
Scientific and Technical Computing in C

Stefano Tagliaventi Isabella Baccarelli
CINECA Roma - SCAI Department

Rome, 3rd-5th May 2017

Arithmetic
Integers
Floating
Expressions
Mixing Types

Aggregate
Structures
Defining Types
Arrays
Storage & C.
More Arrays

Outline

1 Arithmetic Types and Math
Integer Types
Floating Types
Expressions
Arithmetic Conversions

2 Aggregate Types

Arithmetic
Integers
Floating
Expressions
Mixing Types

Aggregate
Structures
Defining Types
Arrays
Storage & C.
More Arrays

Data

• Computing == manipulating data and calculating results
• Data are manipulated using internal, binary formats
• Data are kept in memory locations and CPU registers

• C is quite liberal on internal data formats
• Most CPU are similar but all have peculiarities
• C only mandates what is de facto standard
• Some details depend on the specific executing (a.k.a. target)

hardware architecture and software implementation
• C Standard Library provides facilities to translate between

internal formats and human readable ones
• C allows programmers to:

• think in terms of data types and named containers
• disregard details on actual memory locations and data

movements

Arithmetic
Integers
Floating
Expressions
Mixing Types

Aggregate
Structures
Defining Types
Arrays
Storage & C.
More Arrays

C is a Strongly Typed Language

• Each literal constant has a type
• Dictates internal format of the data value

• Each variable has a type
• Dictates content internal format and amount of memory
• Type must be specified in a declaration before use

• Each expression has a type
• And subexpressions have too
• Depends on operators and their arguments

• Each function has a type
• That is the type of the returned value
• Specified in function declaration or definition
• If the compiler doesn’t know the type, it assumes int

• Function parameters have types
• I.e. type of arguments to be passed in function calls
• Specified in function declaration or definition
• If the compiler doesn’t know the types, it will accept any

argument, applying some type conversion rules

Arithmetic
Integers
Floating
Expressions
Mixing Types

Aggregate
Structures
Defining Types
Arrays
Storage & C.
More Arrays

Integer Types (as on Most CPUs)

Type Sign Conversion Width (bits) Size (bytes)
Minimum Usual Minimum Usual

signed char +/- %hhd1
8 8 1 1

unsigned char + %hhu1

short +/- %hd
16 16 2 2short int

unsigned short + %hu
unsigned short int
int +/- %d

16 32 2 4unsigned + %u
unsigned int
long +/- %ld

32 32 or 64 4 4 or 8long int
unsigned long + %lu
unsigned long int

long long2
+/- %lld

64 64 8 8long long int2

unsigned long long2
+ %llu

unsigned long long int2

Constraint: short width ≤ int width ≤ long width ≤ long long width

1. C99, in C89 use conversion to/from int types
2. C99

• New platform/compiler? Always check with sizeof(type)

• Values of char and short types just use less memory,
they are promoted to int types in calculations

Arithmetic
Integers
Floating
Expressions
Mixing Types

Aggregate
Structures
Defining Types
Arrays
Storage & C.
More Arrays

#include <limits.h>

Name Meaning Value
CHAR_BIT width of any char type ≥ 8
SCHAR_MIN minimum value of signed char ≤ −128
SCHAR_MAX maximum value of signed char ≥ 127
UCHAR_MAX maximum value of unsigned char type ≥ 255
SHRT_MIN minimum value of short ≤ −32768
SHRT_MAX maximum value of short ≥ 32767
USHRT_MAX maximum value of unsigned short ≥ 65535
INT_MIN minimum value of int ≤ −32768
INT_MAX maximum value of int ≥ 32767
UINT_MAX maximum value of unsigned ≥ 65535
LONG_MIN minimum value of long ≤ −2147483648
LONG_MAX maximum value of long ≥ 2147483647
ULONG_MAX maximum value of unsigned long ≥ 4294967295
LLONG_MIN minimum value of long long ≤ −9223372036854775808
LLONG_MAX maximum value of long long ≥ 9223372036854775807
ULLONG_MAX maximum value of unsigned long long ≥ 18446744073709551615

• Use them to make code more portable across platforms
• New platform/compiler? Always check values

Arithmetic
Integers
Floating
Expressions
Mixing Types

Aggregate
Structures
Defining Types
Arrays
Storage & C.
More Arrays

Integer Literal Constants

• Constants have types too
• Compilers must follow precise rules to assign types to integer

constants
• But they are complex
• And differ among standards

• Rule of thumb:
• write the number as is, if it is in int range
• otherwise, use suffixes U, L, UL, LL, ULL
• lowercase will do as well, but l is easy to misread as 1

• Remember: do not write spokes = bycicles*2*36;
• #define SPOKES_PER_WHEEL 36
• or declare:
const int SpokesPerWheel = 36;

• and use them, code will be more readable, and you’ll be
ready for easy changes

Arithmetic
Integers
Floating
Expressions
Mixing Types

Aggregate
Structures
Defining Types
Arrays
Storage & C.
More Arrays

Integer Types Math

• #include <stdlib.h> to use:

Function Returns
abs() absolute value of an int
labs() absolute value of a long
llabs() absolute value of a long long

• Use like: a = abs(b+i) + c;

• For values of type short or char, use abs()

Arithmetic
Integers
Floating
Expressions
Mixing Types

Aggregate
Structures
Defining Types
Arrays
Storage & C.
More Arrays

Bitwise Arithmetic

• Integer types are encoded in binary format
• Each one is a sequence of bits, each having state 0 or 1
• Bitwise arithmetic manipulates state of each bit

