

Istituto Nanoscienze S3 center, Modena, Italy

Electron and Optical properties of Graphene Nanoribbons

Andrea Ferretti

04 Dec 2017

electronics & optics

Geim and Novosolev, Nat. Mat. (2007) *Castro Neto et al.*, RMP (2009)

- Semimetal or zero gap semiconductor
- Linear dispersion around K (K')

Graphene Nanoribbons (GNRs)

Han et al, PRL (2007)

Chen et al, cond-mat/0701599v1 (2007)

edge properties

Son et al., PRL (2006); Pisani et al., PRB (2007)

atomically-precise GNRs

J. Cai et al., Nature 466, 470 (2010)

FIGURE 1. Graphene nanoribbons with nanometer width and atomically-controlled edges are selfassembled on metal substrates. STM images show several non-trivial geometries obtained by choosing appropriate precursors. After Cai et al, Nature 466, 470 (2010).

exp: ARPES & STS

P. Ruffieux, J. Cai, N. C. Plumb, L. Patthey, D. Prezzi, **AF**, E. Molinari, X. Feng, K. Müllen, Carlo A. Pignedoli, and R. Fasel, ACS Nano **6**, 6930 (2012).

methods: DFT + GW + BSE

Electron and hole QP states:

Ground state within Density Functional Theory (DFT)
 Quasiparticle corrections: GW approximation

N - 1

Optical excitations

N + 1

 Electron-hole interaction included through the
 Bethe-Salpeter equation

OPTICAL ABS EELS

STS

UANTUNESPRESSO

Mbo

ARPES

outline

exp: ARPES & STS

P. Ruffieux, J. Cai, N. C. Plumb, L. Patthey, D. Prezzi, **AF**, E. Molinari, X. Feng, K. Müllen, Carlo A. Pignedoli, and R. Fasel, ACS Nano **6**, 6930 (2012).

optical properties

Reflectance Difference Spectroscopy (RDS)

Measurement of optical in-plane anisotropy during GNR growth

R. Denk et al., Nat Comm 5, 4253 (2014)

N7-GNRs@Au(788)

optical properties

vacuum 1

adsorbate ε1+iε2

substrate E1,b+iE2,b

Reflectance Difference Spectroscopy (RDS)

Measurement of optical in-plane anisotropy during GNR growth

R. Denk et al., Nat Comm 5, 4253 (2014)

$$\frac{\Delta r}{r} = 2\frac{r_x - r_y}{r_x + r_y} = 2\frac{r_{[1\bar{1}0]} - r_{[001]}}{r_{[1\bar{1}0]} + r_{[001]}}$$

N7-GNRs@Au(788)

results

ARTICLE

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms5253

theory: electronic structure

theory: isolated AGNRs

Electron and hole QP states:

- Ground state within Density Functional Theory (DFT)
- Quasiparticle corrections: GW approximation

Large quasi-particle corrections to E_{gap}:

$$E_{LDA} = 1.6 \text{ eV} \rightarrow E_{GW} = 3.7 \text{ eV}$$

- Confinement \rightarrow increase e-e interaction
- Weak Screening

AGNR @ Au(III)

DFT electronic structure:

- AGNR bands at Au(111) (red) very similar to gas phase (black)
- Minimal hybridization effects
- Substrate effects mostly due to surface polarizability

we correct for the presence of the substrate by using an **image charge model**

including the substrate

J. Neaton et al., PRL 97, 216405 (2006)

L estimated from

exciton wavefunction (BSE) & optical saturation length (excitons in finite ribbons)

Image charge model

- takes into account the polarization induced by the charged excitation of the system
- for <u>finite systems</u>, the charge distribution of the frontier orbitals (HOMO or LUMO) is described in terms of localized charges
- for <u>extended systems</u>, we define an **effective (screening) length L** of the excitation charge distribution

 $L\sim$ 30-60 Å for N7-ANGR

optical saturation

substrate effect

results

R. Denk et al., Nat Comm 5, 4253 (2014)

ARTICLE

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms5253

	GW	IC corr.	<i>GW</i> + IC corr.	Exp. (STS)
ransport band gap (eV)				
7-AGNR	3.7	1.0-1.4	2.3-2.7	2.3
PA oligomer				
				Exp. (RDS)
ptical band gap (eV)				
7-AGNR				2.1/2.3
PA oligomer				

theory: optical properties

optics of isolated AGNRs

Optical excitations N7 AGNR

 Electron-hole interaction included through the solution of the **Bethe-Salpeter equation**

