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AGENDA
La mia parte di corso

I Architetture
I La cache ed il sistema di memoria
I Pipeline
I Compilatori
I Librerie Scientifiche
I Makefile
I Profiling seriale
I Profiling parallelo
I Debugging seriale
I Debugging parallelo
I Esercitazioni



Questionario

I Quale linguaggio di programmazione conoscete?
Bene Abbastanza Per niente

Fortran

C

C++

Altro



Questionario

I In quale ambiente lavorate abitualmente?
Windows

Unix/Linux

Mac

I Quali architetture conoscete?
Bene Abbastanza Poco

IBM

Intel

AMD

Altra



Questionario

I Mai sentito parlare di...
Si Poco No

Cache

Memoria virtuale

TLB

Pipeline

Registri

I Esperienze di calcolo ad alte prestazioni
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What is the best performance which can be achieved?

Matrix multiplication (time in seconds)
Precision single double
Incorrect Loop 7500 7300
Without optimization 206 246
With optimization (-fast) 84 181
Optimized code 23 44
Using ACML Library (serial) 6.7 13.2
Using ACML Library (2 threads) 3.3 6.7
Using ACML Library (4 threads) 1.7 3.5
Using ACML Library (8 threads) 0.9 1.8
Using Pgi accelerator 3 5
Using CUBLAS 1.6 3.2



Let’s start!

I Write the main loop of the code and verify the obtained
performances.

I Use the Fortran and/or the C code.
I What performances have been obtained?
I There are differences between Fortran and C codes?
I How change the perfomances using different compilers?
I And using different compilers’ options?
I Do you have a different performances changing the order of the

loops?
I Can I rewrite the loop in a more efficient mode?



Matrix multiplication

I Fortran and C code
I Columns rows product Ci,j = Ai,kBk ,j
I Time:

I Fortran: date_and_time (> 0.001”)
I C: clock (>0.05”)

I Square matrices of size n
I Required memory (double precision) ≈ (3 ∗ n ∗ n) ∗ 8
I Number of total operations ≈ 2 ∗ n ∗ n ∗ n

I We must access n elements of the two original matrices for each
element of the destination matrix.

I n products and n sums for each element of the destination matrix.
I Total Flops = 2 ∗ n3/Time

I Always verify the results :-)



Measure of performances

I Estimate the number of computational operations at execution
NFlop

I 1 FLOP= 1 Floating point OPeration (addition or multiplication).
I Division, square root, trigonometric functions require much

more work and hence take more time.
I Estimate execution time Tes

I The number of floating operation per second is the most widely
unit used to estimate the computer performances:
Perf = NFlop

Tes
I The minimum count is 1 Floating-pointing Operation per second

( FLOPS)
I We usually use the multiples:

I 1 MFLOPS= 106 FLOPS
I 1 GFLOPS= 109 FLOPS
I 1 TFLOPS= 1012 FLOPS



Exercises

I Directory tree
I src/eser_?/fortran
I src/eser_?/c



Matrix multiplication

I Go to src/eser_1
I Write the main loop (columns rows product) to Fortran(mm.f90)

or/and C(mm.c) code.
I Run the matrix multiplication code
I N=1024

Language time Mflops
Fortran

C



Makefile

I To compile
I make

I To clean
I make clean

I To change the compiler options
I make "FC=ifort"
I make "CC=icc"
I make "OPT=fast"

I To compile using single precision arithmetic
I make "FC=ifort -DSINGLEPRECISION"

I To compile using double precision arithmetic
I make "FC=ifort"



cat /proc/cpuinfo
processor : 0
vendor_id : GenuineIntel
cpu family : 6
model : 37
model name : Intel(R) Core(TM) i3 CPU M 330 @ 2.13GHz
stepping : 2
cpu MHz : 933.000
cache size : 3072 KB
physical id : 0
siblings : 4
core id : 0
cpu cores : 2
apicid : 0
initial apicid : 0
fpu : yes
fpu_exception : yes
cpuid level : 11
wp : yes
wp : yes
flags : fpu vme de pse tsc msr pae mce cx8
bogomips : 4256.27
clflush size : 64
cache_alignment : 64
address sizes : 36 bits physical, 48 bits virtual
...



lscpu

Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 4
On-line CPU(s) list: 0-3
Thread(s) per core: 2
Core(s) per socket: 2
CPU socket(s): 1
NUMA node(s): 1
Vendor ID: GenuineIntel
CPU family: 6
Model: 37
Stepping: 2
CPU MHz: 933.000
BogoMIPS: 4255.78
Virtualization: VT-x
L1d cache: 32K
L1i cache: 32K
L2 cache: 256K
L3 cache: 3072K
NUMA node0 CPU(s): 0-3



Matrix multiplication

What do you think about the obtained results?



Software development



Solution Method

I A problem can typically be solved in many different ways
I we have to choose a correct and efficient solution method

I A solution may include many different stages of computation
using different algorithms

I Example : first solve a linear equation system, then do a matrix
multiplication and after that a FFT

I Each stage in the solution may operate on the same data
I the data representation should be well suited for all the stages

of the computation
I different stages in the solution may have conflicting

requirements on how data is represented



Algorithms

I A specific problem can typically be solved using
a number of different algorithms

I The algorithm has to
I be correct
I give the required numerical accuracy
I be efficient, both with respect to execution time and use of

memory
I The choice of the numerical algorithm significantly affects the

performances.
I efficient algorithm→ good performances
I inefficient algorithm→ bad performances

I Good performances are related to the choice of the algorithm.
I Golden rule

I Before writing code choose an efficient algorithm:
otherwise, the code must be rewritten!!!!



