CINECA 5 CAI

- O

Scientific and Technical Computing in C

Stefano Tagliaventi Isabella Baccarelli
CINECA Roma - SCAI Department

Rome, 3rd-5th May 2017

CINECA

c'fiii 5CAI Outline

SuperComputing Application:

@ Pointer Types
Pointers Basics
Pointers and Arrays
Generic Pointers

@ Characters and Strings
® Input and Output
@ Managing Memory

@ Conclusions

PPéod
CINECA

21

" SCAI You May Need More

SuperComputing Applicatic

Pointers

And Arrays
void

You may find yourself in need to return more than one result
ERTE from a function

And you may find yourself in need to pass a big struct to a

Strings
Manipulations
Command Line

1o function, without paying the price of copying its value

E' ¢ And, believe it or not, in some part of your program you may
Memory find yourself in need to access a variable whose name is not
Allocation kn OW n

Data Structures

Finale

And to represent things as multiblock, unstructured grids, or
building structures, or complex molecules, you may find
yourself in need to access variables that don’t even have a
name

In all these cases, you have to use memory addresses
CINECA

“ SCAI Memory? Addresses?

SuperComputing Applicatic

Pointers

miams o You can think of memory as a huge array of units of storage
Strings (usually 8 bits bytes)

Chars

Sings e The index in this array is termed address

Manipulations

cmeatre o Byt how many bytes are needed to store a value?
e e It depends on value type and platform

Text iy

sinary e And it’s even worse...

Memory o Not all locations are good for any value (at least
pata Stctures performancewise)

Finale

e Not all locations can be read/written

e What are the starting and ending address?

e The amount of memory seen by your program could vary
during execution

¢ You could have ‘holes’ in this ideal array

e Or this ideal array could be made of separate, independent

segments CINECA

CINECA 5 CAI

i =t Enter C Pointers

Pointers

mumes o Dealing directly with memory addresses is cumbersome
Strings o Easily makes the program non portable

S o Makes the program difficult to manage and confusing
Cortrreine e Exhibits low level details you don'’t really want to care about
vo e How to avoid it?

By o Named variables leave the whole issue to the compiler
Memory ¢ You use the name and don’t care about address

Data Structures

C pointers let you manipulate addresses in a transparent and
consistent way

They contain memory addresses

Allow you to manipulate addresses disregarding their actual
values

Associate a C type to the memory location they point to

And give you a way to read or write this memory location,

much like a named variable CINECA

Finale

5CAI Pointers Basics

SuperComputing Applicatio

Pointers

And Arrays ® :Lnt i, *P/

void

Strings e declares an int variable i

o e and a ‘pointer to int’ variable p

Cortrreine ¢ in the latter, you can store the address of a memory location
1o suitable to store an int type value

Ton

Binary Y P = &i;

oot e &i evaluates to the address of variable i

Data Structures

e p gets a valid address in

Finale e Got something familiar? Do you remember scanf () ?

e xp = 10;
e Expression *p is an lvalue of type int
e You can performe assignment to it
e You can use it in expressions to access the stored value
e * has same precedence and associativity of unary — CINECA

CINECA 5 CAI

SuperComputing Applicatic

Pointers

And Arrays

void

Strings int *p = NULL;
Chars -

Strings lnt a = 5;
Manipulations

Command Line

/0
Files
Text p = &a;

Binary
Memory

Allocation
Data Structures

Finale *p += 10,-

Pointer vs.

Pointee

® g

I

p g

I

P
a

P
a

o

address of a

address of a

15

address of a

[
o

CINECA

" SCAI Avoiding Costly Copies

SuperComputing Applicatio

Pointers

And Arrays
void

Strings
Chars

Strings
Manipulations
Command Line

/0
Files
Text
Binary

Memory
Allocation

Data Structures

Finale

struct vect3D {
double x, y, z;
b

// REMINDER: I have to make vcross() more efficient! DONE!!
struct vect3d vcross (const struct vect3D *u, const struct vect3D *v) {
struct vect3D c;

c.Xx = u—>y*v—>z - u->z*v->y;
C.Y = U=>ZAV->X — U->X*V->Z;
c.z = u-)x*V—)y - u—>y*V—>x;
return c;

}

Copying 6 doubles for very little work
Let’s put pointers to good use
u->y is a convenient shorthand for (*u) .y

But now we have the address of the arguments and
could make a mistake and change their contents

. CINECA
Let’s make the pointees const

1 SCAI Did we say “valid”?

SuperComputing Applicatio

Pointers

A valid pointer value is an address that:

And Arrays

) e is in the process memory space
Strings ¢ points to something which exists
Chars

sirngs ¢ and whose type matches

Manipulations
Command Line

/0

Files

Invalid pointers

o ¢ uninitialized pointers (point to the wrong place, at best)
Me:m o the address of a variable that does not exist anymore
S..ocasmn“' o the address of one type put in pointer to another type (unless

you REALLY know what you are doing)
e anull pointer, i.e. a 0 address

Dereferencing (with) a null pointer forces runtime error

Finale

Good practice:
o Always initialize pointers
¢ If you don’t know yet the right address, use NULL from
stddef.h
e 0 may also be used, but less readable

CINECA

1 SCAI A Naive Mistake

SuperComputing Applicatio

Pointers

And Arrays
void

Strings
Chars

Strings
Manipulations
Command Line

/0
Files
Text
Binary

Memory
Allocation

Data Structures

Finale

struct vect3D {
double x, y, z;
}i

// REMINDER: I have to make vcross() more efficient! DONE!! Trying to do better...
struct vect3d xvcross(const struct vect3D *u, const struct vect3D =xv) {
struct vect3D c;

