of the excitation goes farther from Fermi level, the quasiparticle peak gets
broader and the lifetime shorter. For instance, this means that an electron
added in a high empty state will quickly fall into a lower energy state. This
is easily interpreted: an electron excited in a high empty state will not stay
there a long time, since it has many possibilities to decay into a lower empty

Figure from F. Bruneval PhD thesis

Let’s assume: 

Σ and G are diagonal on the basis of 
the non-int Hamiltonian 

Making a Taylor expansion of  Σ(ω) around

renormalization factor



the spectral function

figure from: 

Manybody features include

•satellites 
•lifetimes 
•renormalization

All the above features depend on the dynamical 
and non-hermitian nature of Σ(ω)

Figure from: Damascelli, Hussain, Shen, Rev. Mod. Phys. 75, 473 (2003)
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it works!

The GWA is usually formulated as a perturbation theory
starting from a noninteracting Green’s function G0 for
given one-body Hamiltonian H0 ! "r2

2m # Veff . H0 is non-
interacting, so Veff is static and Hermitian but it can be
nonlocal. Because the GWA is an approximation to the
exact theory, the one-body effective Hamiltonian H$!% !
"r2

2m # Vext # VH # !$!% depends on Veff and is a func-
tional of it: the Hartree potential VH is generated through
G0 ! 1=$!"H0 & i!%, and the GWA generates !$!%.
H$!% determines the time evolution of the one-body am-
plitude for the many-body system.

QSGW is a prescription to determine the optimum H0:
we choose Veff based on a self-consistent perturbation
theory so that the time evolution determined by H0 is as
close as possible to that determined by H$!%, within the
RPA. This idea means that we have to introduce a norm M
to measure the difference "V$!% ! H$!% "H0; the opti-
mum Veff is then that potential which minimizes M. A
physically sensible choice of norm is

M'Veff( ! Tr'"V"$!"H0%f"Vgy(
# Tr'f"Vgy"$!"H0%"V( (1)

where the trace is taken over r and !. Exact minimization
M is apparently not tractable, but an approximate solution
can be found. Note thatM is positive definite. If we neglect
the second term and ignore the restriction that Veff is
Hermitian, we have the trivial minimum M'Veff( ! 0 at
Veff ! Vext # VH # Vxc where Vxc ! P

ijj ii!$"j%ijh jj.
Here !$"i%ij ! h ij!$"i%j ji, and f i; !igare eigenfunc-
tions and eigenvalues ofH0. The second term is similarly a
minimum with !$"i% ! !$"j%. An average of the
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FIG. 1 (color online). Fundamental gaps of sp compounds
from LDA (squares) and GLDAWLDA (circles) in top panel, and
from QSGW, Eq. (2), in bottom panel. The spin-orbit coupling
was subtracted by hand from the calculations. The GLDAWLDA

gaps improve on the LDA, but are still systematically under-
estimated. For QSGW data, zinc-blende compounds with direct
#-# transitions are shown as circles; All other gaps are shown as
squares. Errors are small and highly systematic, and would be
smaller than the figure shows if the electron-phonon renormal-
ization were included.
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Since both core- and all-electron valence states are avail-
able in the PAW method, we can evaluate the contribution to
the valence exchange self-energy coming from the core elec-
trons. As the density matrix is simply the identity matrix in
the subspace of atomic core states, this valence-core ex-
change reads

!x,ij
core = − !

k

core

Vik,jk, "11#

where i , j represent valence basis functions. We limit the
inclusion of valence-core interactions to the exchange poten-
tial, neglecting it in the correlation. This is reasonable be-
cause the polarization bubble, P, involving core and valence
states will be small due to the large energy difference and
small spatial overlap of the valence and core states. This
procedure was used and validated for solids in Ref. 42. We
find that the elements of !x,ij

core can be significant—on average
1.2 eV for the HOMO—and are larger "more negative#for
the more bound orbitals which have larger overlap with the
core states. In general, the effect on the HOMO-LUMO gap
is to enlarge it, on average by 0.4 eV because the more
bound HOMO level is pushed further down than the less
bound LUMO state. In the case of solids, the role of valence-
core interaction has been investigated by a number of
authors.39–42,55 Here the effect on the QP band gap seems to
be smaller than what we find for the molecular gaps. We note
that most GW calculations rely on pseudopotential schemes
where these valence-core interactions are not accessible. In
such codes, the xc contribution from the core electrons are
sometimes estimated by !xc

core$vxc%n&−vxc%nval&, where nval
is the valence electron density but as the local xc potential is
a nonlinear functional of the density, this procedure is not

well justified. Instead we subtract the xc potential of the full
electon density n , and add explicitly the exact exchange core
contribution.