Programming
I We program in high level languages

I C,C++,Fortran,Java Python
I To achieve best performances, languages which are compiled

to executable machine code are preferred (C,C++,Fortran,..)
I the differences in efficiency between these depend mainly on

how well developed the compiler is, not so much on the
languages themselves

I Interpreted languages, and languages based on byte code are
in general less efficient (Python, Java, JavaScript, PHP, ...)

I the program code is not directly executed by the processor, but
goes instead through a second step of interpretation

I High-level code is translated into machine code by a compiler
I the compiler transforms the program into an equivalent but

more efficient program
I the compiler must ensure that the optimized program

implements exactly the same computation as the original
program



Compiler optimization
I The compiler analyzes the code and tries to apply

a number of optimization techniques to improve the
performance

I it tries to recognize code which can be replaced with equivalent,
but more efficient code

I Modern compilers are very good at low-level optimization
I register allocation, instruction reordering, dead code removal,

common subexpression elimination, function inlining , loop
unrolling, vectorization, ...

I To enable the compiler to analyze and optimize the code the
programmer should:

I avoid using programming language constructs which are known
to be inefficient

I avoid programming constructs that are difficult for the compiler
to optimize (optimization blockers)

I avoid unnecessarily complicated constructs or tricky code,
which makes the compiler analysis difficult

I write simple and well-structured code, which is easy for the
compiler to analyze and optimize



Execution

I Modern processors are very complex systems
I superscalar, superpipelined architecture
I out of order instruction execution
I multi-level cache with pre-fetching and write-combining
I branch prediction and speculative instruction execution
I vector operations

I It is very difficult to understand exactly how instruction are
executed by the processor

I Difficult to understand how different alternative program
solutions will affect performance

I programmers often have a weak understanding of what
happens when a program is executed



What to optimize

I Find out where the program spends most of its time
I it is unnecessary to optimize code that is seldom executed

I The 90/10 rule
I a program spends 90% of its time in 10% of the code
I look for optimizations in this 10% of the code

I Use tools to find out where a program spends its time
I profilers
I hardware counters
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Von Neuman achitecture

I Central processing unit
(CPU)

I Arithmetic Logic Unit
(perfoms all arithmetic
computations)

I Control Unit
I Registers (fast

memory)
I Interconnession (Bus)
I Random Access

Memory (RAM)
I Adress to access the

memory locations
I Data contents

(istrunctions, data)



Von Neumann Architecture

I Data are transferred from memory to CPU (fetch or read
instrunction)

I Data are transferred from CPU to memory (written to memory
o stored)

I Von Neumann Architectures carry out instrunctions one after
another, in a single linear sequence, and they spend a lot of
time moving data to and from memory. This slows the
computer

I The difficulty of overcoming the disparity between processor
speeds and data access speeds is called Von Neumann
bottleneck.

I The modern CPU are able to perform the instructions at least
one hundred times faster than the time required to recover data
from the RAM (fetch instruction).



The evolution of computing systems

The solution for the von Neumann bottleneck are:
I Caching

Very fast memories that are physically located on the chip of
the processor.
There are multi levels of cache (first, second and third).

I Virtual memory
The RAM works as a cache to store large amounts of data.

I Instruction level parallelism
A family of processor and compiler design techniques that
speed up execution by causing individual machine operations
to execute in parallel (pipelining ,multiple issue).



Flynn’s classification

I A classification of computer architectures based on instructions
and data streams.

I SISD:single instruction, single data. Traditional Von Neumann
architecture, scalar uniprocessor system.

I SIMD:single instruction, multiple data. Vector architectures,
Vector processors, GPU.

I MISD:multiple instruction, single data. Does not exist.
I MIMD:multiple instruction, multiple data. Different

processors/cores may be executing different instructions on
different pieces of data or run multiple independent programs at
the same time.

I The modern architectures are a mixed of these classes.



SISD

I Computers with only one executive unit and one memory. At
one time, one instruction operates on one data.

I Good performances can be achieved increasing the bus data
and the levels of memory or by pipelining and multiple issues.



SIMD

I The same instruction is executed synchronously on different
sets of data.

I Model for synchronous computation.
I Vector processors.

I Many ALUs
I vector registers
I vector Load/Store Units
I vector instructions
I interleaved memory
I OpenMP, MPI

I Graphical Processing Unit
I GPU fully programmable
I many ALUs
I many Load/Store units
I many SFUs
I many thousands of parallel threads
I CUDA



MIMD

I Multiple autonomous processors simultaneously executing
different instructions on different data

I Model for asynchronous computation
I Cluster

I a large number of compute nodes (hundreds, thousands)
I Many nodes with many multicore processors.
I Shared memory on a node
I Distributed memory between nodes
I Multi-level memory hierarchies
I OpenMP, MPI, MPI+OpenMP



Cluster CPU GPU

I Hybrid solution CPU multi-core + GPU many-core:
I Nodes with multicore processors and dedicated graphis cards

for GPU computing.
I High theoretical peak performance on single node
I Additional memory provided from the GPU.
I OpenMP, MPI, CUDA and hybrid solution MPI+OpenMP,

MPI+CUDA, OpenMP+CUDA, OpenMP+MPI+CUDA



CPU vs GPU

I The CPU is a general purpose processor that is able to
execute all the algorithms.

I 1 thread per computational node
I The GPU is a processor dedicated to intense data-parallel

computations
I Many light parallel threads.



Multicore vs Manycore
I The increasing number of transistors on a chip can be used

to place more than one processor core on a chip
I The new era for the architecture of the microprocessors:

I Increasing the computing power by increasing the number of
units more than their power.

