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Data

• Computing == manipulating data and calculating results
• Data are manipulated using internal, binary formats
• Data are kept in memory locations and CPU registers

• C is quite liberal on internal data formats
• Most CPU are similar but all have peculiarities
• C only mandates what is de facto standard
• Some details depend on the specific executing (a.k.a. target)

hardware architecture and software implementation
• C Standard Library provides facilities to translate between

internal formats and human readable ones
• C allows programmers to:

• think in terms of data types and named containers
• disregard details on actual memory locations and data

movements
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C is a Strongly Typed Language

• Each literal constant has a type
• Dictates internal format of the data value

• Each variable has a type
• Dictates content internal format and amount of memory
• Type must be specified in a declaration before use

• Each expression has a type
• And subexpressions have too
• Depends on operators and their arguments

• Each function has a type
• That is the type of the returned value
• Specified in function declaration or definition
• If the compiler doesn’t know the type, it assumes int

• Function parameters have types
• I.e. type of arguments to be passed in function calls
• Specified in function declaration or definition
• If the compiler doesn’t know the types, it will accept any

argument, applying some type conversion rules
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Integer Types (as on Most CPUs)

Type Sign Conversion Width (bits) Size (bytes)
Minimum Usual Minimum Usual

signed char +/- %hhd1
8 8 1 1

unsigned char + %hhu1

short +/- %hd
16 16 2 2short int

unsigned short + %hu
unsigned short int
int +/- %d

16 32 2 4unsigned + %u
unsigned int
long +/- %ld

32 32 or 64 4 4 or 8long int
unsigned long + %lu
unsigned long int

long long2
+/- %lld

64 64 8 8long long int2

unsigned long long2
+ %llu

unsigned long long int2

Constraint: short width ≤ int width ≤ long width ≤ long long width

1. C99, in C89 use conversion to/from int types
2. C99

• New platform/compiler? Always check with sizeof(type)

• Values of char and short types just use less memory,
they are promoted to int types in calculations
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#include <limits.h>

Name Meaning Value
CHAR_BIT width of any char type ≥ 8
SCHAR_MIN minimum value of signed char ≤ −128
SCHAR_MAX maximum value of signed char ≥ 127
UCHAR_MAX maximum value of unsigned char type ≥ 255
SHRT_MIN minimum value of short ≤ −32768
SHRT_MAX maximum value of short ≥ 32767
USHRT_MAX maximum value of unsigned short ≥ 65535
INT_MIN minimum value of int ≤ −32768
INT_MAX maximum value of int ≥ 32767
UINT_MAX maximum value of unsigned ≥ 65535
LONG_MIN minimum value of long ≤ −2147483648
LONG_MAX maximum value of long ≥ 2147483647
ULONG_MAX maximum value of unsigned long ≥ 4294967295
LLONG_MIN minimum value of long long ≤ −9223372036854775808
LLONG_MAX maximum value of long long ≥ 9223372036854775807
ULLONG_MAX maximum value of unsigned long long ≥ 18446744073709551615

• Use them to make code more portable across platforms
• New platform/compiler? Always check values
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Integer Literal Constants

• Constants have types too
• Compilers must follow precise rules to assign types to integer

constants
• But they are complex
• And differ among standards

• Rule of thumb:
• write the number as is, if it is in int range
• otherwise, use suffixes U, L, UL, LL, ULL
• lowercase will do as well, but l is easy to misread as 1

• Remember: do not write spokes = bycicles*2*36;
• #define SPOKES_PER_WHEEL 36
• or declare:
const int SpokesPerWheel = 36;

• and use them, code will be more readable, and you’ll be
ready for easy changes
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Integer Types Math

• #include <stdlib.h> to use:

Function Returns
abs() absolute value of an int
labs() absolute value of a long
llabs() absolute value of a long long

• Use like: a = abs(b+i) + c;

• For values of type short or char, use abs()
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Bitwise Arithmetic

• Integer types are encoded in binary format
• Each one is a sequence of bits, each having state 0 or 1
• Bitwise arithmetic manipulates state of each bit

• Each bit of the result of unary operator ~ is in the opposite
state of the corresponding bit of the operand