III. RESULTS

In Fig. 1 we compare the calculated HOMO energies with
experimental ionization potentials for the 34 molecules listed
in Table I. The geometries of the molecules, which all belong
to the G2 test set, are taken from Ref. 56. The different
HOMO energies correspond to DFT-PBE "Ref. 57#and DFT-
PBE0 "Ref. 7#eigenvalues, Hartree-Fock eigenvalues, and
fully self-consistent GW. The GW energies are obtained from
the peaks in the corresponding density of states Eq. "9#ex-
trapolated to "=0 "" gives an artificial broadening of the
delta peaks#.

We stress the different meaning of fully self-consistent
GW and the recently introduced method of quasiparticle self-
consistent GW.58 In fully self-consistent GW the Green’s
function obtained from Dyson’s equation Eq. "2# with
!xc%G&=!GW%G&is used to calculate the !GW of the next
iteration. In QP-self-consistent GW, !GW is always evaluated
using a noninteracting Green’s function and the self-
consistency is obtained when the difference between the non-
interacting GF and the interacting GF, is minimal.

Figure 1 clearly shows that both the PBE and PBE0 ei-
genvalues of the HOMO severely underestimates the ioniza-
tion potential. The average deviation from the experimental
values are 4.35 and 2.55 eV, respectively. The overestimation
of the single-particle eigenvalues of occupied states is a well-
known problem of DFT and can be ascribed to the insuffi-
cient cancellation of the self-interaction in the Hartree
potential.4,13 Part of this self-interaction is removed in PBE0.
However, the fact that the HF results are significantly closer
to experiments indicates that the 25% Fock exchange in-
cluded in the PBE0 is not sufficient to cure the erroneous
description of "occupied# molecular orbitals. On the other
hand PBE0 gives good results for band gaps in semiconduc-
tors and insulators where in contrast full Hartree-Fock does
not perform well.14–16 We conclude that the amount of Fock
exchange to be used in the hybrid functionals to achieve
good quasiparticle energies is highly system dependent. A
similar problem is encountered with self-interaction cor-
rected exchange-correlation functionals.13

As can be seen from Fig. 1, GW performs better than
Hartree-Fock for the HOMO energy yielding a mean abso-
lute error "MAE#with respect to experiments of 0.5 eV com-
pared to 0.81 eV with Hartree-Fock. As expected the differ-
ence between HF and GW is not large on an absolute scale
"around 1 eV on average, see Table II#illustrating the fact
that screening is weak in small molecules. On a relative scale
self-consistent GW improves the agreement with experi-
ments by almost 30% as compared to HF.

To gain more insight into the influence of screening on the
orbital energies, we compare in Fig. 2 the deviation of the
HF and GW energies from IPexp. The GW self-energy can be
split into the bare exchange potential and an energy-
dependent correlation part,

FIG. 1. "Color online#Calculated negative HOMO energy ver-
sus experimental ionization potential. Both PBE and PBE0 system-
atically understimates the ionization energy due to self-interaction
errors while HF overestimates it slightly. The dynamical screening
from the GW correlation lowers the HF energies bringing them
closer to the experimental values. Numerical values are listed in
Table I.
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Self-interaction in Green’s-function theory of the hydrogen atom
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Atomic hydrogen provides a unique test case for computational electronic structure methods, since its
electronic excitation energies are known analytically. With only one electron, hydrogen contains no electronic
correlation and is therefore particularly susceptible to spurious self-interaction errors introduced by certain
computational methods. In this paper we focus on many-body perturbation theory !MBPT" in Hedin’s GW
approximation. While the Hartree-Fock and the exact MBPT self-energy are free of self-interaction, the cor-
relation part of the GW self-energy does not have this property. Here we use atomic hydrogen as a benchmark
system for GW and show that the self-interaction part of the GW self-energy, while nonzero, is small. The
effect of calculating the GW self-energy from exact wave functions and eigenvalues, as distinct from those
from the local-density approximation, is also illuminating.
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I. INTRODUCTION

Ab initio many-body quantum mechanical calculations are
crucially important to our understanding of the behavior of
atomic, molecular, and condensed matter systems. It is well-
known that predicting the behavior of these systems requires
the description of electronic correlation. While density-
functional theory !DFT" in the local-density approximation
!LDA" does this with startling success in many cases, it does
so at the expense of a nonphysical electron self-interaction.
For delocalized electron systems this self-interaction be-
comes negligible, but in atomic or strongly localized elec-
tronic systems it plays an important role. If one is interested
in the calculation of quasiparticle excitation spectra, many-
body perturbation theory !MBPT" is formally a correct way
to proceed. For solids, MBPT in Hedin’s GW approximation
#1$ has become the method of choice, but it is also increas-
ingly being applied to molecular systems and clusters. The
GW self-energy can be decomposed into correlation and ex-
change parts, where the latter is the same as the Fock opera-
tor encountered in Hartree-Fock theory and thus self-
interaction free. While the exact self-energy must also be
free of self-interaction, the correlation part of the GW self-
energy does not have this property. To investigate the influ-
ence of self-interaction in the GW approach the hydrogen
atom provides an ideal case because the exact solution is
known analytically.