C.X = U->y*V->z — U->zxv->y;
C.Y = U->Z*V->X — U->X*xV->Z;
C.Z = U->XAV-D>Y — U-DY*V->X;

return &c; // MADNESS!!
}

Sparing another copy it’'s tempting...
But it’s very naive!

c is an automatic variable, and it's gone when the pointer is
used

And probably the memory locations have been already

. CINECA
reused and overwritten!

s o Al Returning More Than One Result

SuperComputing Applications and Innovation

Pointers #include <math.h>
C;:A"ays struct vect3D {
double x, y, z;
Strings }i
Chars
Strings struct vect3d versor_norm(const struct vect3D *u, double *norm) {

Manipulations

Command Line struct vect3D ¢ = {0.0, 0.0, 0.0};

double n, invn;

/0

Files n = u->X*u->xX + u->y*u->y + u—->z*u->z;
Text if (n == 0.0) {

Binary *norm = 0.0;

Memory return c;

Allocation }

Data Structures

) n = sqrt(n);

Finale *norm = n;
invn = 1.0/n;
c.x = u->x*invn;
c.y = u->y*invn;
c.z = u->zxinvn;

return c;

e We have to return two results
e Of very different types and meanings CINECA
e Assembling them in a bigger struct makes little sense

== SCAIl pointers and Arrays

SuperComputing Aj vation

Pointers

Basics

double *p[10]
e it's an array of 10 pointers to double

void

Strings
o e and double *p[10] [3]
Campanitine e it's an array of 10 arrays, each of 3 pointers to double
(9 e while double (*p) [10]
oy e it's a pointer to array of 10 doubles
Vemory o and double (*p) [10][3]
Data sicres e it's a pointer to an array of 10 arrays, each of 3 doubles
Finale . s . .
e Confusing? It's logical: operator []1 has higher precedence
than *

But easily becomes nasty!
e What's double (*p[10])[3]17?
e And double (*(*p[101)[3]1[5])[81[2]7

Best practice: use cdecl tool to familiarize and decrypt €'NESA

5CAI Pointers Arithmetic

SuperComputing Applicatior

corters o Useful to poke around in arrays

wt ep + 7
Strings o will give you an address
T e e thatis 7xsizeof (*p) after the oneinp
T/OL e You can also use —, +=, —=, ++, and ——
o *pl - p2
ey o if of the same pointer type, will give you an integer value
Memory e more precisely, of ptrdif£f_t type (from stddef.h)
ore Stes e the displacement from p2 to p1 in units of sizeof (xpl)
Finale o Pointer comparison
e == (equal), !=, >, <, >=, <= can be used on pointers of the
same type

Pointer casting
¢ Pointer values can be cast to pointers of different type
e Do it VERY carefully, it's easy to do the wrong thing
¢ Pointers may also be cast to some integer type, but CINECA
it's highly non portable, don’t do it

" SCAI pointers and Array Equivalence

SuperComputing Applicatior

Pointers

Basics

* (p+7) can be shortened to p[7]

vod e Aha!

Strings .

o e Can a pointer be used as an array?

Command e * true

1o e | see... so is the array name a pointer?

E'cy e true, but it's constant, you can’t change it

memory ® Butif | have int a[N], and int *p, may | assign p=a?

e - e true, you can

Finale o Then, what's the difference between an array variable and a

pointer variable declarations?
e An array declaration allocates memory for data
¢ A pointer declaration allocates memory for a data address
only
And between array and pointer function parameters?
¢ Irrelevant, an array argument passes a pointer CINECA
e You are now ready to understand good old C tricks

CINECA 5 CAI

SuperComputing Applications and Innovation
Pointers

Basics

] #include <stdio.h>
Strings

Chars double a[] = {1.0, 2.0,
Strings

Manipulations
Command Line

/0
Files
Text
Binary

Memory
Allocation

Data Structures

Finale

int main() {

double *p;

Skeptical? Try to Believe

3.0, 4.0, 5.0};

p = a; // variable p now stores the address of array a

print£ ("$1£\n", a[2]);
printf ("$1£\n", *(p+2)

// will print 3.0
); // will print 3.0

pl2] = 7.0; // reassigns a[2]

printf ("$1£f\n", p[2]);
printf ("$1£\n", a[2]);

return O;

// will print 7.0

// ditto,

it’s the same location

CINECA

" SCAI Array Names and Pointers

SuperComputing Applicatio

Pointers
Basics

void

Strings
Chars

Strings
Manipulations
Command Line

/0
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

int a[l10];
int xp = a + 5;

a

| a10] || all] || ar2] I ar3] I ata1 | ars || ate] I al7] I ars] I al9] |

P J

int b[5][2];

- b

| 10l [em [e [s | o |

- b[0]

[pro1tosforor cuferartorfprar oz torforzr o s corforsr afprar tosforar 11
TINECA

© SCAI Averaging, with Pointers

SuperComputing Applicatior

Pointers

Basics
void

Strings
Chars

Strings
Manipulations
Command Line

/0
Files
Text
Binary

Memory
Allocation

Data Structures

Finale

e This one should be quite obvious
e Perfectly equivalent to using const double a[]
¢ You'll often encounter something like this, particularly in

libraries

double avg(int n, const double *a) { /* which one is const? */
int i;
double sum = 0.0;

for (i=0; i<n; ++i)
sum += a[i];

return sum/n;

}

const int *pis a pointer to const, int * (const p) is a const pointer ciNECA

" SCAIl calling avg ()