• Each bit of the result of binary operators |, &, and ^ is the
OR, AND, and XOR respectively of the corresponding bits in
the operands

• Precedence
• a&b | c^d&e same as (a&b) | (c^(d&e))
• ~a&b same as (~a)&b

• Associativity is from left to right
• a | b | c same as (a | b) | c

• As usual, precedence and associativity can be overridden
using explicit ( and ), and |=, &=, and ^= are available
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More Bitwise Arithmetic

• Left and right shifts
• a«n same as a*2n modulo 2type width in bits

• a»n same as a/2n

• Precedence lower than ~ but higher than |, &, and ^
• Beware: if n > type width in bits, or n < 0, result is undefined

• Applications
• isodd = (a&1); same as isodd = a%2;
• b&255 same as b%256
• a | 15 same as (a/16)*16 + 15

• You have to think in base 2 to get why and if it works
• Think of the examples above ... did you get the pattern?
• 256 is 28 and 255 is 28 − 1
• 16 is 24 and 15 is 24 − 1
• a | 19 is NOT the same as (a/20)*20 + 19
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Enumerated Types

enum boundary {
free_slip,
no_slip,
inflow,
outflow
};

enum boundary leftside, rightside;

enum liquid {water, mercury} fluid; //may confuse readers

leftside = free_slip;

• A set of integer values represented by identifiers
• Under the hood, it’s an int
• free_slip is an enumeration constant with value 0
• no_slip is an enumeration constant with value 1
• inflow is an enumeration constant with value 2
• ...
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Choosing Values for Enumeration
Constants

enum spokes {SpokesPerWheel = 36};

enum element {
hydrogen = 1,
helium,
carbon = 6,
oxygen = 8,
fluorine
};

• Enumeration constants can be given a specified value
• When the enumeration constant value is not specified:

• if it’s the first in the declaration, gets the value 0
• if it’s not, gets (value of the previous one+1)
• thus helium above gets 2, and fluorine gets 9
• negative values can be used too

• A convenient way to give names to related integer
constants
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Floating Types (as on Most CPUs)

Type Conversion Width (bits) Size (bytes)
Usual Usual

float %f, %E, %G2 32 4
double %lf, %lE, %lG2 64 8
long double %Lf, %LE, %LG2 80 or 128 10 or 16
float _Complex1 none NA 8
double _Complex1 none NA 16
long double _Complex1 none NA 20 or 32

Constraints:
all float values must be representable in double
all double values must be representable in long double

1. C99
2. %f forces decimal notation, %E forces exponential decimal notation,
%G chooses the one most suitable to the value

• New platform/compiler? Always check with sizeof(type)

• In practice, always in IEEE Standard binary format, but not a C Standard
requirement

• #include <complex.h> and use float complex, double complex, and
long double complex, if your program does not already uses the complex
identifier
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#include <float.h>

Name Meaning Value
FLT_EPSILON min{x|1.0 + x > 1.0} in float type ≤ 10−5

DBL_EPSILON min{x|1.0 + x > 1.0} in double type ≤ 10−9

LDBL_EPSILON min{x|1.0 + x > 1.0} in long double type ≤ 10−9

FLT_DIG decimal digits of precision in float type ≥ 6
DBL_DIG decimal digits of precision in double type ≥ 10
LDBL_DIG decimal digits of precision in long double type ≥ 10
FLT_MIN minimum normalized positive number in float range ≤ 10−37

DBL_MIN minimum normalized positive number in long range ≤ 10−37

LDBL_MIN minimum normalized positive number in long double range ≤ 10−37

FLT_MAX maximum finite number in float range ≥ 1037

DBL_MAX maximum finite number in long range ≥ 1037

LDBL_MAX maximum finite number in long double range ≥ 1037

FLT_MIN_10_EXP minimum x such that 10x is in float range and normalized ≤ −37
DBL_MIN_10_EXP minimum x such that 10x is in double range and normalized ≤ −37
LDBL_MIN_10_EXP minimum x such that 10x is in long double range and normalized ≤ −37
FLT_MAX_10_EXP maximum x such that 10x is in float range and finite ≥ 37
DBL_MAX_10_EXP maximum x such that 10x is in double range and finite ≥ 37
LDBL_MAX_10_EXP maximum x such that 10x is in long double range and finite ≥ 37