Hydrogen in its solid phase has previously been studied
within the GW approximation by Li et al. #2$, who analyzed
the transition between the high-pressure solid phase and the
low density, atomiclike limit. For individual atoms, GW elec-
tron removal and addition energies !we use the term “quasi-
particle” energies by analogy with the solid-state situation"

have been investigated by Shirley and Martin #3$, Dahlen et
al. #4,5$, Stan et al. #6$, and Delaney et al. #7$, although
hydrogen was not considered. These studies have shown that
GW, in general, gives quasiparticle properties which are
much improved over DFT and Hartree-Fock methods, even
for atoms.

In this paper we use the hydrogen atom as a benchmark
system to quantify the self-interaction error in the GW ap-
proach. Since the self-energy diagrams beyond GW, known
as the vertex correction, must by definition correct this self-
interaction error, our findings are relevant for research into
vertex functions for the many-electron problem.

Attention has recently focused on the prospects for im-
proving the usual non-self-consistent GW calculations by
choosing an initial Green’s function, G0, that is physically
more reasonable than the LDA !e.g., #2,8,9$". We explore this
here by determining the sensitivity of the self-interaction er-
ror to the use of the exact hydrogenic orbitals and energies in
place of those from the local-density approximation !LDA".
We also assess the error introduced into GW calculations by
employing first-order perturbation theory in solving the qua-
siparticle equation !as opposed to the full numerical solu-
tion", and we analyze the quasiparticle wave functions that
emerge from a full solution.

II. HARTREE-FOCK VERSUS DFT-LDA

In many-body perturbation theory the quasiparticle exci-
tation energies !i" and wave functions #i" are the solutions
of the quasiparticle equation

H0!r"#i"!r" + %
"!
& dr!M""!!r,r!;!i"

qp"#i"!!r!" = !i"
qp#i"!r" ,

!1"

where, in Hartree atomic units, H0!r"=− 1
2!2+vext!r" and

vext!r" is the external potential. It is customary to divide the
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W0!r,r!,!" =# dr""−1!r,r",!"v!r",r!" !14"

then emerge as spin-independent quantities, giving rise to the
simple spin dependence in the GW self-energy $Eq. !10"%.

For numerical convenience and physical insight we sepa-
rate the GW self-energy !10" according to

# $$ = − i$G$$v + G$$!W − v"% = # $$
x + # $$

c . !15"

The first term !# $$
x " corresponds to the Fock operator in Eq.

!3" and will exactly cancel the self-interaction introduced by
the Hartree potential. It is therefore immediately clear that
any deviation from the exact result for hydrogen can only
come from the correlation part of the self-energy !# $$

c ".
The incorrect self-interaction affects the electron removal

energies !here, the ionization potential". For electron addition
energies such as the electron affinity, the entire Hartree po-
tential has a physically reasonable interpretation, since it acts
on the wave function of the originally unoccupied state
which has not contributed to the electron density.

IV. COMPUTATIONAL APPROACH

We solve the quasiparticle equation !1" with the G0W0
self-energy !10" for the quasiparticle energies and wave
functions by fully diagonalizing the quasiparticle Hamil-
tonian in the basis of the single particle orbitals of the non-
interacting system. Since the ground state of the hydrogen
atom !5" is spherically symmetric, it is sufficient to describe
all non-local operators in the GW formalism by two radial
and one spin coordinates, r, r!, and $ and one angular coor-
dinate, %, that denotes the angle between the vectors r and r!.
The self-energy !10" then assumes the much simpler form

# $$!r,r!,%;& " = &
l=0

'

$# l$!r,r!;& "%Pl!cos %"($,$, !16"

where Pl!cos %" is a Legendre polynomial of order l.
The Legendre expansion coefficients of the self-energy

are calculated directly, thereby surpassing the need for a nu-
merical treatment of the angular dependence. We use a real-
space and imaginary time representation $16% to calculate the
self-energy from the noninteracting Green’s function G0. The
expression for the self-energy on the real frequency axis is
obtained by analytic continuation $16%. The current imple-
mentation has been successfully applied to jellium clusters
$17% and light atoms $7%.

Our code allows us to solve the quasiparticle equation !1"
for the GW self-energy with no further approximation. How-
ever, in order to separate the contribution that arises from the
correlation part of the self-energy from that of the exchange
part and the Hartree and exchange-correlation potential we
also solve the quasiparticle equation with the frequently
made approximation that the quasiparticle wave functions
are given by the Kohn-Sham wave functions. The resulting
equation for the quasiparticle energies is

!i$
qp = !i$

KS + '# $$
x (+ '# $$

c !!i$
qp "(− 'v$

xc(, !17"

where the brackets ' (denote matrix elements with respect to
the Kohn-Sham wave function ) i$.