SuperComputing Applicatior

Pointers

Basics
void

Strings
Chars

Strings
Manipulations
Command Line

/0
Files
Text
Binary

Memory
Allocation

Data Structures

Finale

¢ New or old style, array or pointer, simply pass array

dimension and name

how it is written

double mydata[N];
double mydata_ avg;
double firsthalf avg, secondhalf avg;

// read or compute N doubles into mydatal]
mydata_avg = avg (N, mydata);

firsthalf avg = avg(N/2, mydata);
secondhalf_avg = avg(N - N/2, mydata + N/2);

e And part of arrays could be managed too, independently of

CINECA

5CA| Averaging Arrays, with Pointers

SuperComputing Applicatior

me " e Let’s generalize to sets of m numbers

o e And make it generic, as usual

Strings e .
s e Now you are ready for the traditional solution

cmwae . ® And for an application of pointer casting

110

Files

Text

Binary void avg(int n, int m, const double (xa)[], double xb) {
Memory int i, j;

Allocation const double *p = (const double *)a;

Data Structures

Finale for (j=0; j<m; ++3)

b[j] = 0;

for (i=0; i<n; ++i)
for (3=0; j<m; ++j)
b[j] += pli*m + j]; /* mapping two indexes x/
/* to one ‘by hand’ =/
for (3j=0; j<m; ++3j)
b[j] /= n; CINECA

CINECA 5 CAI

SuperComputing Applicatior

Pointers

Basics
void

Strings
Chars

Strings
Manipulations
Command Line

/0
Files
Text
Binary

Memory
Allocation

Data Structures

Finale

Calling Generic avg ()

e New or old style, arrays or pointers, simply pass array
dimension and name

e Using casts for arrays of doubles

e If avg () is written using VLAs, pedantic compilers may give
a warning on function call, even if it’s correct: they are wrong,
check with Standard document or good book

double mydatal[N][12];
double mydatal avg[l2];
double mydata2[N][7];

double mydata2_avgl[7];
double mydata3[N][1];

double mydata3_avg[l];
double mydata4[N];

double mydata4d_avg;

// read or
// read or
// read or
// read or

compute
compute
compute
compute

N 12-uples of doubles into mydatall]
N 7-uples of doubles into mydata2[]
N l-uples of doubles into mydata3[]
N doubles into mydata4[]

avg (N, 12, mydatal, mydatal_avg);
avg (N, 7, mydata2, mydata2_avg); CINECA
avg (N, 1, mydata3, mydata3_avg);

avg(N, 1,

(double (%) [1])mydata4d, &mydata4_avg);

Pointers

Basics
void

Strings
Chars

Strings
Manipulations
Command Line

/0
Files
Text
Binary

Memory
Allocation

Data Structures

Finale

Averaging Arrays, Another Classic

Flavor

e Again averages sets of m numbers
e For arbitrary m
e This idiom arose when compilers were not good at

optimization

void avg(int n, int m, const double (xa)[], double xb)

int i,

const double x*p

3i

for (j=0; Jj<m;

b[j]

= 0;

= (const double *)a;

++3)

for (i=0; i<n; ++i)

for (3j=0;

b[j] += *p;
+p;

}

for (3j=0; j<m;

b[]]

/= n;

j<m; ++3) {

/* array elements ‘walked by’ =*/
/* in the same sequence */

++3)

{

CINECA

Matrix Algebra, the Old Way

Pointers

Basics

Let's write a function to compute the trace of a thatrix of
o doubles

Strings . L. i .
o e And make it generic in the matrix size

Manipulations -

cmanatre @ ANd USe a traditional way

/0 . y . . . '

o e Again, you'll often encounter something like this, particularly
Text . . .

Binary in libraries

Memow

e Sructres

Finale double tr(int n, const double (*xa)[]) {

int i;
double sum = 0.0;
const double *p = %a; /x works like casting here, why? x/

for (i=0; i<n; ++i)
sum += p[ix*n + i];

return sum;

" SCAI Matrix Algebra, Another Old Way

SuperComputing Applicatior

Pointers

Basics
void

Strings
Chars

Strings
Manipulations
Command Line

/0
Files
Text
Binary

Memory
Allocation

Data Structures

Finale

e Let’s write a function to compute the trace of @Mngrix of
doubles
e And make it generic in the matrix size

¢ And use another traditional way, from times when compilers
didn’t optimize well

double tr(int n, const double (*a)[]) {

int i;
double sum = 0.0;
const double *p = *a;

for (i=0; i<n; ++i) {
sum += *p;
p +=n + 1; /* next element on diagonal */

}

return sum;

w9 A Matrix Algebra, yet Another Classic
SuperComputing Applications and Innovation F | avo r

Pointers . .

Basic e Bottom line, we are working on doubles
K Callitlike tr (8, (double x)mp)

ol e Orcallitlike tr (8, mp[0])

Manipulations

T/OL Widely used in numerical libraries, but write new code using

Files VLAS

Text

Binary

Memory

Allocation .