• Use them to make code more portable across platforms
• New platform/compiler? Always check values
• “Normalized”? Yes, IEEE Standard allows for even smaller

values, with loss of precision, and calls them “denormalized”
• “Finite”? Yes, IEEE Standard allows for infinite values
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Floating Literal Constants

• Need something to distinguish them from integers
• Decimal notation: 1.0, -17., .125, 0.22
• Exponential decimal notation: 2E19 (2 × 1019), -123.4E9

(−1.234 × 1011), .72E-6 (7.2 × 10−7)
• They have type double by default

• Use suffixes F to make them float or L to make them long
double

• Lowercase will do as well, but l is easy to misread as 1

• Never write charge = protons*1.602176487E-19;
• #define UNIT_CHARGE 1.602176487E-19
• or declare:
const double UnitCharge = 1.602176487E-19;

• and use them in the code to make it readable
• it will come handier when more precise measurements will

be available
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double Math

Function/Macro Returns
HUGE_VAL1 largest positive finite value
INFINITY1 positive infinite value
NAN1 IEEE quiet NaN (if supported)
double fabs(double x), |x|,
double copysign(double x, double y)1 if y 6= 0 returns |x|y/|y| else returns |x|
double floor(double x), double ceil(double x), bxc, dxe,
double trunc(double x)1, if x > 0 returns bxc else returns dxe,
double round(double x)1 nearest2 integer to x
double fmod(double x, double y), x mod y (same sign as x)
double fdim(double x, double y)1 if x > y returns x− y else returns 0
double nextafter(double x, double y)1 next representable value after x toward y

double fmin(double x, double y)1 min{x, y}
double fmax(double x, double y)1 max{x, y}
1. C99
2. If x is halfway, returns the farthest from 0

• #include <math.h>
• Before C99, there were no fmin() or fmax()

• Preprocessor macros have been widely used to this aim
• Use the new functions, instead

• More functions are available to manipulate values
• Mostly in the spirit of IEEE Floating Point Standard
• We encourage you to learn more about
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double Higher Math

Functions Return
double sqrt(double x),

√
x,

double cbrt(double x)1, 3√x,
double pow(double x, double y), xy,
double hypot(double x, double y)1

√
x2 + y2

double sin(double x), double cos(double x),
Trigonometric functionsdouble tan(double x), double asin(double x),

double acos(double x), double atan(double x)
double atan2(double x, double y) Arc tangent in (−π, π]

double exp(double x), ex,
double log(double x), double log10(double x), loge x, log10 x,
double expm1(double x)1, double log1p(double x)1 ex − 1, log(x + 1)
double sinh(double x), double cosh(double x),

Hyperbolic functionsdouble tanh(double x), double asinh(double x)1,
double acosh(double x)1, double atanh(double x)1

double erf(double x)1 error function: 2√
π

∫ x
0 e−t2 dt

double erfc(double x)1 1− 2√
π

∫ x
0 e−t2 dt

double tgamma(double x)1, double lgamma(double x)1 Γ(x), log(|Γ(x)|)
1. C99

• Again, #include <math.h>
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double complex Math
C99 & C11

Function/Macro Returns
double complex CMPLX(double x, double y)1 x + iy,
double complex cabs(double complex z), |z|,

double complex carg(double complex z), Argument of z
(a.k.a. phase angle),

double complex creal(double complex z), Real part of z,
double complex cimag(double complex z), Imaginary part of z,
double complex conj(double complex z) Complex conjugate of z
double complex csqrt(double complex z),

√
z,

double complex cpow(double complex z, double complex w) zw

double complex cexp(double complex z), ez,
double complex clog(double complex z) loge z
1. C11

• To use them, #include <complex.h>
• You’ll also get:
csin(), ccos(), ctan(),
casin(), cacos(), catan(),
csinh(), ccosh(), ctanh(),
casinh(), cacosh(), catanh()

• And I for the imaginary unit
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float and long double Math

• Before C99, all functions were only for doubles
• And automatic conversion of other types was applied

• But from 1999 C is really serious about floating point math
• All functions exist also for float and long double
• Same names, suffixed by f or l
• Like acosf() for arccosine of a float
• Or cacosl() for long double complex
• Ditto for macros, like HUGE_VALF or CMPLXL()