I The computing power and bandwidth of the GPU have
overtaken that of CPU by a factor 10.



Bandwidth

I It is the rate at which data can be read from or stored into the
memory by a processor.

I It is expressed in units of bytes/second (Mb/s, Gb/s, etc..)
I A = B * C

I Read B data from the memory
I Read C data from the memory
I Calculate B * C product
I Save the result in memory (A variable)

I 1 floating-point operation→ 3 memory accesses



Stream

I It is a simple, synthetic benchmark designed to measure
sustainable memory bandwidth (in MB/s) and a corresponding
computation rate for four simple vector kernels

I Copy a→ c (copy)
I Copy a*b→ c (scale)
I Sum a+b→ c (add)
I Sum a+b*c→ d (triad)

I http://www.cs.virginia.edu/stream/ref.html



Shared and distibuted memory

I The MIMD architectures and hybrid CPU GPU architectures
can be divided in two classes.

I Shared memory systems where where every single core access
the full memory

I Distributed memory systems where different CPU units have
their own memory systems and are able to communicate with
each other by exchanging explicit messages

I Modern multicore systems have shared memory on node and
distributed memory between nodes.



Shared memory

The shared memory architectures with multicore processors
has two kinds of access to the main memory.

I Uniform Memory Access all the processors in the UMA model
share the physical memory uniformly

I Non Uniform Memory Access a processor can access its own
local memory faster than non-local memory (memory local to
another processor or memory shared between processors)

UMA NUMA



UMA NUMA

I Main disadvantages:
I UMA machines: Thread synchronization and accessing shared

resources can cause the code to execute serially, and possibly
produce bottlenecks. For example, when multiple processors
use the same bus to access the memory, the bus can become
satured.

I NUMA machines: the increased cost of accessing remote
memory over local memory can affect performances.

I Solutions:
I Software can maximize performance by increasing usage of

local memory
I binding to keep processes , or threads on a particular processor.
I memory affinity
I on AIX architecture, set MEMORY_AFFINITY environment

variable.
I where is supported use numactl command.



NETWORKS

I All high performance computer systems are clusters of nodes
with shared memory on node and distributed memory between
nodes

I A cluster must have multiple network connections between
nodes, forming cluster interconnect.

I The more commonly used network communications protocols:
I Gigabit Ethernet : the more common, cheap, low performances.
I Infiniband : very common, high perfomances, very expansive.

I Others:
I Myrinet
I Quadrics
I Cray
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Memory system

I CPU power computing doubles every 18 months
I Access rate to RAM doubles every 120 months
I Reducing the cost of the operations is useless if the loading

data is slow

I Solution: intermediate fast memory layers
I A Hierarchical Memory System
I The hierarchy is transparent to the application but the

performances are strongly enhanced



The Memory Hierarchy



Clock cycle

I The speed of a computer processor, or CPU, is determined by
the clock cycle, which is the amount of time between two
pulses of an oscillator.

I Generally speaking, the higher number of pulses per second,
the faster the computer processor will be able to process
information

I The clock speed is measured in Hz, typically either megahertz
(MHz) or gigahertz (GHz). For example, a 4GHz processor
performs 4,000,000,000 clock cycles per second.

I Computer processors can execute one or more instructions per
clock cycle, depending on the type of processor.

I Early computer processors and slower CPUs can only execute
one instruction per clock cycle, but modern processors can
execute multiple instructions per clock cycle.



The Memory Hierarchy

I From small, fast and expensive to large, slow and cheap
I Access times increase as we go down in the memory hierarchy
I Typical access times (Intel Nehalem)

I register immediately (0 clock cycles)
I L1 3 clock cycles
I L2 13 clock cycles
I L3 30 clock cycles
I memory 100 clock cycles
I disk 100000 - 1000000 clock cycles



The Cache

Why this hierarchy?

It is not necessary that all data are available at the same time.
What is the solution?

I The cache is divided in one (or more) levels of intermediate
memory, rather fast but small sized (kB ÷ MB)

I Basic principle: we always work with a subset of data.
I data needed→ fast memory access
I data not needed (for now)→ slower memory levels

I Limitations
I Random access without reusing
I Never large enough . . .
I faster, hotter and . . . expensive→ intermediate levels hierarchy.
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The cache

I CPU accesses higher level cache:
I The cache controller finds if the required element is present in

cache:
I Yes: data is transferred from cache ti CPU registers
I No: new data is loaded in cache; if cache is full, a replacement

policy is used to replace (a subset of) the current data with the
new data

I The data replacement between main memory and cache is
performed in data chunks, called cache lines

I block = The smallest unit of information that can be transferred
between two memory levels (between two cache levels or
between RAM and cache)



Replacement: locality principles

I Spatial locality
I High probability to access memory cell with contiguous address

within a short period of time (sequential instructions; data
arranged in matrix and vectors sequentially accessed, etc.)

I Possible advantage: we read more data than we need
(complete block) in hopes of next request

I Temporal locality
I High probability to access memory cell that was recently

accessed within a period space of time (instructions within body
of cycle frequently and sequentially accessed, etc.)

I We take advantage replacing the least recently used blocks

Data required from CPU are stored in the cache with
contiguous memory cells as long as possible
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Cache:Some definition

I Hit: The requested data from CPU is stored in cache
I Miss: The requested data from CPU is not stored in cache
I Hit rate: The percentage of all accesses that are satisfied by

the data in the cache.
I Miss rate:The number of misses stated as a fraction of

attempted accesses (miss rate = 1-hit rate).
I Hit time: Memory access time for cache hit (including time to

determine if hit or miss)
I Miss penalty: Time to replace a block from lower level,

including time to replace in CPU (mean value is used)
I Miss time: = miss penalty + hit time, time needed to retrieve

the data from a lower level if cache miss is occurred.