Data Structures double tr(int n, const double *a) {
Finale int i;

double sum = 0.0;

for (i=0; i<n; ++i) {
sum += *a;
a +=n + 1; /* next element on diagonal */

}

return sum;
CINECA

" SCAI Matrix Algebra, a Bad Way

SuperComputing Applicatic

Pointers
Basics
And Arrays

Strings
Chars

Strings
Manipulations
Command Line

/0
Files
Text
Binary

Memory
Allocation

Data Structures

Finale

A way of getting rid of all complexity

It’s the “third” use of type void

Sometimes you'll find sloppy code like this

But not a good idea in this case, it's dangerous

double tr(int n, const wvoid xa) {

int i;
double sum = 0.0;
double *p = a;

for (i=0; i<n; ++i) {
sum += *p;
p += n + 1; /* next element on diagonal */

}

return sum;

CINECA

CINECA 5 CAI

SuperComputing Applicatic

void and Pointers

Pointers

Basics

maws ® void *p; declares a generic pointer
swings ® |.€. a pointer pointing to unknown type

Chars

e e @ |ftype is unknown, size is unknown

Command Line

/o e So no arithmetic is possible, only assignment and
o comparisons

Binary

wemory ® 1N€ value of any pointer can be converted to a generic one

Allocation

caswewes A generic pointer can be converted to any pointer type
Finale
e So, what’s the danger with tx () ?
e tr () assumes something pointing to doubles
o With void =, pointers at any type will do
¢ A pedantic compiler would warn you at any use of tr ()
¢ And you'd get annoyed and switch off warnings

e But generic pointers are essential to other purposes CINECA

ciNEch 5CAI gsort 0

SuperComputing Applicatio

Pointers
Basics
And Arrays

Strings
Chars

Strings
Manipulations
Command Line

/0
Files
Text
Binary

Memory
Allocation

Data Structures

Finale

d Inn

Declaration (from stdlib.h):

void gsort (
void xbase,
size_t count,
size_t size,
int (*compare) (const void *ell, const void *el2));

Sorts an array of count elements of unknown type, starting

at base
Each element has size size
What’s compare?

e gsort () doesn’'t know elements type
¢ And has no clue at how to compare them
e compare is a pointer to a function that knows more

Yes, a function has an address and function name
evaluates to it

CINECA

5CA| Sorting with gsort ()

SuperComputing Applicatic

Pointers
Basics
And Arrays

Strings
Chars

Strings
Manipulations
Command Line

/0
Files
Text
Binary

Memory
Allocation

Data Structures

Finale

Define a comparison function like:

int comparedoubles (const double *a, const double x*b) {
if (xa == xDb)
return O;

if (xa > xb)
return 1;

return -1;

}

Can you see how it matches the compare parameter?

Then, if g is an array of 10000 doubles, you can sort it in
ascending order like this:
gsort (g, 10000, sizeof (double), comparedoubles);
Want it sorted in descending order?
e Substitute < to >
Have an array sorted in ascending order? CINECA
e You can use bsearch () to find an element

i SCAN

SuperComputing Application:

Scientific and Technical Computing in C

Stefano Tagliaventi Isabella Baccarelli
CINECA Roma - SCAI Department

Rome, 3rd-5th May 2017

CINECA 5 CAI

SuperComputing Application:

CINECA

c'ffﬁ 5CAI Outline

SuperComputing Application:

@ Characters and Strings
Characters
Strings
String Manipulation Functions
Parsing the Command Line

PPéé4
CINECA

21

CINECA 5 CAI

s o Characters
Pointers
se o InC, characters have type char
::rings e |.e. an integer type holding the numeric character code
s ® Butit's implementation defined if char is signed or not
‘I’OL e Encoding may depend on implementation and OS
/
Fles ¢ In most implementations, characters numbered 0 to 127
o match the standard ASCII character set
Memow
susuws | o |jteral character constants are specified like this: *
Finale e ’\n’ is new line

e ’\t’ istab

e '\r’ is carriage return

e "\\’ is backslash \

°o '/ \I I iS I

°o / \HI iS "

[

and " \0’ is ASCII NUL, with code 0, quite important

. . CINECA
despite of its value

CINECA 5 CAI

#include <ctype.h>

SuperComputing Applicatio

Pointers §
Basics Function Returns
And Arrays T T
R int isalpha(int c) true if alphabetic character
S int isdigit (int c) true if a digit character

: int isalnum(int c) isalpha(c) || isdigit(c)
P int isprint (int c) | true if printable character (including = ’)
Commandiine int iscntrl (int c) 'isprint (c)

/o int islower (int c) true if lowercase alphabetic character
o int isupper (int c) true if uppercase alphabetic character
Binary int isspace(int c) trueif 7 7, ’\t’, "\n’,

Memory converts uppercase ones to lowercase
Allocation int tolower (int c)
e others unchanged

) converts lowercase ones to uppercase
Finale int toupper (int c) pp

others unchanged

e Do you remember? char types are converted to int

in all arithmetic expressions

e Do not play with character codes, use these functions, they
make the code portable

CINECA

5CA| Strings

SuperComputing Applicatior

Pointers
Basics

And Arrays
void

Strings are not first-class citizens in C
Simply arrays of chars

Strings
" The string must be terminated by a / \0” character
lanipulations
T/OL e Commonly referred to as null terminated strings
Fis e This has annoying consequences
s e String lengths must be computed by scanning
Jemory e No way for bounds checking
[:tast;uc(ures e And a source of program weaknesses
Inale

String constants are specified like this:
"A null terminated string"

A terminating * \ 0’ is automatically appended
You already met them using print£ ()
Use a \ at end of lines to write multiline string constants

" SCAI The Biggest Mistake

SuperComputing Applicatio

Pointers
Basics

And Arrays
void

Strings

Chars char decdigits [10] ;

Manipulations
Command Line

/0

Files
Text / /
e o o

Binary
Memory

Allocation
Data Structures

strcpy (decdigits, "0123456789");

Finale

e The string is 10 characters long
e But it has a terminating " \0"’
e So its internal representation is 11 characters long CINECA

" SCAI Fixing the Biggest Mistake

SuperComputing Applicatio

Pointers

Basics

And Arrays

void

Strings

Chars

char decdigits[] = "0123456789";
Command Line

1/0

Files

Text

Binary

Memow

o * An 11 characters array will be automatically allocated

(Yes, you could do this for any array)
But this only fixes the problem on initialization

Not when you build string dynamically or do simple minded
I/0

Ever heard of ’buffer overflows’?