EXC Binding Energy: 1.8/1.4 eV

results

R. Denk et al., Nat Comm 5, 4253 (2014)

ARTICLE

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms5253

	GW	IC corr.	GW+IC corr.	Exp. (STS)
Transport band gap (eV)				
7-AGNR	3.7	1.0-1.4	2.3-2.7	2.3
PA oligomer				
		E ^{11/22}	GW + BSE	Exp. (RDS)
Optical band gap (eV)				
7-AGNR		1.8/1.4	1.9/2.3	2.1/2.3
PA oligomer				

The experimentally determined transport band gap (STS) of 7-AGNRs and the intermediate PA oligomers adsorbed on the Au substrate compared with the fundamental *GW* band gap including IC corrections. For the first optical transitions, the experimental values are related to the *GW* band gap corrected by the exciton binding energies $E_b^{11/22}$, as determined within the *GW*-BSE scheme.

poly-anthryl

R. Denk et al., Nat Comm 5, 4253 (2014)

results

R. Denk et al., Nat Comm 5, 4253 (2014)

ARTICLE

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms5253

ble 1 Electronic and optical properties of 7-AGNRs and PA oligomers.					
GW	IC corr.	<i>GW</i> +IC corr.	Exp. (STS)		
3.7	1.0-1.4	2.3-2.7	2.3		
5.3	1.0-1.4	3.9-4.3	3.7		
	E _b ^{11/22}	GW + BSE	Exp. (RDS)		
	1.8/1.4	1.9/2.3	2.1/2.3		
	2.3/2.1	3.0/3.2	3.0		
	ical properties of 7-A GW 3.7 5.3	GW IC corr. 3.7 1.0-1.4 5.3 1.0-1.4 Et ^{1/22} 1.8/1.4 2.3/2.1	GW IC corr. GW + IC corr. 3.7 $1.0-1.4$ $2.3-2.7$ $3.9-4.3$ 5.3 $1.0-1.4$ $3.9-4.3$ $E_b^{11/22}$ $GW + BSE$ $1.8/1.4$ $1.9/2.3$ $2.3/2.1$ $3.0/3.2$		

7-AGNR, armchair GNRs of width N = 7; BSE, Bethe-Salpeter equation; IC, image charge; PA, polyanthrylene; RDS, reflectance difference spectroscopy; STS, scanning tunnelling spectroscopy. The experimentally determined transport band gap (STS) of 7-AGNRs and the intermediate PA oligomers adsorbed on the Au substrate compared with the fundamental *GW* band gap including IC corrections. For the first optical transitions, the experimental values are related to the *GW* band gap corrected by the exciton binding energies $E_b^{11/22}$, as determined within the *GW*-BSE scheme.

summary

From model to real systems

prediction of fundamental properties by MBPT (GW + BSE)

Substrate effects

electronic properties are markedly modified by the substrate IC corrections ~ 1eV

corrections to **optical excitations** are less relevant or negligible

Exciton build-up

ISTITUTO NANOSCIENZE CONSIGLIO NAZIONALE DELLE RICERCHI

from polymer precursors to GNRs

chevron ribbons

growth

Figure 3 | Chevron-type GNRs from tetraphenyl-triphenylene monomers.

J. Cai et al, Nature **466**, 470 (2010); J. Cai et al, Nature Nanotech **8** (2014)

The **same reaction pattern** as for N7-AGNR

EELS

- attention needs to be paid to the surface plasmons
- primary electrons with E=20 eV lead to gold dominated signal
- At E=9 eV, EELS signal displays the molecular features

$$-\frac{4\pi i d}{\lambda} \frac{\Delta \epsilon}{\epsilon_{b}-1} = \frac{4\pi d}{\lambda} \left(\frac{\Delta \epsilon_{2}(\epsilon_{1,b}-1) + \Delta \epsilon_{1}\epsilon_{2,b}}{(\epsilon_{1,b}-1)^{2} + \epsilon_{2,b}^{2}} - i \frac{\Delta \epsilon_{1}(\epsilon_{1,b}-1) + \Delta \epsilon_{2}\epsilon_{2,b}}{(\epsilon_{1,b}-1)^{2} + \epsilon_{2,b}^{2}} \right) \frac{d\mathbf{e}}{\epsilon_{1,b}}$$