Cache: access cost

Level access cost
L1 1 clock cycle
L2 7 clock cycles

RAM 36 clock cycles

I 100 accesses with 100% cache hit: → t=100
I 100 accesses with 5% cache miss in L1: → t=130
I 100 accesses with 10% cache miss in L1→ t=160
I 100 accesses with 10% cache miss in L2→ t=450
I 100 accesses with 100% cache miss in L2→ t=3600



Cache miss in all levels

1. search two data, A and B
2. search A in the first level cache (L1) O(1) cycles
3. search A in the second level cache (L2) O(10) cycles
4. copy A from RAM to L2 to L1 to registers O(10) cycles
5. search B in the first level cache (L1) O(1) cycles
6. search B in the second level cache (L2) O(10) cycles
7. copy B from RAM to L2 to L1 to registers O(10) cycles
8. run command

O(100)overhead cycles !!!



Cache hit in all levels

I search two data, A and B
I search A in the first level cache(L1) O(1) cycles

I search B in the first level cache(L1) O(1) cycles

I run command

O(1) overhead cycles



SRAM vs. DRAM

I Dynamic RAM (DRAM) main memory
I one transistor cell
I cheap
I it needs to be periodically refreshed

I data are not available during refreshing

I Static RAM (SRAM) cache memory
I cell requires 6-7 transistor
I expensive
I it does not need to be refreshed

I data are always available.
I DRAM has better price/performance than SRAM

I also higher densities, need less power and dissipate less heat
I SRAM provides higher speed

I used for high-performance memories (registers, cache memory)



Performance estimate: an example

f l o a t sum = 0.0f;
for (i = 0; i < n; i++)
sum = sum + x[i]*y[i];

I At each iteration, one sum and one multiplication floating-point
are performed

I The number of the operations performed is 2×n



Execution time Tes

I Tes = Nflop ∗ tflop

I Nflop→Algorithm

I tflop→ Hardware
I consider only execution time
I What are we neglecting?
I tmem The required time to access data in memory.
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Therefore . . .

I Tes = Nflop ∗ tflop + Nmem ∗ tmem

I tmem→ Hardware
I How Nmem affects the performances?



Nmem Effect

I Perf = NFlop
Tes

I for Nmem = 0→ Perf ∗ = 1
tflop

I for Nmem > 0→ Perf = Perf∗

1+Nmem∗tmem
Nflop∗tflop

I Performance decay factor
I Nmem

Nflop
∗ tmem

tflop

I how to achieve the peak performance?

I Minimize the memory accesses.
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I Estimate the number of computational operations at execution
NFlop

I 1 FLOP= 1 Floating point OPeration (addition or multiplication).
I Division, square root, trigonometric functions require much

more work and hence take more time.
I Estimate execution time Tes

I The number of floating operation per second is the most widely
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I 1 GFLOPS= 109 FLOPS
I 1 TFLOPS= 1012 FLOPS



Spatial locality: access order

c_ij = c_ij + a_ik * b_kj
I Matrix multiplication in double precision 512X512
I Measured MFlops on Jazz (Intel(R) Xeon(R) CPU X5660

2.80GHz)
I gfortran compiler with -O0 optimization

index order Fortran C
i,j,k 109 128
i,k,j 90 177
j,k,i 173 96
j,i,k 110 127
k,j,i 172 96
k,i,j 90 177

The efficiency of the access order depends more on the data
location in memory, rather than on the language.



Array in memory

I Memory→ elementary locations sequentially aligned
I A matrix, aij element : i row index, j column index
I Matrix representation is by arrays

I How are the array elements stored in memory?

I C: sequentially access starting from the last index, then
the previous index . . .
a[1][1] a[1][2] a[1][3] a[1][4] . . .
a[1][n] a[2][1] . . . a[n][n]

I Fortran: sequentially access starting from the first index, then
the second index . . .
a(1,1) a(2,1) a(3,1) a(4,1) . . .
a(n,1) a(1,2) . . . a(n,n)



The stride

I The distance between successively accessed data
I stride=1→ I take advantage of the spatial locality
I stride » 1→ I don’t take advantage of the spatial locality

I Golden rule
I Always access arrays, if possible, with unit stride.



Fortran memory ordering



C memory ordering



Best access order

I Calculate multiplication matrix-vector:
I Fortran: d(i) = a(i) + b(i,j)*c(j)
I C: d[i] = a[i] + b [i][j]*c[j];

I Fortran
I do j=1,n

do i=1,n
d(i) = a(i) + b(i,j)*c(j)

end do
end do

I C
I for(i=0;i<n,i++)

for(j=0;i<n,j++)
d[i] = a[i] + b [i][j]*c[j];



Spatial locality:linear system

Solving triangular system
I Lx = b
I Where:

I L n×n lower triangular matrix
I x n unknowns vector
I b n right hand side vector

I we can solve this system by:
I forward substitution
I partitioning matrix

What is faster?
Why?
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Forward substitution

Solution:
. . .
do i = 1, n

do j = 1, i-1
b(i) = b(i) - L(i,j) b(j)

enddo
b(i) = b(i)/L(i,i)

enddo
. . .