In order to explore the role of the starting points for a GW
calculation, two possible Kohn-Sham input Green’s func-
tions are chosen. First, the familiar LDA, and, second, the
exact Kohn-Sham solution for the hydrogen atom which has
the exact wave function of the hydrogen 1s state !5" and
vxc!r"=−vH!r". !This exact Kohn-Sham Green’s function, in-
cidentally, differs from the exact Green’s function of the hy-
drogen atom because the exact Kohn-Sham unoccupied ei-
genvalues do not signify electron affinities. The exact
Green’s function cannot be constructed from any orthonor-
mal set of one-particle wave functions."

V. RESULTS AND DISCUSSION

The calculated ionization potentials !from a full solution
of the quasiparticle equation" are shown in Table I. The self-
interaction errors in the two GW quasiparticle energies are
seen to be fairly small: 0.95 eV when the approximate LDA
Kohn-Sham starting point is used, and the much smaller
0.21 eV when the exact Kohn-Sham starting point is used.
Clearly the LDA is such a physically poor representation of

TABLE I. Quasiparticle energies !eV" for the 1s state of hydro-
gen !the ionization potential" obtained by diagonalizing the quasi-
particle Hamiltonian !1". Two GW calculations are shown, starting
from the LDA and from exact Kohn-Sham, respectively. For com-
parison, the Hartree-Fock !HF" and LDA eigenvalues are also
shown.
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FIG. 1. !Color online" Radial probability distributions of the
hydrogen 1s state: the quasiparticle wave function deviates only
slightly from the exact wave function, when the latter is used as a
starting point !exact+GW". The LDA wave function, on the other
hand, is more delocalized as a result of the inherent self-interaction.
Adding quasiparticle corrections !LDA+GW" brings the resulting
quasiparticle wave function slightly closer to the exact one again.
The inset shows the difference to the exact wave function.
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then emerge as spin-independent quantities, giving rise to the
simple spin dependence in the GW self-energy $Eq. !10"%.

For numerical convenience and physical insight we sepa-
rate the GW self-energy !10" according to

# $$ = − i$G$$v + G$$!W − v"% = # $$
x + # $$

c . !15"

The first term !# $$
x " corresponds to the Fock operator in Eq.

!3" and will exactly cancel the self-interaction introduced by
the Hartree potential. It is therefore immediately clear that
any deviation from the exact result for hydrogen can only
come from the correlation part of the self-energy !# $$

c ".
The incorrect self-interaction affects the electron removal

energies !here, the ionization potential". For electron addition
energies such as the electron affinity, the entire Hartree po-
tential has a physically reasonable interpretation, since it acts
on the wave function of the originally unoccupied state
which has not contributed to the electron density.

IV. COMPUTATIONAL APPROACH

We solve the quasiparticle equation !1" with the G0W0
self-energy !10" for the quasiparticle energies and wave
functions by fully diagonalizing the quasiparticle Hamil-
tonian in the basis of the single particle orbitals of the non-
interacting system. Since the ground state of the hydrogen
atom !5" is spherically symmetric, it is sufficient to describe
all non-local operators in the GW formalism by two radial
and one spin coordinates, r, r!, and $ and one angular coor-
dinate, %, that denotes the angle between the vectors r and r!.
The self-energy !10" then assumes the much simpler form

# $$!r,r!,%;& " = &
l=0

'

$# l$!r,r!;& "%Pl!cos %"($,$, !16"

where Pl!cos %" is a Legendre polynomial of order l.
The Legendre expansion coefficients of the self-energy

are calculated directly, thereby surpassing the need for a nu-
merical treatment of the angular dependence. We use a real-
space and imaginary time representation $16% to calculate the
self-energy from the noninteracting Green’s function G0. The
expression for the self-energy on the real frequency axis is
obtained by analytic continuation $16%. The current imple-
mentation has been successfully applied to jellium clusters
$17% and light atoms $7%.

Our code allows us to solve the quasiparticle equation !1"
for the GW self-energy with no further approximation. How-
ever, in order to separate the contribution that arises from the
correlation part of the self-energy from that of the exchange
part and the Hartree and exchange-correlation potential we
also solve the quasiparticle equation with the frequently
made approximation that the quasiparticle wave functions
are given by the Kohn-Sham wave functions. The resulting
equation for the quasiparticle energies is

!i$
qp = !i$

KS + '# $$
x (+ '# $$

c !!i$
qp "(− 'v$

xc(, !17"

where the brackets ' (denote matrix elements with respect to
the Kohn-Sham wave function ) i$.