• Each bit of the result of unary operator ~ is in the opposite
state of the corresponding bit of the operand

• Each bit of the result of binary operators |, &, and ^ is the
OR, AND, and XOR respectively of the corresponding bits in
the operands

• Precedence
• a&b | c^d&e same as (a&b) | (c^(d&e))
• ~a&b same as (~a)&b

• Associativity is from left to right
• a | b | c same as (a | b) | c

• As usual, precedence and associativity can be overridden
using explicit (and), and |=, &=, and ^= are available

Arithmetic
Integers
Floating
Expressions
Mixing Types

Aggregate
Structures
Defining Types
Arrays
Storage & C.
More Arrays

More Bitwise Arithmetic

• Left and right shifts
• a«n same as a*2n modulo 2type width in bits

• a»n same as a/2n

• Precedence lower than ~ but higher than |, &, and ^
• Beware: if n > type width in bits, or n < 0, result is undefined

• Applications
• isodd = (a&1); same as isodd = a%2;
• b&255 same as b%256
• a | 15 same as (a/16)*16 + 15

• You have to think in base 2 to get why and if it works
• Think of the examples above ... did you get the pattern?
• 256 is 28 and 255 is 28 − 1
• 16 is 24 and 15 is 24 − 1
• a | 19 is NOT the same as (a/20)*20 + 19

Arithmetic
Integers
Floating
Expressions
Mixing Types

Aggregate
Structures
Defining Types
Arrays
Storage & C.
More Arrays

Enumerated Types

enum boundary {
free_slip,
no_slip,
inflow,
outflow
};

enum boundary leftside, rightside;

enum liquid {water, mercury} fluid; //may confuse readers

leftside = free_slip;

• A set of integer values represented by identifiers
• Under the hood, it’s an int
• free_slip is an enumeration constant with value 0
• no_slip is an enumeration constant with value 1
• inflow is an enumeration constant with value 2
• ...

Arithmetic
Integers
Floating
Expressions
Mixing Types

Aggregate
Structures
Defining Types
Arrays
Storage & C.
More Arrays

Choosing Values for Enumeration
Constants

enum spokes {SpokesPerWheel = 36};

enum element {
hydrogen = 1,
helium,
carbon = 6,
oxygen = 8,
fluorine
};

• Enumeration constants can be given a specified value
• When the enumeration constant value is not specified:

• if it’s the first in the declaration, gets the value 0
• if it’s not, gets (value of the previous one+1)
• thus helium above gets 2, and fluorine gets 9
• negative values can be used too

• A convenient way to give names to related integer
constants

Arithmetic
Integers
Floating
Expressions
Mixing Types

Aggregate
Structures
Defining Types
Arrays
Storage & C.
More Arrays

Floating Types (as on Most CPUs)

Type Conversion Width (bits) Size (bytes)
Usual Usual

float %f, %E, %G2 32 4
double %lf, %lE, %lG2 64 8
long double %Lf, %LE, %LG2 80 or 128 10 or 16
float _Complex1 none NA 8
double _Complex1 none NA 16
long double _Complex1 none NA 20 or 32

Constraints:
all float values must be representable in double
all double values must be representable in long double

1. C99
2. %f forces decimal notation, %E forces exponential decimal notation,
%G chooses the one most suitable to the value

• New platform/compiler? Always check with sizeof(type)

• In practice, always in IEEE Standard binary format, but not a C Standard
requirement

• #include <complex.h> and use float complex, double complex, and
long double complex, if your program does not already uses the complex
identifier

Arithmetic
Integers
Floating
Expressions
Mixing Types

Aggregate
Structures
Defining Types
Arrays
Storage & C.
More Arrays

#include <float.h>

Name Meaning Value
FLT_EPSILON min{x|1.0 + x > 1.0} in float type ≤ 10−5

DBL_EPSILON min{x|1.0 + x > 1.0} in double type ≤ 10−9

LDBL_EPSILON min{x|1.0 + x > 1.0} in long double type ≤ 10−9

FLT_DIG decimal digits of precision in float type ≥ 6
DBL_DIG decimal digits of precision in double type ≥ 10
LDBL_DIG decimal digits of precision in long double type ≥ 10
FLT_MIN minimum normalized positive number in float range ≤ 10−37

DBL_MIN minimum normalized positive number in long range ≤ 10−37

LDBL_MIN minimum normalized positive number in long double range ≤ 10−37

FLT_MAX maximum finite number in float range ≥ 1037

DBL_MAX maximum finite number in long range ≥ 1037

LDBL_MAX maximum finite number in long double range ≥ 1037

FLT_MIN_10_EXP minimum x such that 10x is in float range and normalized ≤ −37
DBL_MIN_10_EXP minimum x such that 10x is in double range and normalized ≤ −37
LDBL_MIN_10_EXP minimum x such that 10x is in long double range and normalized ≤ −37
FLT_MAX_10_EXP maximum x such that 10x is in float range and finite ≥ 37
DBL_MAX_10_EXP maximum x such that 10x is in double range and finite ≥ 37
LDBL_MAX_10_EXP maximum x such that 10x is in long double range and finite ≥ 37

• Use them to make code more portable across platforms
• New platform/compiler? Always check values
• “Normalized”? Yes, IEEE Standard allows for even smaller

values, with loss of precision, and calls them “denormalized”
• “Finite”? Yes, IEEE Standard allows for infinite values