[vruggie1@fen07 TRI]$ ./a.out

time for solution 8.0586
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. . .
[vruggie1@fen07 TRI]$ ./a.out

time for solution 8.0586



Matrix partitioning

Solution:
. . .
do j = 1, n

b(j) = b(j)/L(j,j)
do i = j+1,n

b(i) = b(i) - L(i,j)*b(j)
enddo

enddo
. . .

[vruggie1@fen07 TRI]$ ./a.out

time for solution 2.5586



Matrix partitioning

Solution:
. . .
do j = 1, n

b(j) = b(j)/L(j,j)
do i = j+1,n

b(i) = b(i) - L(i,j)*b(j)
enddo

enddo
. . .
[vruggie1@fen07 TRI]$ ./a.out

time for solution 2.5586



What is the difference?
I Forward substitution

do i = 1, n
do j = 1, i-1

b(i) = b(i) - L(i,j) b(j)
enddo
b(i) = b(i)/L(i,i)

enddo
I Matrix partitioning

do j = 1, n
b(j) = b(j)/L(j,j)
do i = j+1,n

b(i) = b(i) - L(i,j)*b(j)
enddo

enddo

I Same number of operations, but very different elapsed times
the difference is a factor of 3

I Why?



What is the difference?
I Forward substitution

do i = 1, n
do j = 1, i-1

b(i) = b(i) - L(i,j) b(j)
enddo
b(i) = b(i)/L(i,i)

enddo
I Matrix partitioning

do j = 1, n
b(j) = b(j)/L(j,j)
do i = j+1,n

b(i) = b(i) - L(i,j)*b(j)
enddo

enddo
I Same number of operations, but very different elapsed times

the difference is a factor of 3
I Why?



Let us clarify. . .
This matrix is stored:

In C:

In Fortran:



Spatial locality: cache lines
I The cache is structured as a sequence of blocks (lines)
I The memory is divided in blocks with the same size of the

cache line
I When data are required the system loads from memory the

entire cache line that contains the data.



Dimension and data reuse

I Multiplication matrix-matrix in double precision
I Versions with different calls to BLAS library
I Performance in MFlops on Intel(R) Xeon(R) CPU X5660

2.80GHz

Dimension 1 DGEMM N DGEMV N2 DDOT
500 5820 3400 217

1000 8420 5330 227
2000 12150 2960 136
3000 12160 2930 186

Same number of operations but the use of cache memory is
changed!!!



Cache reuse

...
d=0.0
do I=1,n
j=index(I)
d = d + sqrt(x(j)*x(j) + y(j)*y(j) + z(j)*z(j))
...

Can I change the code to obtain best performances?

...
d=0.0
do I=1,n
j=index(I)
d = d + sqrt(r(1,j)*r(1,j) + r(2,j)*r(2,j) + r(3,j)*r(3,j))
...



Cache reuse

...
d=0.0
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Can I change the code to obtain best performances?
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d=0.0
do I=1,n
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Cache reuse

...
d=0.0
do I=1,n
j=index(I)
d = d + sqrt(x(j)*x(j) + y(j)*y(j) + z(j)*z(j))
...

Can I change the code to obtain best performances?

...
d=0.0
do I=1,n
j=index(I)
d = d + sqrt(r(1,j)*r(1,j) + r(2,j)*r(2,j) + r(3,j)*r(3,j))
...



Registers

I Registers are memory locations inside CPUs
I small amount of them (typically, less than 128), but with zero

latency
I All the operations performed by computing units

I take the operands from registers
I return results into registers

I transfers memory↔ registers are different operations
I Compiler uses registers

I to store intermediate values when computing expressions
I too complex expressions or too large loop bodies force the so

called “register spilling”
I to keep close to CPU values to be reused
I but only for scalar variables, not for array elements



Array elements. . .

do 3000 z=1,nz
k3=beta(z)
do 3000 y=1,ny

k2=eta(y)
do 3000 x=1,nx/2

hr(x,y,z,1)=hr(x,y,z,1)*norm
hi(x,y,z,1)=hi(x,y,z,1)*norm
hr(x,y,z,2)=hr(x,y,z,2)*norm
hi(x,y,z,2)=hi(x,y,z,2)*norm
hr(x,y,z,3)=hr(x,y,z,3)*norm
hi(x,y,z,3)=hi(x,y,z,3)*norm

.....................
k1=alfa(x,1)
k_quad=k1*k1+k2*k2+k3*k3+k_quad_cfr
k_quad=1./k_quad
sr=k1*hr(x,y,z,1)+k2*hr(x,y,z,2)+k3*hr(x,y,z,3)
si=k1*hi(x,y,z,1)+k2*hi(x,y,z,2)+k3*hi(x,y,z,3)
hr(x,y,z,1)=hr(x,y,z,1)-sr*k1*k_quad
hr(x,y,z,2)=hr(x,y,z,2)-sr*k2*k_quad
hr(x,y,z,3)=hr(x,y,z,3)-sr*k3*k_quad
hi(x,y,z,1)=hi(x,y,z,1)-si*k1*k_quad
hi(x,y,z,2)=hi(x,y,z,2)-si*k2*k_quad
hi(x,y,z,3)=hi(x,y,z,3)-si*k3*k_quad
k_quad_cfr=0.