$$\epsilon(\omega) = 1 + \sum_{m} \frac{A_{m}}{E_{m}^{2} - \omega^{2} - iE_{m}\Gamma_{m}}$$

$$\epsilon(\omega) = 1 + \sum_{m} \frac{A_{m}}{E_{m}^{2} - \omega^{2} - iE_{m}\Gamma_{m}}$$

$$d \quad \text{adsorbate} \quad \epsilon_{1,b} + i\epsilon_{2} \qquad \epsilon = \epsilon_{1} + i\epsilon_{2} \qquad \Delta \epsilon = \epsilon_{\parallel} - \epsilon_{\perp}$$

$$\text{substrate} \quad \epsilon_{1,b} + i\epsilon_{2,b} \qquad \text{oted } n_{\epsilon} \frac{\delta n_{\epsilon} = \epsilon_{1}^{2} + i\epsilon_{2} + \epsilon_{2}}{b} \qquad \text{anisotropy}$$

$$\frac{\Delta r}{r} = -\frac{4\pi i d}{\pi} \frac{\Delta \epsilon}{\left[1 + n(\omega)\right]} \operatorname{Im} \left\{ \frac{\Delta \epsilon_{2}(\epsilon_{1}^{b} - 1) + \Delta \epsilon_{1}\epsilon_{2}^{b}}{i\epsilon_{2}(\epsilon_{1}^{b} - 1)^{2} + (\epsilon_{2}^{b})^{2}} - i \frac{\Delta \epsilon_{1}(\epsilon_{1}^{b} - 1) + \Delta \epsilon_{2}\epsilon_{2}^{b}}{(\epsilon_{1}^{b} - 1)^{2} + (\epsilon_{2}^{b})^{2}} \right]$$

$$\frac{\Delta r}{\epsilon(Q_{\parallel}, \omega)} = \epsilon_{s}(\omega) \left[\frac{i^{\lambda} + \hat{M}(\omega)}{1 - \Delta(\omega)} \exp(-2Q_{\parallel}d)} \right], \qquad (3.12)$$

$$\frac{EELS}{\epsilon_{b}(\omega) - \epsilon_{s}(\omega)} \left[\frac{\epsilon_{b}(\omega)}{\epsilon_{s}(\omega)} + \epsilon_{b}(\omega) \right] \exp(-2Q_{\parallel}d)}{\epsilon(q_{\parallel}, \omega) + 1} = \frac{\epsilon_{b}(\hbar\omega/k_{B}T) - 1}{\epsilon(q_{\parallel}, \omega)} = \epsilon_{b}(\omega)} \left[\frac{1 + \Delta(\omega)}{1 - \Delta(\omega)} \exp(-2q_{\parallel}d)}{\epsilon(q_{\parallel}, \omega) + 1} \right]$$

Excitation energies [eV]

	E1	E2	E3	E4
EELS	2.305	2.780	3.400	4.400
RDS	2.200	2.800	3.400	4.400
THEO	2.05	2.5	2.8	

theo

summary

From model to real systems

prediction of fundamental properties by MBPT (GW + BSE)

Substrate effects

electronic properties are markedly modified by the substrate IC corrections ~ 1eV

corrections to **optical excitations** are less relevant or negligible

Exciton build-up

ISTITUTO NANOSCIENZE CONSIGLIO NAZIONALE DELLE RICERCHI

from polymer precursors to GNRs

acknowledgements

Coworkers:

- THEO S. Wang, D. Prezzi, A. Ruini, E. Molinari S3-CNR-NANO & UniMoRe C. Cardoso, D. Varsano
- EELS V. De Renzi, A. Lodi-Rizzini, R. Biagi UniMoRe & S3-CNR-NANO
- **RDS P. Ruffieux**, J. Cai, C. A. Pignedoli, R. Fasel **EMPA**, Zurich
- **STS**
- ARPES R. Denk, M. Hohage, P. Zeppenfeld Linz University

N.C. Plumb, L. Patthey – Swiss Light Source, Villigen

X. Feng, K. Müllen – Max Planck Institut, Mainz

Related papers:

R. Denk et al, Nanoscale 9, 18326 (2017)

STM-induced

GNR luminescence

experiments

- clear experimental evidence of tip-induced photoluminescence from suspended ribbons
- tip needs to be in chemical contact with the ribbon (C-term.)
- excitation energy significantly smaller than extended GNR =>
 GNR termination

ARTICLE

Received 28 Sep 2015 | Accepted 4 Apr 2016 | Published 16 May 2016

DOI: 10.1038/ncomms11507

OPEN

Giant edge state splitting at atomically precise graphene zigzag edges

Shiyong Wang^{1,*}, Leopold Talirz^{1,*}, Carlo A. Pignedoli^{1,2}, Xinliang Feng³, Klaus Müllen³, Roman Fasel^{1,4} & Pascal Ruffieux¹

- Anti-ferromagnetic edge states when zig-zag termini are exposed
- GW gives a gigantic splitting as compared to DFT (0.3 eV -> 2.8 eV)
- bulk states are non-magnetic and resemble the case of extended GNR

tip effect from DFT

- gold tip restores a non-magnetic ground state
- antiferromagnetic states no longer found

tip effect from DFT

- gold tip restores a non-magnetic ground state
- no antiferromagnetic states found
- experimentally confirmed by STS

GNR optics

- GW & BSE calculations done without tip for several ribbon length
- computationally quite demanding (need HPC)
- relevant excitations involve the states at the termini
- excellent agreement with experiments

acknowledgements

Coworkers:

- THEO D. Prezzi, C. Cardoso S3-CNR-NANO & UniMoRe
- STS M. Chong, N. Afshar-Imani, F. Scheurer,
 G. Schull Uni Strasburg, CNRS

Related papers:

M. Chong et al, submitted (2017)

GNR growth on Au

GNR growth

J. Cai et al, Nature **466**, 470 (2010)

- bottom up from molecular precursors
- two-step reaction
- catalyses by the surface

200 °C

а

Br

Br 1

Au(110) & GNR alignment

42 x 46 nm²

63.2 x 69.8 nm²

Linden et al., PRL 108, 216801 (2012)

Au (788)

Au (110) 1x2 reconstruction

ApproachR @DET(110)

EXTENDED SYSTEMS:

Plane-waves / ultrasoft pseudopotentials / DFT, as implemented in

GNR and precursors on Au(110)

MOLECULES:

aug-cc-pVTZ basis set / CAM-B3LYP, as implemented in ORCA Results compared with structural and spectroscopic measurements:

STM, XPS/UPS, NEXAFS.

GNR @ Au(110)

Coverage

DBBA/Au(110) @ RT DBBA/Au(110) @ 470 K RT 0.1SL Temperature 400 K 0.5 SL 700 K 1 SL

L. Massimi et al, JPCC **119**, 2427 (2015)

A. Della Pia et al, JPCC **120**, 7323 (2016)

low GNR yield, competing mechanisms

XPS: Br-3d core levels

L. Massimi et al, JPCC 119, 2427 (2015)

GNR @ Au(110)

L. Massimi et al, JPCC **119**, 2427 (2015) A. Della Pia et al, JPCC **120**, 7323 (2016)

Annealed @ 700 K

Figure 5. Optimized geometries computed within DFT for the debrominated DBBA. Left panel: molecule aligned along the Au rows, forming one bond with the surface. Right panel: the molecule rotated by 20° with respect to the direction perpendicular to the Au channels, showing the two bonds with the Au surface. The debrominated C atoms are in light blue.

GNR @ Au(110)

A. Della Pia et al, JPCC **120**, 7323 (2016)

Electronic structure

summary

Au(110) studied as a driver for GNR alignment

Substrate-molecule interaction

detailed characterization, low GNR yield, competing mechanisms present

delicate interplay of substratemolecule interaction, corrugation & mobility

catalyze the growth of GNR

stronger in Au(110) than Au(111)

electronic structure: interaction strength experimentally characterised (UPS) and theoretically simulated.

acknowledgements

Coworkers:

- THEO C. Cardoso, D. Varsano, S3-CNR-NANO & UniMoRe D. Prezzi, E. Molinari
- EXP L. Massimi, G. Avvisati, A. Della Pia Uni Roma1 "La Sapienza"
 O. Ourdjini, A. Della Pia,

M.G. Betti, C. Mariani

E. Cavaliere, L. Gavioli – Uni Catt. Brescia

thanks!