• If you find this annoying (it is!):
• #include <tgmath.h>
• and use everywhere, for all real and complex types, function

names for double type
• These are clever type generic processor macros, expanding

to the function appropriate to the argument
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Expressions

• A fundamental concept in C
• A very rich set of operators
• Almost everything is an expression
• Even assignment to a variable

• C expressions are complicated
• Expressions can have side effects
• Not all subexpressions are necessarily computed
• Except for associativity and precedence rules, order of

evaluation of subexpressions is up to the compiler
• Values of different type can be combined, and a result

produced according to a rich set of rules
• Sometimes with surprising consequences

• We’ll give a simplified introduction
• Subtle rules are easily forgotten
• Relying on them makes the code difficult to read
• When you’ll find a puzzling piece of code, you can always

look for a good manual or book
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Arithmetic Expressions

• Binary operators +, -, * (multiplication) and / have the usual
meaning and behavior

• Unary operator - evaluates to the opposite of its operand
• Unary operator + evaluates to its operand
• Precedence

• -a*b + c/d same as ((-a)*b) + (c/d)
• -a + b same as (-a) + b

• Associativity of binary ones is from left to right
• a + b + c same as (a + b) + c
• a*b/c*d same as ((a*b)/c)*d

• Explicit ( and ) override precedence and associativity
• Only for integer types, % is the modulo operator (27%4

evaluates to 3), same precedence as /
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Hitting Limits

• All types are limited in range
• What about:

• INT_MAX + 1? (too big)
• INT_MIN*3? (too negative)

• Technically speaking, this is an arithmetic overflow
• And division by zero is a problem too
• For signed integer types, the Standard says:

• behavior and results are unpredictable
• i.e. up to the implementation

• For other types, the Standard says:
• arithmetic on unsigned integers must be exact

modulo 2type width, no overflow
• with floating types, is up to the implementation

(you can get DBL_MAX, or a NaN, or an infinity)
• Best practice: NEVER rely on behaviors observed with a

specific architecture and/or compiler
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Assignment Operator

• Binary operator =
• assigns the value of the right operand to the left operand
• and returns the value of the right operand
• thus a = b*2 is an expression with value b*2 and the side

effect of changing variable a
• a = b*2; is an assignment statement

• The left operand must be something that can store a value
• In C jargon, an lvalue
• a = 20 is OK, if a is a variable
• 20 = a is not

• Precedence is lowest (except for , operator) and associativity
is from right to left

• a = b*2 + c same as a = (b*2 + c)
• z = a = b*2 + c same as z = (a = (b*2 + c))

• You’ll read the latter form, particularly in while ()
statements, but avoid writing it
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More Assignment Operators

• Most binary operators offer useful shortcut forms:

Expression Same as
a += b a = a + b
a -= b a = a - b
a *= b a = a*b
a /= b a = a/b
a %= b a = a%b

• In heroic times, used to map some CPUs optimized
instructions

• With nowadays optimizing compilers, only good to spare
keystrokes

• You’ll find them often, particularly in for(;;) statements
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More Side Effects

• Pre-increment/decrement unary operators: ++ and --
• ++i same as (i = i + 1)
• --i same as (i = i - 1)

• Post-increment/decrement unary operators: ++ and --
• i++ increments i content, but returns the original value
• i-- decrements i content, but returns the original value

• Operand must be an lvalue
• Precedence is highest

• Quite handy in while () and for (;;) statements
• Easily becomes a nightmare inside expressions

• Particularly when you change the code
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Order of Subexpressions
Evaluation

• i is an int type variable whose value is 5
j = 4*i++ - 3*++i;
foo(++i, ++i);

• Which value is assigned to j?
• Could be

-1

• Or could as well be

6

• Which values are passed to foo()?
• Could be foo(

8

,

9

)
• Or could as well be foo(

9

,

8

)

• Order of evaluation of subexpressions is implementation
defined!

• Ditto for order of evaluation of function arguments!