In order to explore the role of the starting points for a GW
calculation, two possible Kohn-Sham input Green’s func-
tions are chosen. First, the familiar LDA, and, second, the
exact Kohn-Sham solution for the hydrogen atom which has
the exact wave function of the hydrogen 1s state !5" and
vxc!r"=−vH!r". !This exact Kohn-Sham Green’s function, in-
cidentally, differs from the exact Green’s function of the hy-
drogen atom because the exact Kohn-Sham unoccupied ei-
genvalues do not signify electron affinities. The exact
Green’s function cannot be constructed from any orthonor-
mal set of one-particle wave functions."

V. RESULTS AND DISCUSSION

The calculated ionization potentials !from a full solution
of the quasiparticle equation" are shown in Table I. The self-
interaction errors in the two GW quasiparticle energies are
seen to be fairly small: 0.95 eV when the approximate LDA
Kohn-Sham starting point is used, and the much smaller
0.21 eV when the exact Kohn-Sham starting point is used.
Clearly the LDA is such a physically poor representation of

TABLE I. Quasiparticle energies !eV" for the 1s state of hydro-
gen !the ionization potential" obtained by diagonalizing the quasi-
particle Hamiltonian !1". Two GW calculations are shown, starting
from the LDA and from exact Kohn-Sham, respectively. For com-
parison, the Hartree-Fock !HF" and LDA eigenvalues are also
shown.
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FIG. 1. !Color online" Radial probability distributions of the
hydrogen 1s state: the quasiparticle wave function deviates only
slightly from the exact wave function, when the latter is used as a
starting point !exact+GW". The LDA wave function, on the other
hand, is more delocalized as a result of the inherent self-interaction.
Adding quasiparticle corrections !LDA+GW" brings the resulting
quasiparticle wave function slightly closer to the exact one again.
The inset shows the difference to the exact wave function.

SELF-INTERACTION IN GREEN’S-FUNCTION THEORY… PHYSICAL REVIEW A 75, 032505 !2007"

032505-3

because of the RPA polarizability 
(self-screening)

P = 



beyond the GW approx
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It is commonly accepted that the GW approximation for the electron self-energy is successful for the
description of the band structure of weakly to moderately correlated systems, whereas it will fail for
strongly correlated materials. In the present work, we discuss two important aspects of this
approximation: first, the “self-screening error,” which is due to an incorrect treatment of induced
exchange, and second, the atomic limit, in which, instead, correlation is directly responsible for the
observed problem. Using the example of the removal of a particle from a box, we show that the
self-screening error stems from the use of test charge-test charge screening and that it can be
corrected by a two-point vertex contribution to the self-energy derived from time-dependent density
functional theory !TDDFT". We explain why the addition of a particle, instead, requires the use of
a different approximate vertex. This illustrates why the general vertex function, valid both for
valence and conduction states, must be a three-point function. Moreover, we show that also the bad
performance of GW in the atomic limit is due to the neglect of the vertex in the self-energy; in that
case, the TDDFT-derived vertex correction is not sufficient in order to remove the error even
qualitatively. We discuss the effects of the self-screening error as well as the atomic limit using GW
for the exactly solvable two-site Hubbard model. © 2009 American Institute of Physics.
#doi:10.1063/1.3249965$

I. INTRODUCTION

In many-body perturbation theory !MBPT" the self-
energy plays a key role since it contains all the many-body
effects of the system. In Hedin’s equations,1 the exchange-
correlation !xc" part of this quantity is expressed as

!xc!12" = iG!14"W!31+""!42;3" , !1"

where G is the one-particle Green’s function, W is the
screened Coulomb potential, and " a three-point vertex.
Here, the set of variables !1" comprises position, spin, and
time coordinates: !1"= !x1 , t1"= !r1 ,#1 , t1" !integration or
summation on the right-hand side over indices not present on
the left is implicit throughout the paper". The exact self-
energy is not known. As first approximation, one could ne-
glect the vertex and arrive at the well known GW approxi-
mation !GWA", !xc!12"= iG!12"W!21+".1 The use of Hedin’s
GWA in realistic calculations of band structures has led to a
breakthrough: in general, GW corrections to the Kohn–Sham
!KS" eigenvalue gap remove most of the underestimate of
the latter with respect to experimental photoemission
gaps.2–8 This success is not fortuitous but stems from the fact
that the GWA captures most of the important physics for the
electron addition and removal. In fact, in its static, so-called
COHSEX,9 approximation, one finds the bare Fock operator
for the exact description of exchange, as well as the screen-
ing of all interactions stemming from the rearrangement of
charge responding to the addition of a point charge to the
system !hence the name—Coulomb hole plus screened ex-