Arithmetic
Integers
Floating
Expressions
Mixing Types

Aggregate
Structures
Defining Types
Arrays
Storage & C.
More Arrays

Floating Literal Constants

• Need something to distinguish them from integers
• Decimal notation: 1.0, -17., .125, 0.22
• Exponential decimal notation: 2E19 (2 × 1019), -123.4E9

(−1.234 × 1011), .72E-6 (7.2 × 10−7)
• They have type double by default

• Use suffixes F to make them float or L to make them long
double

• Lowercase will do as well, but l is easy to misread as 1

• Never write charge = protons*1.602176487E-19;
• #define UNIT_CHARGE 1.602176487E-19
• or declare:
const double UnitCharge = 1.602176487E-19;

• and use them in the code to make it readable
• it will come handier when more precise measurements will

be available

Arithmetic
Integers
Floating
Expressions
Mixing Types

Aggregate
Structures
Defining Types
Arrays
Storage & C.
More Arrays

double Math

Function/Macro Returns
HUGE_VAL1 largest positive finite value
INFINITY1 positive infinite value
NAN1 IEEE quiet NaN (if supported)
double fabs(double x), |x|,
double copysign(double x, double y)1 if y 6= 0 returns |x|y/|y| else returns |x|
double floor(double x), double ceil(double x), bxc, dxe,
double trunc(double x)1, if x > 0 returns bxc else returns dxe,
double round(double x)1 nearest2 integer to x
double fmod(double x, double y), x mod y (same sign as x)
double fdim(double x, double y)1 if x > y returns x− y else returns 0
double nextafter(double x, double y)1 next representable value after x toward y

double fmin(double x, double y)1 min{x, y}
double fmax(double x, double y)1 max{x, y}
1. C99
2. If x is halfway, returns the farthest from 0

• #include <math.h>
• Before C99, there were no fmin() or fmax()

• Preprocessor macros have been widely used to this aim
• Use the new functions, instead

• More functions are available to manipulate values
• Mostly in the spirit of IEEE Floating Point Standard
• We encourage you to learn more about

Arithmetic
Integers
Floating
Expressions
Mixing Types

Aggregate
Structures
Defining Types
Arrays
Storage & C.
More Arrays

double Higher Math

Functions Return
double sqrt(double x),

√
x,

double cbrt(double x)1, 3√x,
double pow(double x, double y), xy,
double hypot(double x, double y)1

√
x2 + y2

double sin(double x), double cos(double x),
Trigonometric functionsdouble tan(double x), double asin(double x),

double acos(double x), double atan(double x)
double atan2(double x, double y) Arc tangent in (−π, π]

double exp(double x), ex,
double log(double x), double log10(double x), loge x, log10 x,
double expm1(double x)1, double log1p(double x)1 ex − 1, log(x + 1)
double sinh(double x), double cosh(double x),

Hyperbolic functionsdouble tanh(double x), double asinh(double x)1,
double acosh(double x)1, double atanh(double x)1

double erf(double x)1 error function: 2√
π

∫ x
0 e−t2 dt

double erfc(double x)1 1− 2√
π

∫ x
0 e−t2 dt

double tgamma(double x)1, double lgamma(double x)1 Γ(x), log(|Γ(x)|)
1. C99

• Again, #include <math.h>

Arithmetic
Integers
Floating
Expressions
Mixing Types

Aggregate
Structures
Defining Types
Arrays
Storage & C.
More Arrays

double complex Math
C99 & C11

Function/Macro Returns
double complex CMPLX(double x, double y)1 x + iy,
double complex cabs(double complex z), |z|,

double complex carg(double complex z), Argument of z
(a.k.a. phase angle),

double complex creal(double complex z), Real part of z,
double complex cimag(double complex z), Imaginary part of z,
double complex conj(double complex z) Complex conjugate of z
double complex csqrt(double complex z),

√
z,

double complex cpow(double complex z, double complex w) zw

double complex cexp(double complex z), ez,
double complex clog(double complex z) loge z
1. C11

• To use them, #include <complex.h>
• You’ll also get:
csin(), ccos(), ctan(),
casin(), cacos(), catan(),
csinh(), ccosh(), ctanh(),
casinh(), cacosh(), catanh()

• And I for the imaginary unit

Arithmetic
Integers
Floating
Expressions
Mixing Types

Aggregate
Structures
Defining Types
Arrays
Storage & C.
More Arrays

float and long double Math

• Before C99, all functions were only for doubles
• And automatic conversion of other types was applied

• But from 1999 C is really serious about floating point math
• All functions exist also for float and long double
• Same names, suffixed by f or l
• Like acosf() for arccosine of a float
• Or cacosl() for long double complex
• Ditto for macros, like HUGE_VALF or CMPLXL()

• If you find this annoying (it is!):
• #include <tgmath.h>
• and use everywhere, for all real and complex types, function

names for double type
• These are clever type generic processor macros, expanding

to the function appropriate to the argument

Arithmetic
Integers
Floating
Expressions
Mixing Types

Aggregate
Structures
Defining Types
Arrays
Storage & C.
More Arrays

Expressions

• A fundamental concept in C
• A very rich set of operators
• Almost everything is an expression
• Even assignment to a variable

• C expressions are complicated
• Expressions can have side effects
• Not all subexpressions are necessarily computed
• Except for associativity and precedence rules, order of

evaluation of subexpressions is up to the compiler
• Values of different type can be combined, and a result

produced according to a rich set of rules
• Sometimes with surprising consequences