3000 continue



Temporary scalars

(time -25% )

do 3000 z=1,nz
k3=beta(z)
do 3000 y=1,ny

k2=eta(y)
do 3000 x=1,nx/2

br1=hr(x,y,z,1)*norm
bi1=hi(x,y,z,1)*norm
br2=hr(x,y,z,2)*norm
bi2=hi(x,y,z,2)*norm
br3=hr(x,y,z,3)*norm
bi3=hi(x,y,z,3)*norm

.................
k1=alfa(x,1)
k_quad=k1*k1+k2*k2+k3*k3+k_quad_cfr
k_quad=1./k_quad
sr=k1*br1+k2*br2+k3*br3
si=k1*bi1+k2*bi2+k3*bi3
hr(x,y,z,1)=br1-sr*k1*k_quad
hr(x,y,z,2)=br2-sr*k2*k_quad
hr(x,y,z,3)=br3-sr*k3*k_quad
hi(x,y,z,1)=bi1-si*k1*k_quad
hi(x,y,z,2)=bi2-si*k2*k_quad
hi(x,y,z,3)=bi3-si*k3*k_quad
k_quad_cfr=0.

3000 Continue



Temporary scalars(time -25% )

do 3000 z=1,nz
k3=beta(z)
do 3000 y=1,ny

k2=eta(y)
do 3000 x=1,nx/2

br1=hr(x,y,z,1)*norm
bi1=hi(x,y,z,1)*norm
br2=hr(x,y,z,2)*norm
bi2=hi(x,y,z,2)*norm
br3=hr(x,y,z,3)*norm
bi3=hi(x,y,z,3)*norm

.................
k1=alfa(x,1)
k_quad=k1*k1+k2*k2+k3*k3+k_quad_cfr
k_quad=1./k_quad
sr=k1*br1+k2*br2+k3*br3
si=k1*bi1+k2*bi2+k3*bi3
hr(x,y,z,1)=br1-sr*k1*k_quad
hr(x,y,z,2)=br2-sr*k2*k_quad
hr(x,y,z,3)=br3-sr*k3*k_quad
hi(x,y,z,1)=bi1-si*k1*k_quad
hi(x,y,z,2)=bi2-si*k2*k_quad
hi(x,y,z,3)=bi3-si*k3*k_quad
k_quad_cfr=0.

3000 Continue



Spatial and temporal locality

I Matrix transpose
do j = 1, n

do i = 1, n
a(i,j) = b(j,i)

end do
end do

I Which is the best loop ordering to minimize the stride?
I For data residing in cache there is no dependency on the stride

I idea: split computations in blocks fitting into the cache
I task: balancing between spatial and temporal locality



Cache blocking

I Data are processed in chunks fitting into the cache memory
I Cache data are reused when working for the single block
I Compiler can do it for simple loops, but only at high

optimization levels
I Example: matrix transpose

do jj = 1, n , step
do ii = 1, n, step

do j= jj,jj+step-1,1
do i=ii,ii+step-1,1

a(i,j)=b(j,i)
end do

end do
end do

end do



Cache: capacity miss and trashing

I Cache may be affected by capacity miss:
I only a few lines are really used (reduced effective cache size)
I processing rate is reduced

I Another problem is the trashing:
I a cache line is thrown away even when data need to be reused

because new data are loaded
I slower than not having cache at all!

I It may occur when different instruction/data flows refer to the
same cache lines

I It depends on how the memory is mapped to the cache
I fully associative cache
I direct mapped cache
I N-way set associative cache



Cache mapping

I A cache mapping defines where memory locations will be
placed in cache

I in which cache line a memory addresses will be placed
I we can think of the memory as being divided into blocks of the

size of a cache line
I the cache mapping is a simple hash function from addresses to

cache sets
I Cache is much smaller than main memory

I more than one of the memory blocks can be mapped to the
same cache line

I Each cache line is identified by a tag
I determines which memory addresses the cache line holds
I based on the tag and the valid bit, we can find out if a particular

address is in the cache (hit) or not (miss)



Fully associative cache

I A cache where data from any address can be stored in any
cache location.



Fully associative cache

I Pros:
I full cache exploitation
I independent of the patterns of memory access

I Cons:
I complex circuits to get a fast identify of hits
I substitution algorithm: demanding, Least Recently Used (LRU)

or not very efficient First In First Out (FIFO)
I costly and small sized



Direct mapped cache

I Each main memory block can be mapped to only one slot.
(linear congruence)



Direct mapped cache

I Pros:
I easy check of hit (a few bit of address identify the checked line)
I substitution algorithm is straightforward
I arbitrarily sized cache

I Cons:
I strongly dependent on memory access patterns
I affected by capacity miss
I affected by cache trashing



N-way set associative cache

I Each memory block may be mapped to any
line among the N possible cache lines



N-way set associative cache

I Pros:
I is an intermediate choice

I N=1 → direct mapped
I N= number of cache lines → fully associative

I allows for compromising between circuital complexity and
performances (cost and programmability)

I allows for achieving cache with reasonable sizes
I Cons:

I strongly conditioned by the memory pattern access
I partially affected by capacity miss
I partially affected by cache trashing



Cache: typical situation

I Cache L1: 4÷8 way set associative
I Cache L2÷3: 2÷4 way set associative o direct mapped
I Capacity miss and trashing must be considered

I strategies are the same
I optimization of placement of data in memory
I optimization of pattern of memory accesses

I L1 cache works with virtual addresses
I programmer has the full control

I L2÷3 caches work with physical addresses
I performances depend on physical allocated memory
I performances may vary when repeating the execution
I control at operating system level



Cache Trashing

I Problems when accessing data in memory
I A cache line is replaced even if its content is needed after a

short time
I It occurs when two or more data flows need a same small

subset of cache lines
I The number of load and store is unchanged
I Transaction on memory bus gets increased
I A typical case is given by flows requiring data with relative

strides of 2 power



No trashing: C(i)= A(i)+B(i)