change". A full GW calculation includes the frequency de-
pendence of the response of the system. However, as in the
COHSEX case, the response of the system !the screened
Coulomb interaction W" is evaluated in the random phase
approximation !RPA", neglecting the so-called vertex correc-
tions. The latter appears in two ways in Hedin’s equations:
first, as a correction to the irreducible polarizability, which
simply reads as P=−iGG !instead of P=−iGG"" in RPA.
This vertex is today approximately evaluated in ab initio
calculations, especially in the framework of optical absorp-
tion spectra, because " contains the electron-hole interaction
leading to excitonic effects. P is hence obtained from the
Bethe–Salpeter equation with an effective electron-hole at-
traction kernel derived from ". Calculations are cumbersome
but feasible for reasonably simple systems, and the results
are usually in excellent agreement with experiment.10 Sec-
ond, " appears as a correction to the GWA in the full expres-
sion for the xc self-energy !xc= iGW". This contribution is
less frequently included.2,3 Cancellation effects on quasipar-
ticle energies between the vertices in P and ! have been
discussed mostly for selected cases, like, e.g., for the homo-
geneous electron gas,11–16 where the two contributions are
found to cancel to some extent. Studies on Hubbard
clusters17,18 have emphasized that including vertex correc-
tions in P only does not even qualitatively improve the prob-
lematic description of satellite spectra in GW. A few inves-
tigations in real materials also exist. Shirley and Martin19

reported calculations on atoms using a generalized GW, in
which an exchange-only vertex is included. Calculations for
bulk silicon, performed using an approximate vertex derived
from time-dependent adiabatic local density approximationa"Electronic mail: pina.romaniello@polytechnique.edu.
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Ionization Potentials of Solids: The Importance of Vertex Corrections
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The ionization potential is a fundamental key quantity with great relevance to diverse material properties.
We find that state of the art methods based on density functional theory and simple diagrammatic
approaches as commonly taken in the GW approximation predict the ionization potentials of semi-
conductors and insulators unsatisfactorily. Good agreement between theory and experiment is obtained
only when diagrams resulting from the antisymmetry of the many-electron wave function are taken into
account via vertex corrections in the self-energy. The present approach describes both localized and
delocalized states accurately, making it ideally suited for a wide class of materials and processes.
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Kohn-Sham density functional theory (DFT) is undeni-
ably the workhorse theory of computational condensed
matter physics and materials science. Although Kohn-
Sham (KS) eigenenergies have in general no physical
relevance and serve only as Lagrange multipliers conserv-
ing orthonormality of the orbitals, the eigenenergy of the
highest occupied orbital or valence band maximum (VBM)
is an exception. For the exact density functional, it
corresponds to the vertical ionization potential (IP) [1,2],
the energy required to remove an electron. This funda-
mental relation makes theoretical predictions of the IP
particularly interesting, allowing one to address the quality
of a given density functional. Furthermore, the IPs of
semiconductors and insulators are of great practical rel-
evance to the design of catalysts and photocatalysts.
Among other things, they largely determine the natural
band offsets between different materials that control the
barriers for electron transport at heterojunctions in elec-
tronic devices and photovoltaic cells, as well as the
electronic level alignment between molecules and surfaces.
This clearly emphasizes that the IP is a property of
paramount importance for the electronic behavior of
materials.
Unfortunately, for any approximate, for instance, semi-

local functional, the difference between the highest occu-
pied KS eigenenergy and the experimental IP is often
sizable. For molecular systems, hybrid functionals that mix
the exact Hartree-Fock exchange with local or semilocal
exchange-correlation functionals seem to yield slightly
improved— but certainly not great— agreement with
experiment (see, e.g., [3]). However, little is known for
solids. As an alternative to KS DFT, one electron Green’s
function methods can be used to determine the IP, since the
poles of the one-particle Green’s function correspond to the
electron addition and removal energies, and the smallest
removal energy is just the IP. The Green’s function is

usually calculated using a “perturbative” approach sub-
suming a certain set of Feynman diagrams. In solid state
physics to date, the most common approximation is the
random phase approximation (RPA) as used in Hedin’sGW
method. The RPA sums all electron-hole bubble diagrams
to infinite order [4], but neglects ladder diagrams. It has
been shown that inclusion of the electron-hole ladder
diagrams in the screening, as also done in the Bethe-
Salpeter approach to optical properties [5,6], is essential to
reproduce experimental band gaps when self-consistent
GW approaches or orbitals from hybrid functionals are
used [7–9]. Very little, however, is known about the
importance of the ladder diagrams in the self-energy, which
are described by the vertex in Hedin’s equations [4]. To
date, these contributions have only been evaluated approx-
imately, using DFT [10–12], neglecting the three-point
nature of the vertex [13] or using approximations to the
cumulant expansion [14,15]. The neglect of the three-point
nature results in much too large band gaps, as also shown in
the Supplemental Material [16]. Here, we introduce a novel
three-point vertex for the self-energy. We show that it shifts
delocalized states upwards towards the vacuum level but
lowers localized states. This improves the IPs and the
semicore d band positions significantly, indicating that the
vertex corrected GWΓ approximation is required, when
accurate predictions are needed for absolute quasiparticle
(QP) energies, or whenever QP energy differences between
localized and delocalized states are predicted.
The present ground-state calculations are based on