• NEVER! NEVER pre/post-in/de-crement the same
variable twice in a single expression, or function call!
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Logical Expressions

• Comparison operators
• == (equal), != (not equal), >, <, >=, <=
• Compare operand values
• Return int type 0 if evaluation is false, 1 if true
• Precedence lower than arithmetic operators, higher than

bitwise and logical operators
• In doubt, add parentheses, but be sober

• Logical operators
• ! is unary NOT, && is binary AND, || is binary OR
• Zero operand are considered false, non zero ones true
• Return int type 0 if comparison is false, 1 if true
• Precedence of ! just lower than ++ and --
• &&, ||: higher than = and friends
• !a&&b || a&&!b means ((!a)&&b) || (a&&(!b))
• Again: in doubt, add parentheses, but be sober
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More Logic from math.h

• Some macros to tame floating point complexity
• isfinite()

• True if argument value is finite
• isinf()

• True if argument value is an infinity
• isnan()

• True if argument value is a NaN
• And more, if you are really serious about floating point

calculations
• Mostly in the spirit of IEEE Floating Point Standard
• Learn more about it, before using them
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Being Completely Logical

• C99 defines integer type _Bool
• Only guaranteed to store 0 or 1
• Perfect for logical (a.k.a. boolean) expressions
• Use it for “flag” variables, and to avoid surprises
• Better yet, #include <stdbool.h>,

and use type bool, and values true and false

• Watch your step!
• Simply mistype & for && or vice versa
• Simply mistype || for |
• You’ll discover, possibly after hours of debugging, that (bitwise

arithmetic) != (logical arithmetic)

• C99 offers a fix to this unfortunate choice
• #include <iso646.h>
• And use not, or, and and in place of !, || and &&
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Even More Side Effects

• Right operand of || and && is evaluated after left one
• And is not evaluated at all if:

• left one is found true for an ||
• left one is found false for an &&

• Beware of “short circuit” evaluation...
• ... if the right operand is an expression with side effects!
• A life saver in preprocessor macros and a few more cases
• But makes your code less readable
• Use nested if () whenever you can

• logical-expr ? expr1 : expr2
• expr1 is only evaluated if logical-expr is true
• expr2 is only evaluated if logical-expr is false
• Again, is a life saver in preprocessor macros
• But in normal use an if () is more readable
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Mixing Types in Expressions

• C allows for expressions mixing any arithmetic types
• A result will always be produced
• Whether this is the result you expect, it’s another story

• Broadly speaking, the base concept is clear
• For each binary operator in the expression, in order of

precedence and associativity:
• if both operands have the same type, fine
• otherwise, operand with narrower range is converted to type

of other operand

• OK when mixing floating types
• The wider range includes the narrower one

• OK when mixing signed integer types
• The wider range includes the narrower one

• OK even when mixing unsigned integer types
• The wider range includes the narrower one
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Type Conversion Traps

• For the assignment operator:
• if both operands have the same type, fine
• otherwise, right operand is converted to left operand type
• if the value cannot be represented in the destination type, it’s

an overflow, and you are on your own

• We said: in order of precedence and associativity
• if a is a type long long int variable, and b is a 32 bits

wide int type variable and contains value INT_MAX, in:
a = b*2
multiplication will overflow

• and in:
a = b*2 + 1LL
multiplication will overflow too

• while:
a = b*2LL + 1
is OK
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More Type Conversion Traps

• Think of mixing floating and integer types
• Floating types have wider range
• But not necessarily more precision
• A 32 bits float has fewer digits of precision than a 32 bits
int

• And a 64 bits double has fewer digits of precision than a 64
bits int

• The result could be smaller than expected

• Think of mixing signed and unsigned integer types!
• Negative values cannot be represented in unsigned types
• Half of the values representable in an unsigned type, cannot

be represented in a signed type of the same width
• So, you are in for implementation defined surprises!
• And Standard rules are quite complicated
• We spare you the gory details, simply don’t do it!
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Cast Your Subexpressions

• (type)
• Unsurprisingly, it’s an operator
• Precedence just higher than multiplication, right-to-left

associative
• Use it like (unsigned long)(sig + ned)

• Casting let you override standard conversion rules
• In previous example, you could use it like this:
a = (long long int)b*2 + 1

• Type casting is not magic
• Just instructs compiler to apply the conversion you need
• Only converts values, not type of variables you assign to