• We’ll give a simplified introduction
• Subtle rules are easily forgotten
• Relying on them makes the code difficult to read
• When you’ll find a puzzling piece of code, you can always

look for a good manual or book

Arithmetic
Integers
Floating
Expressions
Mixing Types

Aggregate
Structures
Defining Types
Arrays
Storage & C.
More Arrays

Arithmetic Expressions

• Binary operators +, -, * (multiplication) and / have the usual
meaning and behavior

• Unary operator - evaluates to the opposite of its operand
• Unary operator + evaluates to its operand
• Precedence

• -a*b + c/d same as ((-a)*b) + (c/d)
• -a + b same as (-a) + b

• Associativity of binary ones is from left to right
• a + b + c same as (a + b) + c
• a*b/c*d same as ((a*b)/c)*d

• Explicit (and) override precedence and associativity
• Only for integer types, % is the modulo operator (27%4

evaluates to 3), same precedence as /

Arithmetic
Integers
Floating
Expressions
Mixing Types

Aggregate
Structures
Defining Types
Arrays
Storage & C.
More Arrays

Hitting Limits

• All types are limited in range
• What about:

• INT_MAX + 1? (too big)
• INT_MIN*3? (too negative)

• Technically speaking, this is an arithmetic overflow
• And division by zero is a problem too
• For signed integer types, the Standard says:

• behavior and results are unpredictable
• i.e. up to the implementation

• For other types, the Standard says:
• arithmetic on unsigned integers must be exact

modulo 2type width, no overflow
• with floating types, is up to the implementation

(you can get DBL_MAX, or a NaN, or an infinity)
• Best practice: NEVER rely on behaviors observed with a

specific architecture and/or compiler

Arithmetic
Integers
Floating
Expressions
Mixing Types

Aggregate
Structures
Defining Types
Arrays
Storage & C.
More Arrays

Assignment Operator

• Binary operator =
• assigns the value of the right operand to the left operand
• and returns the value of the right operand
• thus a = b*2 is an expression with value b*2 and the side

effect of changing variable a
• a = b*2; is an assignment statement

• The left operand must be something that can store a value
• In C jargon, an lvalue
• a = 20 is OK, if a is a variable
• 20 = a is not

• Precedence is lowest (except for , operator) and associativity
is from right to left

• a = b*2 + c same as a = (b*2 + c)
• z = a = b*2 + c same as z = (a = (b*2 + c))

• You’ll read the latter form, particularly in while ()
statements, but avoid writing it

Arithmetic
Integers
Floating
Expressions
Mixing Types

Aggregate
Structures
Defining Types
Arrays
Storage & C.
More Arrays

More Assignment Operators

• Most binary operators offer useful shortcut forms:

Expression Same as
a += b a = a + b
a -= b a = a - b
a *= b a = a*b
a /= b a = a/b
a %= b a = a%b

• In heroic times, used to map some CPUs optimized
instructions

• With nowadays optimizing compilers, only good to spare
keystrokes

• You’ll find them often, particularly in for(;;) statements

Arithmetic
Integers
Floating
Expressions
Mixing Types

Aggregate
Structures
Defining Types
Arrays
Storage & C.
More Arrays

More Side Effects

• Pre-increment/decrement unary operators: ++ and --
• ++i same as (i = i + 1)
• --i same as (i = i - 1)

• Post-increment/decrement unary operators: ++ and --
• i++ increments i content, but returns the original value
• i-- decrements i content, but returns the original value

• Operand must be an lvalue
• Precedence is highest

• Quite handy in while () and for (;;) statements
• Easily becomes a nightmare inside expressions

• Particularly when you change the code

Arithmetic
Integers
Floating
Expressions
Mixing Types

Aggregate
Structures
Defining Types
Arrays
Storage & C.
More Arrays

Order of Subexpressions
Evaluation

• i is an int type variable whose value is 5
j = 4*i++ - 3*++i;
foo(++i, ++i);

• Which value is assigned to j?
• Could be

-1

• Or could as well be

6

• Which values are passed to foo()?
• Could be foo(

8

,

9

)
• Or could as well be foo(

9

,

8

)

• Order of evaluation of subexpressions is implementation
defined!

• Ditto for order of evaluation of function arguments!

• NEVER! NEVER pre/post-in/de-crement the same
variable twice in a single expression, or function call!

Arithmetic
Integers
Floating
Expressions
Mixing Types

Aggregate
Structures
Defining Types
Arrays
Storage & C.
More Arrays

Logical Expressions

• Comparison operators
• == (equal), != (not equal), >, <, >=, <=
• Compare operand values
• Return int type 0 if evaluation is false, 1 if true
• Precedence lower than arithmetic operators, higher than

bitwise and logical operators
• In doubt, add parentheses, but be sober

• Logical operators
• ! is unary NOT, && is binary AND, || is binary OR
• Zero operand are considered false, non zero ones true
• Return int type 0 if comparison is false, 1 if true
• Precedence of ! just lower than ++ and --
• &&, ||: higher than = and friends
• !a&&b || a&&!b means ((!a)&&b) || (a&&(!b))
• Again: in doubt, add parentheses, but be sober

Arithmetic
Integers
Floating
Expressions
Mixing Types

Aggregate
Structures
Defining Types
Arrays
Storage & C.
More Arrays

More Logic from math.h

• Some macros to tame floating point complexity
• isfinite()

• True if argument value is finite
• isinf()

• True if argument value is an infinity
• isnan()

• True if argument value is a NaN
• And more, if you are really serious about floating point

calculations
• Mostly in the spirit of IEEE Floating Point Standard
• Learn more about it, before using them