CINECA

" SCAI simple Computational Linguistics

SuperComputing Applications and Innovation

Pointers
Basics

And Arrays
void

Strings
Chars

Manipulations
Command Line

/0
Files
Text
Binary

Memory
Allocation

Data Structures

Finale

// Frequencies of alphabetic characters in a text

#include <stdio.h>
#include <ctype.h>

#define LETTERS 26
#define CHUNK 256
unsigned counts[LETTERS];
char s[CHUNK+1];

int main() {
int i;

while (fgets(s, sizeof(s), stdin) != NULL) {
char *p = s;

while (*p) {
if (isalpha(*p))
++counts[toupper (xp) - 'A’];
++p;
}
}

for (i=0; i<LETTERS; ++i)
printf ("%$c\t%9%u\n", i + 'A’, counts[i]);

return 0;

} CINECA

w ey A Putting Characters and Strings to
A 111 /o4 O

Pointers
Basics

And Arrays
void

Stings o \Ne work on up to 256 characters at the time

Chars

Null terminates the string
And returns NULL on end of input, or failure

Maripuiatons e But must accommodate for terminating ” \ 0’
Command Line
I{O
- e fgets () is arobust I/O function
::;ory « Reads from a file until end of line
Nlatin e Stores characters, including ' \n’, into s
_ e But no more than sizeof (s)-1
Finale
[)
[)

e Loop terminates when p points to terminating \ 0’

CINECA

we & A -.-Putting Characters and Strings to

SuperComputing Aj

Pointers
Basics

And Arrays
void

Strings
Chars

Manipulations
Command Line

/0
Files
Text
Binary

Memory
Allocation

Data Structures

Finale

“ Work

char is an integer type, we can do arithmetic on it
¢ And alphabetic characters are coded in alphabetic order

Remember: static variables are initialized to zero

And some more |/O:

e %c: emits a character from its code
e %9u: prints a right-justified number in a field of width 9
e %sis used for strings, as you'll see shortly

Let’s try it right now!
Giving input from keyboard first, then from file...

CINECA

Strings

charfreq.c

// Frequencies of alphabetic characters in a text

#include <stdio.h>
#include <ctype.h>

#define LETTERS 26
#define CHUNK 256
unsigned counts[LETTERS];
char s[CHUNK+1];

int main() {
int i;

while (fgets(s, sizeof(s), stdin) != NULL) {
char *p = s;

while (*p) {
if (isalpha(x*p))
++counts[toupper (xp) - 'A’];
++p;
}
}

for (i=0; i<LETTERS; ++i)
printf ("%c\t%9u\n", i + 'A’, counts[i]);

return 0; PPoéd
! CINECA

21

CINECA 5 CAI

. .
#include <string.h>
SuperComputing Applications and Innovation
Function Does
Pointers size t strlen(const char s) returns actual string length
Basics char *strncpy (char xd,
And Arrays .
void const char xs, copies n characters from s to d, returns d
size_t n)
Strings char *strncat (char *d,
Chars const char xs, appends n characters from s to d, returns d
Strings

Command Line

/0
Files
Text
Binary

Memory
Allocation

Data Structures

Finale

size_t n)

int strcmp(const char xsl,
const char *s2)

lexicographic comparison of s1 and s2

int strncmp (const char *sl,
const char *s2,
size_t n)

lexicographic comparison of s1 and s2, up to n characters

char xstrchr(const char =*s,

returns pointer to first occurrence in s

int c) of character ¢, NULL if not found
char *strrchr(const char *s,) returns pointer to last occurrence in s
int c) of character ¢, NULL if not found

char xstrcspn(const char xs,
const char =xset)

returns pointer to first occurrence in s
of any character in set, NULL if not found

char xstrspn(const char =*s,
const char =xset)

returns pointer to first occurrence in s
of any character not in set, NULL if not found

char *strstr(const char s,
const char *sub)

returns pointer to first occurrence in s
of string sub, NULL if not found

char xstrtok(const char =xs,
const char *set)

allow to separate string s into tokens,
read documentation

Do you remember? char types are converted to int in many cases
You'll also find in use strepy () and strecat () : dangerous! avoid them

Way too common mistake: forgetting about and writing code doing the same

Don't reinvent the wheel, use library functions!

CINECA

CINECA 5 CAI

SuperComputing Applications and Innovation

Pointers Function Be?grns conversion of

Basics initial portion of s to

A"_dA"“YS strtof (const char *s, char **p)3 float1

voe strtod(const char *s, char xxp) double1

Strings atof (const char s) double

g:::\';s strtold(const char *s, char **p)3 long double!
atoi (const char =*s) int

Command Line strtol (const char *s, char **p, int basez) 1<>ng1

10 atol (const char xs) . long ;

Fies strtoul (const char *s, char xxp, int base®) unsigned long

T?X‘ strtoll (const char *s, char x*p, int basez):3 long long1

R atoll (const char *5)3 long long

Memory strtoull (const char *s, char **p, int base2)3 unsigned long longT

Allocation
Data Structures

Finale

More Friends from stdlib.h

1. If p is not null, sets it to point to first character after converted portion of s

2. The base used in string representation ranges from 2 to 36 (!).
3. C99

strto... () form preferred

More practical than scanf () family in many cases

Use sprint£ () to convert the other way around

Where char **p appears, pass the address of a char
pointer variable...