• Do not abuse it
• Makes codes unreadable
• Could be evidence of design mistakes
• Or that your C needs a refresh
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struct

struct vect3D {
double x, y, z;

};

struct vect3D va, vb;

// REMINDER: I have to make vcross() more efficient!
struct vect3d vcross(struct vect3D u, struct vect3D v) {

struct vect3D c;

c.x = u.y*v.z - u.z*v.y;
c.y = u.z*v.x - u.x*v.z;
c.z = u.x*v.y - u.y*v.x;

return c;
}

//...
vc = vcross(va, vb);

• Aggregates a single type from named, typed components
(a.k.a. members)

• The vect3D tag must be unique among structure tags
• struct components can be independently accessed

using the . binary operator
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structs Are Flexible

struct ion {
struct vect3D r; // position
struct vect3D v; // velocity
enum element an; // atomic number
int q; // in units of elementary charges

};

struct ion a;
//...

a.r.x += dt*a.v.x; // very low order in time...

• struct components can be inhomogeneous
• And they can also be structs, of course

• To access nested struct components, chain . expressions
• Best practice: order components by decreasing size

• You’ll get better performances
• To know, you can use sizeof() operator on any type
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structs: a Concrete Example

• structs are widely used in C Standard Library
• Like in struct tm, below, defined in time.h

• Used to convert from/to internal time representation time_t

struct tm {
int tm_sec; // seconds after the minute [0, 60]
int tm_min; // minutes after the hour [0, 59]
int tm_hour; // hours since midnight [0, 23]
int tm_mday; // day of the month [1, 31]
int tm_mon; // months since January [0, 11]
int tm_year; // years since 1900
int tm_wday; // days since Sunday [0, 6]
int tm_yday; // days since January 1 [0, 365]
int tm_isdst; // Daylight Saving Time flag

};
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typedef

typedef struct vect3D position, velocity;

typedef enum element element; // let’s spare keystrokes

typedef int charge; // I’ll maybe switch to short or signed char

typedef struct ion {
position r;
velocity v;
element an;
charge q;

} ion;

ion a;

• typedef turns a normal declaration into a declaration of a
new type (as usual, a legal identifier)

• The new type can be used as the native ones
• Great to save keystrokes
• Even better to write self-documenting code
• Shines in hiding and factoring out implementation details

• struct tags and type identifiers belong to separate sets
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typedef in C Standard Library

• typedef is widely used in C Standard Library
• Mostly to abstract details that may differ among

implementations

• E.g. size_t from stddef.h
• Type of value returned by sizeof()
• Different platforms allow for different memory sizes
• size_t must be “typedefed” to an integer type able to

represent the maximum possible variable size allowed by the
implementation

• E.g. clock_t from time.h
• Type of value returned by clock()
• Cast it to double, divide by CLOCK_PER_SEC, ...
• and you’ll know the CPU time in seconds used by your

program from its beginning
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Arrays

• some_type a[n];
• declares a collection of n variables of type some_type
• the variables (a.k.a. elements) are laid out contiguously in

memory
• each element can be read or written using the syntax
a[integer indexing expression]

• first element is a[0], second one is a[1],
last one is a[n-1]

• You can’t work on an array as a whole
• Use array elements (if allowed...) in expressions and

assignments
• There is no bound checking!

• Use a negative index, or an index too big, and you are
accessing something else, if any

• Compiler options to (very slowly) check every access
• A common mistake:

• to access from double a[1] to double a[n]
• Fortran programmers beware!
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Arrays of(Arrays of(Arrays of(...)))

• C has no concept of multidimensional arrays
• But array is a regular C type (you can even
sizeof(double[150]))

• Thus, arrays of arrays can be declared
• A simple, practical abstraction
• Very annoying to Fortran or Matlab programmers

• int a[12][31];
• declares an array of 12 elements
• and each element is itself an array of 31 ints

• double b[130][260][260];
• declares an array of 130 elements
• and b[37] is itself an array of 260 elements
• and b[37][201] is again an array of 260 doubles

• By the way, you can also use sizeof(b), it works
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Array Memory Layout

int a[10];

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

int b[5][2];

b[0] b[1] b[2] b[3] b[4]

b[0][0] b[0][1] b[1][0] b[1][1] b[2][0] b[2][1] b[3][0] b[3][1] b[4][0] b[4][1]
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A Very Important Digression

• Storage duration
• To make it simple, the life time of a variable
• Also influences the part of memory where it’s allocated

• Scope
• The region where a variable or function is accessible, a.k.a.