Arithmetic
Integers
Floating
Expressions
Mixing Types

Aggregate
Structures
Defining Types
Arrays
Storage & C.
More Arrays

Being Completely Logical

• C99 defines integer type _Bool
• Only guaranteed to store 0 or 1
• Perfect for logical (a.k.a. boolean) expressions
• Use it for “flag” variables, and to avoid surprises
• Better yet, #include <stdbool.h>,

and use type bool, and values true and false

• Watch your step!
• Simply mistype & for && or vice versa
• Simply mistype || for |
• You’ll discover, possibly after hours of debugging, that (bitwise

arithmetic) != (logical arithmetic)

• C99 offers a fix to this unfortunate choice
• #include <iso646.h>
• And use not, or, and and in place of !, || and &&

Arithmetic
Integers
Floating
Expressions
Mixing Types

Aggregate
Structures
Defining Types
Arrays
Storage & C.
More Arrays

Even More Side Effects

• Right operand of || and && is evaluated after left one
• And is not evaluated at all if:

• left one is found true for an ||
• left one is found false for an &&

• Beware of “short circuit” evaluation...
• ... if the right operand is an expression with side effects!
• A life saver in preprocessor macros and a few more cases
• But makes your code less readable
• Use nested if () whenever you can

• logical-expr ? expr1 : expr2
• expr1 is only evaluated if logical-expr is true
• expr2 is only evaluated if logical-expr is false
• Again, is a life saver in preprocessor macros
• But in normal use an if () is more readable

Arithmetic
Integers
Floating
Expressions
Mixing Types

Aggregate
Structures
Defining Types
Arrays
Storage & C.
More Arrays

Mixing Types in Expressions

• C allows for expressions mixing any arithmetic types
• A result will always be produced
• Whether this is the result you expect, it’s another story

• Broadly speaking, the base concept is clear
• For each binary operator in the expression, in order of

precedence and associativity:
• if both operands have the same type, fine
• otherwise, operand with narrower range is converted to type

of other operand

• OK when mixing floating types
• The wider range includes the narrower one

• OK when mixing signed integer types
• The wider range includes the narrower one

• OK even when mixing unsigned integer types
• The wider range includes the narrower one

Arithmetic
Integers
Floating
Expressions
Mixing Types

Aggregate
Structures
Defining Types
Arrays
Storage & C.
More Arrays

Type Conversion Traps

• For the assignment operator:
• if both operands have the same type, fine
• otherwise, right operand is converted to left operand type
• if the value cannot be represented in the destination type, it’s

an overflow, and you are on your own

• We said: in order of precedence and associativity
• if a is a type long long int variable, and b is a 32 bits

wide int type variable and contains value INT_MAX, in:
a = b*2
multiplication will overflow

• and in:
a = b*2 + 1LL
multiplication will overflow too

• while:
a = b*2LL + 1
is OK

Arithmetic
Integers
Floating
Expressions
Mixing Types

Aggregate
Structures
Defining Types
Arrays
Storage & C.
More Arrays

More Type Conversion Traps

• Think of mixing floating and integer types
• Floating types have wider range
• But not necessarily more precision
• A 32 bits float has fewer digits of precision than a 32 bits
int

• And a 64 bits double has fewer digits of precision than a 64
bits int

• The result could be smaller than expected

• Think of mixing signed and unsigned integer types!
• Negative values cannot be represented in unsigned types
• Half of the values representable in an unsigned type, cannot

be represented in a signed type of the same width
• So, you are in for implementation defined surprises!
• And Standard rules are quite complicated
• We spare you the gory details, simply don’t do it!

Arithmetic
Integers
Floating
Expressions
Mixing Types

Aggregate
Structures
Defining Types
Arrays
Storage & C.
More Arrays

Cast Your Subexpressions

• (type)
• Unsurprisingly, it’s an operator
• Precedence just higher than multiplication, right-to-left

associative
• Use it like (unsigned long)(sig + ned)

• Casting let you override standard conversion rules
• In previous example, you could use it like this:
a = (long long int)b*2 + 1

• Type casting is not magic
• Just instructs compiler to apply the conversion you need
• Only converts values, not type of variables you assign to

• Do not abuse it
• Makes codes unreadable
• Could be evidence of design mistakes
• Or that your C needs a refresh

Scientific and Technical Computing in C

Stefano Tagliaventi Isabella Baccarelli
CINECA Roma - SCAI Department

Rome, 3rd-5th May 2017

Arithmetic
Integers
Floating
Expressions
Mixing Types

Aggregate
Structures
Defining Types
Arrays
Storage & C.
More Arrays

Outline

1 Arithmetic Types and Math

2 Aggregate Types
Structure Types
Defining New Types
Arrays
Storage Classes, Scopes, and Initializers
Arrays & Functions

Arithmetic
Integers
Floating
Expressions
Mixing Types

Aggregate
Structures
Defining Types
Arrays
Storage & C.
More Arrays

struct

struct vect3D {
double x, y, z;

};

struct vect3D va, vb;

// REMINDER: I have to make vcross() more efficient!
struct vect3d vcross(struct vect3D u, struct vect3D v) {

struct vect3D c;

c.x = u.y*v.z - u.z*v.y;
c.y = u.z*v.x - u.x*v.z;
c.z = u.x*v.y - u.y*v.x;

return c;
}

//...
vc = vcross(va, vb);

• Aggregates a single type from named, typed components
(a.k.a. members)

• The vect3D tag must be unique among structure tags
• struct components can be independently accessed

using the . binary operator

Arithmetic
Integers
Floating
Expressions
Mixing Types

Aggregate
Structures
Defining Types
Arrays
Storage & C.
More Arrays

structs Are Flexible

struct ion {
struct vect3D r; // position
struct vect3D v; // velocity
enum element an; // atomic number
int q; // in units of elementary charges

};

struct ion a;
//...

a.r.x += dt*a.v.x; // very low order in time...