generalized KS theory [17,18] and use either the Heyd-
Scuseria-Ernzerhof (HSE) hybrid functional [19–21] or the
Perdew-Burke-Ernzerhof (PBE) semilocal functional
[22,23]. The IPs of nonpolar surfaces of semiconductors
and insulators were determined on the level of KS theory,
using the difference between the vacuum level and an
electrostatic reference level in a bulklike region of surface
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beyond the GW approx

using a decoupling approximation that leads to an expo-
nential representation of the one-particle Green’s function.
Together with an estimate for extrinsic and interference
effects, we obtain results for the quasiparticle peaks and
satellites in excellent agreement with experiment. Our
theoretical results can be expressed in terms of a dynamical
vertex correction, a powerful basis for further modeling.

Angular resolved valence photoemission (ARPES) mea-
surements were performed at the UHV photoemission
experimental station of the TEMPO beam line [19] at the
SOLEIL synchrotron radiation source. Linearly polarized
photons from the Apple II type Insertion Device (HU44)
were selected in energy using a high resolution plane grat-
ing monochromator with a resolving powerE=!E ¼ 5000.
The end-station chamber (base pressure 10"10 mbar) is
equipped with a modified SCIENTA-200 electron analyzer
with a delay-line 2D detector which optimizes the
detection linearity and signal/background ratio [20]. The
overall energy resolution was better than 200 meV.
The photon beam impinges on the sample at an angle of
43#, and photoelectrons were detected around the sample
surface normal with an angular acceptance of $6#. An
n-type (ND ’ 2% 10"18P atoms=cm3) Si(001) wafer was
cleaned from the native oxide by flash annealing at 1100 #C
after prolonged degassing at 600 #C in ultrahigh vacuum.
The silicon surface was annealed at 300 #C to prevent
surface etching, and hydrogenated in a partial pressure of
activated hydrogen about 2% 10"8 mbar for 20 min. The
ARPES was measured along the " direction. At 800 eV
kinetic energy the Si Brillouin zone is observed with an
emission angle slightly smaller than 5#. The measured
photoemission map was integrated over the spectral inten-
sity originated by two Brillouin zones. The Fermi level was
obtained by measuring a clean Au(111) surface. The ex-
perimental data (crosses) are summarized in Fig. 1. One can
distinguish the quasiparticle peaks between the Fermi level
at zero and the bottom valence at"12 eV, followed by two
prominent satellite structures, each at a mutual distance of
about 17 eV, as well as a more weakly visible third satellite
between "52 and "60 eV. These structures are obviously
related to the 17 eV silicon bulk plasmon [21,22].

The exact one-electron Green’s function G is described
by an equation of motion with the form of a functional
differential equation [23],

G ¼ G0 þ G0VHG þG0’G þ iG0vc
!G
!’

: (1)

Here G0 is the noninteracting Green’s function, ’ is a
fictitious external perturbation that is set to zero at the
end of the derivation, vc is the bare Coulomb interaction,
and all quantities are understood to be matrices in space,
spin, and time. The Hartree potential VH gives rise to
screening to all orders. Linearizing VH with respect to ’
yields [24]

Gðt1t2Þ ¼ G0
Hðt1t2Þ þ G0

Hðt1t3Þ #’ðt3ÞGðt3t2Þ

þ iG0
Hðt1t3ÞWðt3t4Þ

!Gðt3t2Þ
! #’ðt4Þ

; (2)

where #’ is equal to ’ screened by the inverse dielectric
function,W is the screened Coulomb interaction, and G0

H
is the Green’s function containing the Hartree potential at
vanishing #’; only time arguments are displayed explicitly
and repeated indices are integrated. This linearization pre-
serves the main effects ofW and hence of plasmons. With