“visible”

• Qualifiers
• The value in a const variable cannot be changed
• There are more, but we’ll not discuss them

• Initializers
• Values assigned to a variable at declaration
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Storage Duration

• A variable can be
• Automatic: it can be created when needed, and destroyed

when not needed anymore
• Static: it persists for the whole duration of the program

• Variables declared outside of any functions (i.e. at file scope)
are static

• By default, are automatic:
• all variables declared inside a compound statement
• function parameters

• The default can be overridden using static

• Functions are static too, because to call them you need
their code to persist in memory
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Scopes

• By default, variables declared at file scope and functions are
extern

• i.e. visible to the linker, and to the whole program
• Unless you declare them to be static only

• Variables declared at file scope and functions are visible to all
blocks in the same source file

• Variables declared in a block are only visible in the block and
in all scopes it encloses

• Unless you declare them extern
• But in most cases that’s a symptom of bad design

• A variable declared in a block hides anything declared with
the same name in enclosing scopes
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Variable Initializers

• The content of an automatic variable is uninitialized until the
variable is assigned a value

• Uninitialized is a polite form for ”unpredictable rubbish”

• double f = 2.5; is a practical shorthand for:
double f;
f = 2.5;

• Expressions can be used as initializers, as long as they can
be computed at that point:
double pi = acos(-1.0);
double pihalf = pi/2.0;

is legal, while the following:
double pihalf = pi/2.0;
double pi = acos(-1.0);

obviously is not
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More on Variable Initializers

• structs can be initialized too, as in:
struct vect3D V = {0.0, 1.0, 0.0};

• Same for arrays, as in:
float rot[2][2] = {{0.0, -1.0}, {1.0, 0.0}};

• {0.0, 1.0, 0.0} and {{0.0, -1.0}, {1.0, 0.0}}
are said compound literals

• By default, static variables are initialized to 0
• But they can be initialized to different values
• Expressions can also be used, with some restrictions

• For a static variable, initialization expression must be
computed at compile time

• I.e. it must be a constant expression, containing only
constants

• No variables, no function calls are permitted
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Arrays and Storage Classes

• Static arrays must be dimensioned with constant expressions

• Before C99, this was true for automatic arrays too
• So to use an array in a function, you had to dimension it for

the largest possible amount of work
• A waste of memory and error prone

• C99 has a much better way

• Variable length arrays
• Arrays whose size is unknown until run time
• Automatic arrays can have their dimension specified by a

nonconstant expression
• Every time execution enters the block, the expression is

evaluated
• And the array size is determined, up to exit from the block
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Arrays as Function Arguments

• Arrays can be huge
• And usually are, in S&T computing
• Passing them by value would be too costly

• Moreover, arrays cannot be used in assignments
• Thus a function cannot return an array

• The solution
• The address of the array is passed to a function
• And elements can be accessed by it
• (Later on, you’ll understand how)

• This allows elements to be assigned to
• Thus a function has a way to “return” an array result
• A mixed blessing: allows changes to happen by mistake

• Best practice: declare an array parameter const if your
only intent is reading its elements
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Averaging, the C99 Way

• Let’s write a function to average an array of doubles
• And make it generic in the array length
• Variable length array parameters come to the rescue

double avg(int n, const double a[n]) {
int i;
double sum = 0.0;

for (i=0; i<n; ++i)
sum += a[i];

return sum/n;
}

Beware: double avg(double a[n], int n) does not work!
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Averaging, the Old Way

• Before C99, there were no VLAs
• The solution was simple

• Compiler just uses type size to find the right element
• No bounds checking, no bound needed

• Many still write that way: it’s equivalent, but less readable

double avg(int n, const double a[]) {
int i;
double sum = 0.0;

for (i=0; i<n; ++i)
sum += a[i];

return sum/n;
}
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Calling avg()