• struct components can be inhomogeneous
• And they can also be structs, of course

• To access nested struct components, chain . expressions
• Best practice: order components by decreasing size

• You’ll get better performances
• To know, you can use sizeof() operator on any type

Arithmetic
Integers
Floating
Expressions
Mixing Types

Aggregate
Structures
Defining Types
Arrays
Storage & C.
More Arrays

structs: a Concrete Example

• structs are widely used in C Standard Library
• Like in struct tm, below, defined in time.h

• Used to convert from/to internal time representation time_t

struct tm {
int tm_sec; // seconds after the minute [0, 60]
int tm_min; // minutes after the hour [0, 59]
int tm_hour; // hours since midnight [0, 23]
int tm_mday; // day of the month [1, 31]
int tm_mon; // months since January [0, 11]
int tm_year; // years since 1900
int tm_wday; // days since Sunday [0, 6]
int tm_yday; // days since January 1 [0, 365]
int tm_isdst; // Daylight Saving Time flag

};

Arithmetic
Integers
Floating
Expressions
Mixing Types

Aggregate
Structures
Defining Types
Arrays
Storage & C.
More Arrays

typedef

typedef struct vect3D position, velocity;

typedef enum element element; // let’s spare keystrokes

typedef int charge; // I’ll maybe switch to short or signed char

typedef struct ion {
position r;
velocity v;
element an;
charge q;

} ion;

ion a;

• typedef turns a normal declaration into a declaration of a
new type (as usual, a legal identifier)

• The new type can be used as the native ones
• Great to save keystrokes
• Even better to write self-documenting code
• Shines in hiding and factoring out implementation details

• struct tags and type identifiers belong to separate sets

Arithmetic
Integers
Floating
Expressions
Mixing Types

Aggregate
Structures
Defining Types
Arrays
Storage & C.
More Arrays

typedef in C Standard Library

• typedef is widely used in C Standard Library
• Mostly to abstract details that may differ among

implementations

• E.g. size_t from stddef.h
• Type of value returned by sizeof()
• Different platforms allow for different memory sizes
• size_t must be “typedefed” to an integer type able to

represent the maximum possible variable size allowed by the
implementation

• E.g. clock_t from time.h
• Type of value returned by clock()
• Cast it to double, divide by CLOCK_PER_SEC, ...
• and you’ll know the CPU time in seconds used by your

program from its beginning

Arithmetic
Integers
Floating
Expressions
Mixing Types

Aggregate
Structures
Defining Types
Arrays
Storage & C.
More Arrays

Arrays

• some_type a[n];
• declares a collection of n variables of type some_type
• the variables (a.k.a. elements) are laid out contiguously in

memory
• each element can be read or written using the syntax
a[integer indexing expression]

• first element is a[0], second one is a[1],
last one is a[n-1]

• You can’t work on an array as a whole
• Use array elements (if allowed...) in expressions and

assignments
• There is no bound checking!

• Use a negative index, or an index too big, and you are
accessing something else, if any

• Compiler options to (very slowly) check every access
• A common mistake:

• to access from double a[1] to double a[n]
• Fortran programmers beware!

Arithmetic
Integers
Floating
Expressions
Mixing Types

Aggregate
Structures
Defining Types
Arrays
Storage & C.
More Arrays

Arrays of(Arrays of(Arrays of(...)))

• C has no concept of multidimensional arrays
• But array is a regular C type (you can even
sizeof(double[150]))

• Thus, arrays of arrays can be declared
• A simple, practical abstraction
• Very annoying to Fortran or Matlab programmers

• int a[12][31];
• declares an array of 12 elements
• and each element is itself an array of 31 ints

• double b[130][260][260];
• declares an array of 130 elements
• and b[37] is itself an array of 260 elements
• and b[37][201] is again an array of 260 doubles

• By the way, you can also use sizeof(b), it works

Arithmetic
Integers
Floating
Expressions
Mixing Types

Aggregate
Structures
Defining Types
Arrays
Storage & C.
More Arrays

Array Memory Layout

int a[10];

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

int b[5][2];

b[0] b[1] b[2] b[3] b[4]

b[0][0] b[0][1] b[1][0] b[1][1] b[2][0] b[2][1] b[3][0] b[3][1] b[4][0] b[4][1]

Arithmetic
Integers
Floating
Expressions
Mixing Types

Aggregate
Structures
Defining Types
Arrays
Storage & C.
More Arrays

A Very Important Digression

• Storage duration
• To make it simple, the life time of a variable
• Also influences the part of memory where it’s allocated

• Scope
• The region where a variable or function is accessible, a.k.a.