*
CINECA

CINECA 5 CAI

SuperComputing Applicatic

Pointers
Basics

And Arrays
void
Strings

Chars
Strings

Command Line

/0
Files
Text
Binary

Memory
Allocation

Data Structures

Finale

int **p = NULL,

int *g = NULL;

int a = 5;

p = &q;

*p = &a;

*xp += 10;

Yes, Pointers can be Pointees!

o

p Qg
o

I

address of q

o

|
q.
a

I

address of g

address of a

Q'

I

address of g

address of a

|
q:
a

15

CINECA

1 SCAI Time for Improvement

SuperComputing Applicatior

Pointers
Basics
And Arrays

“;‘:rings e Our program to compute characters frequencies in texts was
onars appreciated and we got request for improvements
i e It’s the price of success with software
vo e Some folks dislike uppercase output and want it lowercase
ey e Some folks disregard frequencies lower than some threshold
Memory o Some more folks do not want zero frequencies to be output
Dat Stctures at all
Finale e Actually a restricted form of the previous request

¢ And some folks want the text to be read by a user specified

file

To accommodate their requests, let’s refactor first

CINECA

w & Al Computational Linguistics
e Refactored

Pointers
Basics

And Arrays
void

Strings
Chars

Strings
Manipulations

/0
Files
Text
Binary

Memory
Allocation

Data Structures

Finale

// Frequencies of alphabetic characters in a text

#include <stdio.h>

#include <ctype.h>

#include <stdlib.h>

#define LETTERS 26

#define CHUNK 256

unsigned counts[LETTERS];

char s[CHUNK+1];

char xfilename = NULL; // will point to filename command line argument, if any
char outcase = 'A’; // change to 'a’ for lowercase output
int minoutcount = 0; // minimum frequency suitable for output

void parsecmdln(int n, char *args[]) { /* add command line processing here */ }

int main(int argc, char xargv[]) {
int i;
parsecmdln (argc, argv);

while (fgets(s, sizeof(s), stdin) != NULL) {
char c, *p = s;

while ((c = xp++))
if (isalpha(c))
++counts[toupper(c) - 'A’];
}
for (i=0; i<LETTERS; ++i)
if (counts[i] >= minoutcount)
printf ("%c\t%9%u\n", i + outcase, counts[i]);
return 0;

CINECA

5CAI argc and argv

SuperComputing Applicatior

Pointers

Basics

e Up to now, we disregarded main () parameters
o e Which is legal
Strings e And writing int main (void) is legal too

Chars
ke In its full glory, main (int argc, char xargv[])
receives two arguments

Manipulations

/0

Fles ¢ Aninteger count, arge

EI e And an array of arge pointers to string, argv
Memory o Names are not mandatory, just a solid tradition
S o On most systems

Finale

e argv[0] contains the name of program executable
e argv[1l] through argv[argec-1] contain the command line
parameters specified at program invocation

Form int main (int argec, char x*argv) is fully
equivalent

stdlib.h needed later to parse threshold

CINECA

" SCAIl charfreq. c Refactored

SuperComputing Applications and Innovation

Pointers
Basics

And Arrays
void

Strings
Chars

Strings
Manipulations

/0
Files
Text
Binary

Memory
Allocation

Data Structures

Finale

// Frequencies of alphabetic characters in a text

#include <stdio.h>

#include <ctype.h>

#include <stdlib.h>

#define LETTERS 26

#define CHUNK 256

unsigned counts[LETTERS];

char s[CHUNK+1];

char xfilename = NULL; // will point to filename command line argument, if any
char outcase = 'A’; // change to 'a’ for lowercase output
int minoutcount = 0; // minimum frequency suitable for output

void parsecmdln(int n, char *args[]) { /* add command line processing here */ }

int main(int argc, char xargv[]) {
int i;
parsecmdln (argc, argv);

while (fgets(s, sizeof(s), stdin) != NULL) {
char c, *p = s;

while ((c = xp++))
if (isalpha(c))
++counts[toupper(c) - 'A’];
}
for (i=0; i<LETTERS; ++i)
if (counts[i] >= minoutcount)
printf ("%c\t%9%u\n", i + outcase, counts[i]);
return 0;

CINECA

“ SCAI our Options

SuperComputing Applicatior

Pointers

Poin e -1 will force lowercase output
w e —t nwill set a minimum threshold for output
swings o An optional £ilename will specify a file to read from
Chars . .
s . ® Let's add before parsecmdln () a function to call in
responseto-—h
/0 . .
o e And an helper function to manage user mistakes
Text
Binary
Memory void printUsage(void) {
gtfr(’ printf ("charfreq [options] [filename]\n");
i e printf ("filename input text (default: stdin)\n");
Finale printf ("Options:\n");
printf("-t n frequency threshold\n");
printf ("-1 lowercase output\n");
printf ("-h this help\n");

}

void illegalopt (const char *xo) {
fprintf (stderr, "illegal option: %s\n", o);
printUsage () ; CINECA
exit (EXIT_FAILURE);