the additional approximation !Gðt3t2Þ
! #’ðt4Þ ’ Gðt3t4ÞGðt4t2Þ one

obtains the Dyson equation G ¼ G0
H þ G0

H"G in the
GWA for the self-energy ". However this approximation
can be problematic. For the following analysis we use
the standard G0W0 approach, where G0 is taken from a
local-density approximation calculation and W 0 is the
screened interaction in the random phase approximation.
Figure 2 shows the G0W0 spectral function Að!Þ ¼
1
" jIm"ð!Þj=f½!" "H " Re"ð!Þ*2 þ½Im"ð!Þ*2g of Si
[25] at the $ point, for the top valence (solid line) and
bottom valence (dashed), respectively. The top valence
shows a sharp quasiparticle peak followed by a broad,
weak satellite structure at about "21 eV. This peak stems
from the prominent peak in Im" (full circles) at about
"18 eV, itself due to the plasmon peak in ImW . It is a
typical plasmon satellite, though (cf. [7]), the QP-satellite
spacing is slightly overestimated because the term !"
"H " Re" (full squares) in the denominator of the expres-
sion for Að!Þ is not constant. However the GWA has a
more severe problem: for the bottom valence, the satellite
structure at about "36 eV is much too far from the QP
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FIG. 1 (color online). Experimental XPS spectrum of Si at
800 eV photon energy (blue crosses), compared to the theoretical
intrinsic Að!Þ calculated from G0W0 (red dashed line), and from
Eq. (4) (green dot-dashed line). On top of the latter the black
solid line also includes extrinsic and interference effects. All
spectra contain photoabsorption cross sections, a calculated
secondary electron background and 0.4 eV Gaussian broadening
to account for finite k-point sampling and experimental resolu-
tion. The Fermi energy is set to 0 eV.
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The experimental valence band photoemission spectrum of semiconductors exhibits multiple satellites

that cannot be described by the GW approximation for the self-energy in the framework of many-body

perturbation theory. Taking silicon as a prototypical example, we compare experimental high energy

photoemission spectra withGW calculations and analyze the origin of theGW failure. We then propose an

approximation to the functional differential equation that determines the exact one-body Green’s function,

whose solution has an exponential form. This yields a calculated spectrum, including cross sections,

secondary electrons, and an estimate for extrinsic and interference effects, in excellent agreement with

experiment. Our result can be recast as a dynamical vertex correction beyond GW, giving hints for further

developments.
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Photoemission is a prominent tool to access information
about electronic structure and excitations in materials.
Modern synchrotron sources can provide detailed insight,
thanks to their high intensity and broad photon energy
range. But the interpretation of the experimental data is
far from obvious, and theory is an essential complementary
tool. However, ab initio calculations typically focus on
bulk band structure [1,2]; thus surface effects are ignored,
and satellites are not included. The latter are a pure many-
body effect due to coupling to excitations of the material.
Such many-body effects are contained in approaches de-
veloped for correlated materials [3,4]; however, these are
usually based on models with short-range interactions,
whereas satellites such as plasmons involve long-range
effects. Plasmon satellites have been extensively studied
in core-level experiments [5]. There they can be described
by a theoretical model where a single dispersionless fer-
mion couples to bosons. The resulting exact Green’s func-
tion has an exponential form given by the so-called
cumulant expansion (CE). A Taylor expansion of the ex-
ponential leads to a well-defined quasiparticle (QP) peak
followed by a decaying series of plasmon satellites at
energy differences given by the plasmon energy, consistent
with experimental observations [6– 10]. In the valence
region, plasmon satellites are much less studied, though
ab initio approaches can provide a good starting point. At
high photoelectron energies the photoemission spectrum is
approximately proportional to the intrinsic spectral func-
tion Að!Þ ¼ !ð1=!ÞImGð!Þ, where G is the one-particle
Green’s function. The latter is typically calculated using

the widely used GW approximation (GWA) [7,11,12]. In
principle, the GWA contains correlation effects beyond the
quasiparticle approximation. However, these additional
features are rarely calculated due to computational com-
plexity and, more importantly, the serious discrepancies
between GWA and experiment (see, e.g., [13– 16]). The CE
has also been used for homogeneous electron gas [17] and
simple metals [14,15], yielding an improved description of
satellites overGW. Silicon [16] and graphite [18] were also
studied, but no plasmon satellite series were observed.
However, these results are not conclusive due to difficulties
of interpreting the experimental data. This leaves a series
of important questions: (i) Do materials generally exhibit
intrinsic satellites in the valence band region following a
cumulant like distribution, or are the extrinsic plasmon
peaks, due to losses incurred by the escaping photoelec-
tron, dominant? (ii) If such series are seen, how bad are
ab initio GW calculations? what is the reason for their
failure? and (iii) how can they be improved? Answering
these questions would be a crucial step towards a better
understanding of correlation effects in electronic excita-
tions and a predictive ab initio approach to photoemission.
In this Letter we focus on plasmon satellites using

silicon as a prototypical example. We have obtained va-
lence band photoemission data at high photon energy
(XPS) that constitute a reliable and well resolved bench-
mark. Analysis of the data allows us to elucidate the failure
of GW in describing the satellites. Then, starting from the
fundamental equations of many-body perturbation theory
(MBPT), we show how the failure can be overcome by
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•beyond GW by using a cumulant-expansion 
like self-energy 

•models photoemission including extrinsic 
losses
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