“visible”

• Qualifiers
• The value in a const variable cannot be changed
• There are more, but we’ll not discuss them

• Initializers
• Values assigned to a variable at declaration

Arithmetic
Integers
Floating
Expressions
Mixing Types

Aggregate
Structures
Defining Types
Arrays
Storage & C.
More Arrays

Storage Duration

• A variable can be
• Automatic: it can be created when needed, and destroyed

when not needed anymore
• Static: it persists for the whole duration of the program

• Variables declared outside of any functions (i.e. at file scope)
are static

• By default, are automatic:
• all variables declared inside a compound statement
• function parameters

• The default can be overridden using static

• Functions are static too, because to call them you need
their code to persist in memory

Arithmetic
Integers
Floating
Expressions
Mixing Types

Aggregate
Structures
Defining Types
Arrays
Storage & C.
More Arrays

Scopes

• By default, variables declared at file scope and functions are
extern

• i.e. visible to the linker, and to the whole program
• Unless you declare them to be static only

• Variables declared at file scope and functions are visible to all
blocks in the same source file

• Variables declared in a block are only visible in the block and
in all scopes it encloses

• Unless you declare them extern
• But in most cases that’s a symptom of bad design

• A variable declared in a block hides anything declared with
the same name in enclosing scopes

Arithmetic
Integers
Floating
Expressions
Mixing Types

Aggregate
Structures
Defining Types
Arrays
Storage & C.
More Arrays

Variable Initializers

• The content of an automatic variable is uninitialized until the
variable is assigned a value

• Uninitialized is a polite form for ”unpredictable rubbish”

• double f = 2.5; is a practical shorthand for:
double f;
f = 2.5;

• Expressions can be used as initializers, as long as they can
be computed at that point:
double pi = acos(-1.0);
double pihalf = pi/2.0;

is legal, while the following:
double pihalf = pi/2.0;
double pi = acos(-1.0);

obviously is not

Arithmetic
Integers
Floating
Expressions
Mixing Types

Aggregate
Structures
Defining Types
Arrays
Storage & C.
More Arrays

More on Variable Initializers

• structs can be initialized too, as in:
struct vect3D V = {0.0, 1.0, 0.0};

• Same for arrays, as in:
float rot[2][2] = {{0.0, -1.0}, {1.0, 0.0}};

• {0.0, 1.0, 0.0} and {{0.0, -1.0}, {1.0, 0.0}}
are said compound literals

• By default, static variables are initialized to 0
• But they can be initialized to different values
• Expressions can also be used, with some restrictions

• For a static variable, initialization expression must be
computed at compile time

• I.e. it must be a constant expression, containing only
constants

• No variables, no function calls are permitted

Arithmetic
Integers
Floating
Expressions
Mixing Types

Aggregate
Structures
Defining Types
Arrays
Storage & C.
More Arrays

Arrays and Storage Classes

• Static arrays must be dimensioned with constant expressions

• Before C99, this was true for automatic arrays too
• So to use an array in a function, you had to dimension it for

the largest possible amount of work
• A waste of memory and error prone

• C99 has a much better way

• Variable length arrays
• Arrays whose size is unknown until run time
• Automatic arrays can have their dimension specified by a

nonconstant expression
• Every time execution enters the block, the expression is

evaluated
• And the array size is determined, up to exit from the block

Arithmetic
Integers
Floating
Expressions
Mixing Types

Aggregate
Structures
Defining Types
Arrays
Storage & C.
More Arrays

Arrays as Function Arguments

• Arrays can be huge
• And usually are, in S&T computing
• Passing them by value would be too costly

• Moreover, arrays cannot be used in assignments
• Thus a function cannot return an array

• The solution
• The address of the array is passed to a function
• And elements can be accessed by it
• (Later on, you’ll understand how)

• This allows elements to be assigned to
• Thus a function has a way to “return” an array result
• A mixed blessing: allows changes to happen by mistake

• Best practice: declare an array parameter const if your
only intent is reading its elements

Arithmetic
Integers
Floating
Expressions
Mixing Types

Aggregate
Structures
Defining Types
Arrays
Storage & C.
More Arrays

Averaging, the C99 Way

• Let’s write a function to average an array of doubles
• And make it generic in the array length
• Variable length array parameters come to the rescue

double avg(int n, const double a[n]) {
int i;
double sum = 0.0;

for (i=0; i<n; ++i)
sum += a[i];

return sum/n;
}

Beware: double avg(double a[n], int n) does not work!

Arithmetic
Integers
Floating
Expressions
Mixing Types

Aggregate
Structures
Defining Types
Arrays
Storage & C.
More Arrays

Averaging, the Old Way

• Before C99, there were no VLAs
• The solution was simple

• Compiler just uses type size to find the right element
• No bounds checking, no bound needed

• Many still write that way: it’s equivalent, but less readable

double avg(int n, const double a[]) {
int i;
double sum = 0.0;

for (i=0; i<n; ++i)
sum += a[i];

return sum/n;
}

Arithmetic
Integers
Floating
Expressions
Mixing Types

Aggregate
Structures
Defining Types
Arrays
Storage & C.
More Arrays

Calling avg()

• New or old style, simply pass array dimension and name
• If avg() is written using VLAs, pedantic compilers may give

a warning on function call, even if it’s correct: they are wrong,
check with Standard document or good book

double mydata[N];
double mydata_avg;

// read or compute N doubles into mydata[]

mydata_avg = avg(N, mydata);

Arithmetic
Integers
Floating
Expressions
Mixing Types

Aggregate
Structures
Defining Types
Arrays
Storage & C.
More Arrays

Averaging Arrays of 5 Elements

• Let’s write a function to average arrays of 5 doubles
• And make it generic, as usual
• Again, VLA parameters come to the rescue

void avg5(int n, const double a[n][5], double b[5]) {
int i, j;

for (j=0; j<5; ++j)
b[j] = 0;

for (i=0; i<n; ++i)
for (j=0; j<5; ++j)

b[j] += a[i][j];

for (j=0; j<5; ++j)
b[j] /= n;