" SCAIl command Line Parsing

SuperComputing Applications and Innovation
Pointers void parsecmdln(int n, char *args[]) {
Basics int i = 0;
And Arrays
voe while (++i < n) {
Strings char *p = NULL;
Chars long th;
Strings
Manipulations if (args[i] [0] !'= "=") {
filename = args[i]; // must be filename
110 break; // ignore anything following
Files }
Text
Binary switch (args[i][1]) {
case '1’:
Memory .
Allocation outcase = ‘a’;
Data Structures break;
case 't’:
Finale th = strtol(args[++i], &p, 10); // numeric argument follows
if (p == args[i] || th < 0) {

fprintf (stderr, "invalid or negative threshold\n");
exit (EXIT_FAILURE);
}
minoutcount = th;
break;
case 'h’:
printUsage();
exit (0);
break;
default:
illegalopt (args[i]);

CINECA

T SCAI More Alternatives with switch ()

SuperComputing Applicatior

Pointers
Basics

And Arrays
void

Strings
Chars

Strings
Manipulations

/0
Files
Text
Binary

Memory
Allocation

Data Structures

Finale

e switch (integer-expression) {

case constant-expression:
Statements
[case constant-expression:
statements]
[default:
statements]
}
@ Evaluates integer-expression
@® If value equals one constant-expression, execution jumps to
the statement following it
@ Otherwise, if default: exists, execution jumps to statement
following it
@ Otherwise execution leaves switch () and proceeds to the
following code CINECa

" SCAIl A switch () 'Feature’

SuperComputing Applicatior

Pointers
Basics

And Arrays
void

Strings
Chars

Strings
Manipulations

/0
Files
Text
Binary

Memory
Allocation

Data Structures

Finale

Beware: once 2 or 3 above happened, encounter of another

case or of default does not imply exit from switch!
A break; statement is needed to this purpose

This is way too easily forgotten

Best practices:
e Always add a break; statement at end of each 'case’

e Even ifit's unreachable, you'll appreciate on code changes
e Unless you really intend to execute two or more 'cases’ at

once

CINECA

5CAI More break, and continue

SuperComputing Applicatior

Pointers

Basics

And Arrays

void . .

. A break; statement forces execution to bail out from
ras innermost enclosing statement among:

trings

Manipulations ° Switch ()

1o e while ()

fes e do...while ()

Binary P for (; ;)

Memow

Data Structures .

Finale e A continue; statement terminates execution of current

iteration of innermost enclosing statement among:
e while ()
e do..while ()
e for (;;)
e Execution continues with next iteration

CINECA

5CA| On to Testing

SuperComputing Applicatio

Pointers
Basics
And Arrays
void
Strings
Chars
S(viqgs ' i .
Manipulations ° Let’s tr.y It I’Ight nOW'
/0 .
s e Does it work? Good!
Binary
Memory e This approach is portable
B o But on UNIXes you'd have a better life using getopt ()
Finale
e Now we have to implement input from filename file

CINECA

= SCAl Lets add it to charfreq.c

SuperComputing Applications and Innovation
Pointers void parsecmdln(int n, char *args[]) {
Basics int i = 0;
And Arrays
voe while (++i < n) {
Strings char *p = NULL;
Chars long th;
Strings
Manipulations if (args[i] [0] !'= "=") {
filename = args[i]; // must be filename
110 break; // ignore anything following
Files }
Text
Binary switch (args[i][1]) {
case '1’:
Memory .
Allocation outcase = ‘a’;
Data Structures break;
case 't’:
Finale th = strtol(args[++i], &p, 10); // numeric argument follows
if (p == args[i] || th < 0) {

fprintf (stderr, "invalid or negative threshold\n");
exit (EXIT_FAILURE);
}
minoutcount = th;
break;
case 'h':
printUsage();
exit (0);
break;
default:
illegalopt (args[i]);

CINECA

SCAI

SprCmp(g Application:

PP4éd
CINECA

21

CINECA 5 CAI

SuperComputing Applicatio

Scientific and Technical Computing in C

Stefano Tagliaventi Isabella Baccarelli
CINECA Roma - SCAI Department

Rome, 3rd-5th May 2017

CINECA 5 CAI

SuperComputing Applicatior

CINECA

mfﬁ SCAI Outline

SuperComputing Applications and Innovation

@ Pointer Types
@® Characters and Strings

® Input and Output
Files
Text 1/10
Binary I/0O

@ Managing Memory

@ Conclusions

PP
CINECA

$i3t

" SCAI Files

SuperComputing Applicatior

Pointers
Basics

And Arrays
void
Strings
Chars

Strings
Manipulations
Command Line

/0

Text
Binary

Memory
Allocation

Data Structures

Finale

C thinks of files as streams of data you can read/write from/to
C has no notion of file content or structure: user knows about

¢ You read what you know is there
¢ You write what you want to put there

Files are managed by internal data structures of FILE type

e Whose details may be implementation defined
All functions are declared in stdio.h

Most functions return or accept pointers to FILE structures
You simply declare variables of FILE = type and use these

functions
e And usually may disregard details

CINECA

1 SCAI Three Files for Free

SuperComputing Applicatior

Pointers
Basics

And Arrays
void

Strings
s e Whenmain () is called, three files have already been

Strings
Manipulations

e opened for you
/0

o e Accessible by three expressions of FILE * type
Memory e stdin for standard input

e - e stdout for standard output

Finale e stderr for error messages output

e Usually map to user’s terminal, unless they were redirected
at command launch

CINECA

" SCAI using More Files is not Free

SuperComputing Applicatior

Pointers

Ifmyfileis a FILE = variable, open a file using:

Basics
And Arrays

v myfile = fopen ("mydata.dat", "r");

Strings . .