• New or old style, simply pass array dimension and name
• If avg() is written using VLAs, pedantic compilers may give

a warning on function call, even if it’s correct: they are wrong,
check with Standard document or good book

double mydata[N];
double mydata_avg;

// read or compute N doubles into mydata[]

mydata_avg = avg(N, mydata);
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Averaging Arrays of 5 Elements

• Let’s write a function to average arrays of 5 doubles
• And make it generic, as usual
• Again, VLA parameters come to the rescue

void avg5(int n, const double a[n][5], double b[5]) {
int i, j;

for (j=0; j<5; ++j)
b[j] = 0;

for (i=0; i<n; ++i)
for (j=0; j<5; ++j)

b[j] += a[i][j];

for (j=0; j<5; ++j)
b[j] /= n;

}

Notice: this order of loops nesting gives faster execution
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Averaging Arrays of 5 Elements,
the Old Way

• Let’s write a function to average arrays of 5 doubles
• And make it generic, as usual
• Again, do not specify first bound
• Again, it’s equivalent

void avg5(int n, const double a[][5], double b[5]) {
int i, j;

for (j=0; j<5; ++j)
b[j] = 0;

for (i=0; i<n; ++i)
for (j=0; j<5; ++j)

b[j] += a[i][j];

for (j=0; j<5; ++j)
b[j] /= n;

}
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Calling avg5()

• New or old style, simply pass array dimension and name
• If avg5() is written using VLAs, pedantic compilers may give

a warning on function call, even if it’s correct: they are wrong,
check with Standard document or good book

double mydata[N][5];
double mydata_avg[5];

// read or compute N 5-uples of doubles into mydata[]

avg5(N, mydata, mydata_avg);
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Averaging Arrays of Arbitrary
Length

• Let’s generalize the average to set of m numbers
• And make it generic, as usual
• Again, VLA parameters come to the rescue

void avg(int n, int m, const double a[n][m], double b[m]) {

int i, j;

for (j=0; j<m; ++j)
b[j] = 0;

for (i=0; i<n; ++i)
for (j=0; j<m; ++j)

b[j] += a[i][j];

for (j=0; j<m; ++j)
b[j] /= n;

}

Notice: this order of loops nesting gives faster execution
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Calling Generic avg()

• Again, simply pass array dimension and name
• Using casts for arrays of doubles
• If avg() is written using VLAs, pedantic compilers may give

a warning on function call, even if it’s correct: they are wrong,
check with Standard document or good book

double mydata1[N][12];
double mydata1_avg[12];
double mydata2[N][7];
double mydata2_avg[7];
double mydata3[N][1];
double mydata3_avg[1];
double mydata4[N];
double mydata4_avg[1];

// read or compute N 12-uples of doubles into mydata1[]
// read or compute N 7-uples of doubles into mydata2[]
// read or compute N 1-uples of doubles into mydata3[]
// read or compute N doubles into mydata4[]

avg(N, 12, mydata1, mydata1_avg);
avg(N, 7, mydata2, mydata2_avg);
avg(N, 1, mydata3, mydata3_avg);
avg(N, 1,(double (*)[1])mydata4, mydata4_avg);
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More on casts

(type-name) cast-expression

• Unless the type name specifies a void type, the type name
shall specify qualified or unqualified scalar type and the
operand shall have scalar type.

• i.e
double mydata4[N];
foo((double [N])mydata4); // INVALID. The type name does not specify a scalar type.

.....

struct bar
{

double x,y,z;
};
struct bar var;

foo((struct bar)var); // INVALID. Neither the type name of the cast nor the operand have scalar type.
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Matrix Algebra, the C99 Way

• Let’s write a function to compute the trace of a matrix of
doubles

• And make it generic in the matrix size
• Again, variable length array parameters come to the rescue
• Again, you may get warnings on calls, and they could prove

wrong

double tr(int n, const double a[n][n]) {
int i;
double sum = 0.0;

for (i=0; i<n; ++i)
sum += a[i][i];

return sum;
}

Beware: compiler will not check the array dimensions match!
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Matrix Algebra, the Old Way

• Before C99, there were no VLAs
• The solution was not that simple...

• Only the ‘first dimension’ of an array parameter could be left
unspecified at compile time

• To understand the solution, you have to learn more
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