}

Notice: this order of loops nesting gives faster execution

Arithmetic
Integers
Floating
Expressions
Mixing Types

Aggregate
Structures
Defining Types
Arrays
Storage & C.
More Arrays

Averaging Arrays of 5 Elements,
the Old Way

• Let’s write a function to average arrays of 5 doubles
• And make it generic, as usual
• Again, do not specify first bound
• Again, it’s equivalent

void avg5(int n, const double a[][5], double b[5]) {
int i, j;

for (j=0; j<5; ++j)
b[j] = 0;

for (i=0; i<n; ++i)
for (j=0; j<5; ++j)

b[j] += a[i][j];

for (j=0; j<5; ++j)
b[j] /= n;

}

Arithmetic
Integers
Floating
Expressions
Mixing Types

Aggregate
Structures
Defining Types
Arrays
Storage & C.
More Arrays

Calling avg5()

• New or old style, simply pass array dimension and name
• If avg5() is written using VLAs, pedantic compilers may give

a warning on function call, even if it’s correct: they are wrong,
check with Standard document or good book

double mydata[N][5];
double mydata_avg[5];

// read or compute N 5-uples of doubles into mydata[]

avg5(N, mydata, mydata_avg);

Arithmetic
Integers
Floating
Expressions
Mixing Types

Aggregate
Structures
Defining Types
Arrays
Storage & C.
More Arrays

Averaging Arrays of Arbitrary
Length

• Let’s generalize the average to set of m numbers
• And make it generic, as usual
• Again, VLA parameters come to the rescue

void avg(int n, int m, const double a[n][m], double b[m]) {

int i, j;

for (j=0; j<m; ++j)
b[j] = 0;

for (i=0; i<n; ++i)
for (j=0; j<m; ++j)

b[j] += a[i][j];

for (j=0; j<m; ++j)
b[j] /= n;

}

Notice: this order of loops nesting gives faster execution

Arithmetic
Integers
Floating
Expressions
Mixing Types

Aggregate
Structures
Defining Types
Arrays
Storage & C.
More Arrays

Calling Generic avg()

• Again, simply pass array dimension and name
• Using casts for arrays of doubles
• If avg() is written using VLAs, pedantic compilers may give

a warning on function call, even if it’s correct: they are wrong,
check with Standard document or good book

double mydata1[N][12];
double mydata1_avg[12];
double mydata2[N][7];
double mydata2_avg[7];
double mydata3[N][1];
double mydata3_avg[1];
double mydata4[N];
double mydata4_avg[1];

// read or compute N 12-uples of doubles into mydata1[]
// read or compute N 7-uples of doubles into mydata2[]
// read or compute N 1-uples of doubles into mydata3[]
// read or compute N doubles into mydata4[]

avg(N, 12, mydata1, mydata1_avg);
avg(N, 7, mydata2, mydata2_avg);
avg(N, 1, mydata3, mydata3_avg);
avg(N, 1,(double (*)[1])mydata4, mydata4_avg);

Arithmetic
Integers
Floating
Expressions
Mixing Types

Aggregate
Structures
Defining Types
Arrays
Storage & C.
More Arrays

More on casts

(type-name) cast-expression

• Unless the type name specifies a void type, the type name
shall specify qualified or unqualified scalar type and the
operand shall have scalar type.

• i.e
double mydata4[N];
foo((double [N])mydata4); // INVALID. The type name does not specify a scalar type.

.....

struct bar
{

double x,y,z;
};
struct bar var;

foo((struct bar)var); // INVALID. Neither the type name of the cast nor the operand have scalar type.

Arithmetic
Integers
Floating
Expressions
Mixing Types

Aggregate
Structures
Defining Types
Arrays
Storage & C.
More Arrays

Matrix Algebra, the C99 Way

• Let’s write a function to compute the trace of a matrix of
doubles

• And make it generic in the matrix size
• Again, variable length array parameters come to the rescue
• Again, you may get warnings on calls, and they could prove

wrong

double tr(int n, const double a[n][n]) {
int i;
double sum = 0.0;

for (i=0; i<n; ++i)
sum += a[i][i];

return sum;
}

Beware: compiler will not check the array dimensions match!

Arithmetic
Integers
Floating
Expressions
Mixing Types

Aggregate
Structures
Defining Types
Arrays
Storage & C.
More Arrays

Matrix Algebra, the Old Way

• Before C99, there were no VLAs
• The solution was not that simple...

• Only the ‘first dimension’ of an array parameter could be left
unspecified at compile time

• To understand the solution, you have to learn more

Arithmetic
Integers
Floating
Expressions
Mixing Types

Aggregate
Structures
Defining Types
Arrays
Storage & C.
More Arrays

Rights & Credits

These slides are c©CINECA 2016 and are released under
the Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)
Creative Commons license, version 3.0.

Uses not allowed by the above license need explicit, written
permission from the copyright owner. For more information
see:

http://creativecommons.org/licenses/by-nc-nd/3.0/

Slides and examples were authored by:
• Michela Botti
• Federico Massaioli
• Luca Ferraro
• Stefano Tagliaventi

	Arithmetic Types and Math
	Integer Types
	Floating Types
	Expressions
	Arithmetic Conversions

	Aggregate Types
	Structure Types
	Defining New Types
	Arrays
	Storage Classes, Scopes, and Initializers
	Arrays & Functions