I Iteration i=1
1. Search for A(1) in L1 cache→ cache miss
2. Get A(1) from RAM memory
3. Copy from A(1) to A(8) into L1
4. Copy A(1) into a register
5. Search for B(1) in L1 cache→ cache miss
6. Get B(1) from RAM memory
7. Copy from B(1) to B(8) in L1
8. Copy B(1) into a register
9. Execute summation

I Iteration i=2
1. Search for A(2) into L1 cache→ cache hit
2. Copy A(2) into a register
3. Search for B(2) in L1 cache→ cache hit
4. Copy B(2) into a register
5. Execute summation

I Iteration i=3



Trashing: C(i)= A(i)+B(i)

I Iteration i=1
1. Search for A(1) in the L1 cache→ cache miss
2. Get A(1) from RAM memory
3. Copy from A(1) to A(8) into L1
4. Copy A(1) into a register
5. Search for B(1) in L1 cache→ cache miss
6. Get B(1) from RAM memory
7. Throw away cache line A(1)-A(8)
8. Copy from B(1) to B(8) into L1
9. Copy B(1) into a register

10. Execute summation



Trashing: C(i)= A(i)+B(i)

I Iteration i=2
1. Search for A(2) in the L1 cache→ cache miss
2. Get A(2) from RAM memory
3. Throw away cache line B(1)-B(8)
4. Copy from A(1) to A(8) into L1 cache
5. Copy A(2) into a register
6. Search for B(2) in L1 cache→ cache miss
7. Get B(2) from RAM memory
8. Throw away cache line A(1)-A(8)
9. Copy from B(1) to B(8) into L1

10. Copy B(2) into a register
11. Execute summation

I Iteration i=3



How to identify it?
I Effects depending on the size of data set

...
integer ,parameter :: offset=..
integer ,parameter :: N1=6400
integer ,parameter :: N=N1+offset
....
rea l(8) :: x(N,N),y(N,N),z(N,N)
...
do j=1,N1

do i=1,N1
z(i,j)=x(i,j)+y(i,j)

end do
end do
...

offset time
0 0.361
3 0.250

400 0.252
403 0.253

Solution is padding



Cache padding

real , dimension=1024 :: a,b
common/my_comm /a,b
do i=1, 1024
a(i)=b(i) + 1.0
enddo

I If cache size = 4 ∗ 1024, direct mapped, a,b contiguous data
(for example): we have cache thrashing (load and unload a
cache block repeatedly)

I size of array = multiple of cache size→ cache thrashing
I Set Associative cache reduces the problem



Cache padding

a(1) b(1)
1 1025
↑

1 mod 1024=1 1025 mod 1024= 1

In the cache:
a(1) 1024

trashing
b(1) 1024



Cache padding

integer offset=
(linea di cache)/SIZE(REAL)
real , dimension=
(1024+offset) :: a,b
common/my_comm /a,b
do i=1, 1024
a(i)=b(i) + 1.0
enddo

offset→ staggered matrixes
cache→ no more problems

1 2560
↓ ↙

↗ ↖
1280 1281

1 mod 1204 =1
1281 mod 1024 = 257

Don’t use matrix dimension that are powers of two:



Misaligned accesses

I Bus transactions get doubled
I On some architectures:

I may cause run-time errors
I emulated in software

I A problem when dealing with
I structured types ( TYPE and struct)
I local variables
I “common”

I Solutions
I order variables with decreasing order
I compiler options (if available. . .)
I different common
I insert dummy variables into common



Misaligned Accesses

parameter (nd=1000000)
rea l*8 a(1:nd), b(1:nd)
integer c
common /data1/ a,c,b

....
do j = 1, 300

do i = 1, nd
somma1 = somma1 + (a(i)-b(i))

enddo
enddo

Different performances for:
common /data1/ a,c,b
common /data1/ b,c,a
common /data1/ a,b,c

It depends on the architecure and on the compiler which
usually warns and tries to fix the problem (align common)



Memory alignment

In order to optmize cache using memory alignment is
important. When we read memory data in word 4 bytes chunk
at time (32 bit systems) The memory addresses must be
powers of 4 to be aligned in memory.
struct MixedData{
char Data1;
short Data2;
i n t Data3
char Data4

}

1 2 3 4 5 6 7 8
↑ ↖ ↑ ↑
Data1 Data2 Data3 Data4

To have Data3 value two reading from memory need.



Memory alignment

With alignment:

struct MixedData{
char Data1;
char Padding1[1];
short Data2;
i n t Data3
char Data4
char Padding2[3];

}

Data1 Data2 Data3 Data4
↓ ↓ ↓ ↓
1 2 3 4 5 6 7 8 9 10 11 12

↑ ↑
Padding1 Padding2



Memory alignment

Old struct costs 8 bytes, new struct (with padding) costs 12
bytes.
We can align data exchanging their order.

struct MixedData{
char Data1;
char Data4
short Data2;
i n t Data3

}

Data4 Data3
↓ ↓

1 2 3 4 5 6 7 8
↑ ↑
Data1 Data2



Memory alignment

Generally:
padding = align - (offset mod align)
newoffset = offset + padding = offset + align - (offset mod align)

For example:
offset = 0x59d, align=4
padding = 4 - (0x59d%4) = 4 -1 = 3
newoffset = 0x59d + 3 = 0x5a0

0x59d
↓

↑
new starting address:0x5a0



How to detect the problem?

I Processors have hardware counters
I Devised for high clock CPUs

I necessary to debug processors
I useful to measure performances
I crucial to ascertain unexpected behaviors

I Each architecture measures different events
I Of course, vendor dependent

I IBM: HPCT
I INTEL: Vtune

I Multi-platform measuring tools exist
I Valgrind, Oprofile
I PAPI
I Likwid
I . . .



