
Programmazione Avanzata

Vittorio Ruggiero
(v.ruggiero@cineca.it)

Roma, Marzo 2017

Outline

Pipeline

CPU: internal parallelism?

I CPU are entirely parallel
I pipelining
I superscalar execution
I units SIMD MMX, SSE, SSE2, SSE3, SSE4, AVX

I To achieve performances comparable to the peak
performance:

I give a large amount of instructions
I give the operands of the instructions

The pipeline

I Pipeline, channel or tube for carrying oil
I An operation is split in independent stages and different stages

are executed simultaneously
I fetch (get, catch) gets the instruction from memory and the

pointer of Program Counter is increased to point to the next
instruction

I decode instruction gets interpreted
I execute send messages which represent commands for

execution
I Parallelism with different operation stages
I Processors significantly exploit pipelining to increase the

computing rate

CPU cycle

I The time to move an instruction one step through the pipeline
is called a machine cycle

I CPI (clock Cycles Per Instruction)
I the number of clock cycles needed to execute an instruction
I varies for different instructions
I its inverse is IPC (Instructions Per Cycle)

NON pipelined computing units

I Each instruction is completed after three cycles

Pipelined units
I After 3 clock cycles, the pipeline is full
I A result per cycle when the pipeline is completely filled
I To fill it 3 independent instructions are needed (including the

operands)

Superpipelined computing units

I After 6 clock cycles, the pipeline is full
I A result per cycle when the pipeline is completely filled
I To fill it 6 independent instructions are needed (including the

operands)
I It is possible to halve the clock rate, i.e. doubling the frequency

Out of order execution

I Dynamically reorder the instructions
I move up instructions having operands which are available
I postpone instructions having operands still not available
I reorder reads/write from/into memory
I always considering the free functional units

I Exploit significantly:
I register renaming (physical vs architectural registers)
I branch prediction
I combination of multiple read and write from/to memory

I Crucial to get high performance on present CPUs
I The code should not hide the reordering possibilities

Out of order execution

Superscalar execution

I CPUs have different independent units
I functional differentiation
I functional replication

I Independent operations are executed at the same time
I integer operations
I floating point operations
I skipping memory
I memory accesses

I Instruction Parallelism
I Hiding latencies
I Processors exploit superscalarity to increase the computing

power for a fixed clock rate

How to exploit internal parallelism?

I Main issues:
I minimize dependency among instructions
I handle conditional statements (if and loop)?
I provide all the required data

I Who has to modify the code?
I CPU? → yes, if possible, OOO and branch prediction
I compiler? → yes, is possible, understanding the semantics
I user? → yes, for the most complex cases

I Strategies
I loop unrolling → unroll the loop
I loop merging → merge loops into a single loop
I loop splitting → decompose complex loops
I function inlining → avoid breaking instruction flow

Loop unrolling

I Repeat the body of a loop k times and go through
the loop with a step length k

I k is called the unrolling factor

do j = 1, nj -> do j = 1, nj
do i = 1, ni -> do i = 1, ni, 2
a(i,j)=a(i,j)+c*b(i,j) -> a(i ,j)=a(i ,j)+c*b(i ,j)

-> a(i+1,j)=a(i+1,j)+c*b(i+1,j)

I The unrolled version of the loop has increased code size, but in
turn, will execute fewer overhead instructions.

I The same number of operations, but the loop index is
incremented half of the times

I The performance of this loop depends upon both the trace
cache and L1 cache state.

I In general the unrolled version runs faster because fewer
overhead instrunctions are executed.

I It is not valid when data dependences exist.

Reduction & Unroll

do j = i, nj ! normal case 1)
do i = i, ni

somma = somma + a(i,j)
end do

end do
......

do j = i, nj !reduction to 4 elements.. 2)
do i = i, ni, 4

somma_1 = somma_1 + a(i+0,j)
somma_2 = somma_2 + a(i+1,j)
somma_3 = somma_3 + a(i+2,j)
somma_4 = somma_4 + a(i+3,j)

end do
end do
somma = somma_1 + somma_2 + somma_3 + somma_4

f77 -native -O2 (-O4)
time 1) ---> 4.49785 (2.94240)
time 2) ---> 3.54803 (2.75964)

What inhibits loop unrolling?

I Conditional jumps (if ...)
I Calls to intrinsic functions and library (sin,exp,)
I I/0 operations in the loop

Compiler options

I Can I know how compiler works?

I See reference documentation for the compiler.
I Use, for example, the intel compiler with flag -qopt-report.

Compiler options

I Can I know how compiler works?
I See reference documentation for the compiler.

I Use, for example, the intel compiler with flag -qopt-report.

Compiler options

I Can I know how compiler works?
I See reference documentation for the compiler.
I Use, for example, the intel compiler with flag -qopt-report.

	Pipeline