Cache is a memory

I Its state is persistent until a cache-miss requires a change
I Its state is hidden for the programmer:

I does not affect code semantics (i.e., the results)
I affects the performances

I The same routine called under different code sections may
show completely different performances because of the cache
state at the moment

I Code modularity tends to make the programmer forget it
I It may be important to study the issue in a context larger than

the single routine



Valgrind

I Software Open Source useful for Debugging/Profiling of
programs running under Linux OS, sources not required
(black-box analysis), and different tools available:

I Memcheck (detect memory leaks, . . .)
I Cachegrind (cache profiler)
I Callgrind (callgraph)
I Massif (heap profiler)
I Etc.

I http://valgrind.org



Cachegrind

valgrind --tool=cachegrind <nome_eseguibile>

I Simulation of program-cache hierarchy interaction
I two independent first level cache (L1)

I instruction (I1)
I data cache (D1)

I a last level cache, L2 or L3(LL)
I Provides statistics

I I cache reads (Ir executed instructions), I1 cache read misses
(I1mr), LL cache instruction read misses (ILmr)

I D cache reads, Dr,D1mr,DLlmr
I D cache writes, Dw,D1mw,DLlmw

I Optionally provides branches and mispredicted branches



Cachegrind:example I

==14924== I refs: 7,562,066,817
==14924== I1 misses: 2,288
==14924== LLi misses: 1,913
==14924== I1 miss rate: 0.00%
==14924== LLi miss rate: 0.00%
==14924==
==14924== D refs: 2,027,086,734 (1,752,826,448 rd + 274,260,286 wr)
==14924== D1 misses: 16,946,127 ( 16,846,652 rd + 99,475 wr)
==14924== LLd misses: 101,362 ( 2,116 rd + 99,246 wr)

==14924== D1 miss rate: 0.8% ( 0.9% + 0.0% )

==14924== LLd miss rate: 0.0% ( 0.0% + 0.0% )
==14924==
==14924== LL refs: 16,948,415 ( 16,848,940 rd + 99,475 wr)
==14924== LL misses: 103,275 ( 4,029 rd + 99,246 wr)
==14924== LL miss rate: 0.0% ( 0.0% + 0.0% )



Cachegrind:example II

==15572== I refs: 7,562,066,871
==15572== I1 misses: 2,288
==15572== LLi misses: 1,913
==15572== I1 miss rate: 0.00%
==15572== LLi miss rate: 0.00%
==15572==
==15572== D refs: 2,027,086,744 (1,752,826,453 rd + 274,260,291 wr)
==15572== D1 misses: 151,360,463 ( 151,260,988 rd + 99,475 wr)
==15572== LLd misses: 101,362 ( 2,116 rd + 99,246 wr)

==15572== D1 miss rate: 7.4% ( 8.6% + 0.0% )

==15572== LLd miss rate: 0.0% ( 0.0% + 0.0% )
==15572==
==15572== LL refs: 151,362,751 ( 151,263,276 rd + 99,475 wr)
==15572== LL misses: 103,275 ( 4,029 rd + 99,246 wr)
==15572== LL miss rate: 0.0% ( 0.0% + 0.0% )



Cachegrind:cg_annotate

I Cachegrind automatically produces the file
cachegrind.out.<pid>

I In addition to the previous information, more detailed statistics
for each function is made available

cg_annotate cachegrind.out.<pid>



Cachegrind:options

I —I1=<size>,<associativity>,<line size>
I —D1=<size>,<associativity>,<line size>
I —LL=<size>,<associativity>,<line size>
I —cache-sim=no|yes [yes]
I —branch-sim=no|yes [no]
I —cachegrind-out-file=<file>



Papi

I Performance Application Programming Interface
I Standard Interface to access hardware counters
I 2 interfaces available (C and Fortran):

I High-level interface: easy
I Low-level interface: complex but more programmable

I Pros:
I administrative permission not required for measuring
I standard event names for monitored events (if available) with

the high-level interface
I easy monitoring of user-defined code sections

I Cons:
I Manual instrumenting is mandatory
I OS kernel makes the event available



Papi Events

Associated to hardware counters depending on the machine
Example:
PAPI_TOT _CYC: clock cycles
PAPI_TOT _INS: completed instructions
PAPI_FP_INS: floating-point instructions
PAPI_L1_DCA: L1 data cache accesses
PAPI_L1_DCM: L1 data cache misses
PAPI_SR_INS: store instructions
PAPI_BR_MSP: branch instructions mispredicted



Papi: interface

I High-level library calls are intuitive
I It is possible to simultaneously monitor different events
I In Fortran:

# include "fpapi_test.h"
integer events(2), retval ; integer*8 values(2)
......
events(1) = PAPI_FP_INS ; events(2) = PAPI_L1_DCM
......
c a l l PAPIf_start_counters(events, 2, retval)
c a l l PAPIf_read_counters(values, 2, retval) ! Clear values
< sezione di codice da monitorare >
c a l l PAPIf_stop_counters(values, 2, retval)
pr in t*,’Floating point instructions’,values(1)
pr in t*,’L1 Data Cache Misses: ’,values(2)
.......



Papi: interface

I It is possible to handle errors analyzing a variable returned by
the subroutine

I It is possible to perform queries to check the availability of
hardware counters, etc.

I It is recommended to call a dummy subroutine after the
monitored section to ensure that the optimization has not
altered the instruction flow
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