Crars e Second string is a mode:

E;m?';';L e "r" to read existing text file

. e "w" to create a new text file or truncate existing one to zero
o length

By e "a" to create a new text file or append to existing one
Memory e Use "rb", "wb", or "ab" for binary files

RezBicurs e "r+" and "r+b" to both read and write to existing file

Finale

Biggest mistake: assuming fopen () succeeded
e fopen () returns NULL on failure
o Always check and use errno to know more
fclose (FILE *f) orderly closes an open file, do it when
you are done with it
e A string FILENAME_MAX long is big enough for any CINECA
file name

" SCAI simple String 110

SuperComputing Applicatic

Pointers
Basics
And Arrays

char *fgets(char *s, int n, FILE *stream)

woid e Reads in at most one less than n characters from stream and
Sl stores them into the buffer pointed to by s. Reading stops
Do after an EOF or a newline.

Gommand Line e Returns s on success, NULL on failure

(9 e A robust I/O function. Use it in your code.

e Use int feof (FILE *stream) to check if NULL was
Memory returned because end of file was reached

Allocation
Data Structures

char *fputs(const char *s, FILE *stream)
e Writes s string to file
e Returns EOF on error

char *puts (const char *s)
e Like fputs () on stdout, but adds a ' \n’

Finale

You'll encounter gets () in codes: offers no control on

CINECA
maximum input size, don’t use it

" SCAI Taking to Humans

SuperComputing Applicatic

Pointers
Basics

maes o fprintf () converts internal formats of basic data types to
Strings human readable formats

Chars

N fprintf (file, "control string", arguments)
commanatine e Characters in control string are emitted verbatim
vo e But conversion specifications beginning with $ cause the
sy conversions and output of arguments

ey e Arguments (i.e. expressions) must match conversion

D Seres specifications in number, types, and positions

Finale e Conversion specification $% emits a $ character and

consumes no arguments

e printf () outputs to stdout
e snprintf () and sprintf ()
o Write to string instead of file
e snprintf () is preferable as maximum string length can be

SpeCiﬁed CINECA

CINECA 5 CAI

SuperComputing Applicatic

Pointers
Basics

And Arrays
void
Strings
Chars

Strings
Manipulations
Command Line

/0

Files

Binary
Memory
Allocation

Data Structures

Finale

Common Mistakes

Beware: if you want to remove item ¢ from output in
printf ("Parameters: %1f, %1f, %1f\n", a, b, c);

the following is not enough:
printf ("Parameters: %1f, %1f, %1f\n", a, b);

you need to update the format string too:
printf ("Parameters: %1f, %1f\n", a, b);

And on adding an item you have to add a proper conversion
specifier

Ditto for type mismatches: no argument checking is required
In some cases, dire consequences could follow

A clever compiler may be able to warn you, if you ask

CINECA

" SCAIl printf(): Integer Types

SuperComputing Applicatic

Pointers
Basics

And Arrays
void
Strings
Chars

Strings
Manipulations
Command Line

/0

Files

Binary
Memory
Allocation

Data Structures

Finale

d Inn

In $d and %u, d and u are conversions

¢ Internal to base 10 text representation
1, 11, h, and hh, are size modifiers

e Look back at integer types table if you need a refresh
Variations on a theme

%$10d: at least 10 characters, right justified, space padded
% .4d: at least 4 digits, right justified

$010d: at least 10 characters, right justified, leading 0s
$-10d: at least 10 characters, left justified, space padded
%+d: sign is always printed (not relevant for u)

% d: same, but a space if positive (not relevant for u)

printf ("%-5d%+6.4d", 12, 12);
Prints?

CINECA

" SCAI printf(): Floating Types

SuperComputing Applicatio d Inr

Pointers

o e Conversions

S e %f: float to base 10 decimal text

Strings e 3E: float tp base 10 exponential text

s e %G: most suitable of the above ones

conmanite o 1 and L are size modifiers

e e Look back at floating types table if you need a refresh

Variations on a theme

%$10£: at least 10 characters, right justified, space padded
% . 4f: 4 digits after decimal point (£ and E only)

% . 7G: 7 significant digits

$010£: at least 10 characters, right justified, leading 0s
$-10£: at least 10 characters, left justified, space padded
$+£: sign is always printed

% f£:same, but a space if positive

printf ("$+8.21f %.41E", 12.0, 12.0);
Prints? CINECA

Binary

Memory
Allocation
Data Structures

Finale

" SCAIl printf(): Characters and Strings

SuperComputing Applicatic d Innoy

Pointers . . igs

e ® %c: emits character with specified code

void ..

swings | ® INO variations

ol

Manipulations . .

comasie © %s: €MIts a string

e e Variations on a theme

Binary e %10s: at least 10 characters, right justified, space padded
Wemory e %.7s: exactly(!) 7 characters from string

Data Stuctures e %-10s: at least 10 characters, left justified, space padded
Finale

printf ("%$-7s%4.3s", "Vigna", "Vigna");
Prints?

And more conversions are defined, but we’ll not cover
them

CINECA

" SCAI Listening to Humans

SuperComputing Applicatic

Pointers
Basics

And Arrays
void

sringg ® £scanf () converts human writable formats of basic data

Chars

Siings types to internal ones

Manipulations
Command Line

e fscanf(file, "control string", arguments)
110

Files e Arguments must be pointers!
Binary e Arguments must match conversion specifications in number,
Memory types, and positions
e Sructres e White-space in control string matches an arbitrary
Finale sequence of zero or more spaces
o All other characters must match verbatim with characters in
input

e scanf () reads from stdin
e sscanf () reads from string instead of file

CINECA

CINECA 5 CAI

SuperComputing Applicatic

Pointers
Basics

And Arrays
void
Strings
Chars

Strings
Manipulations
Command Line

/0

Files

Binary
Memory
Allocation

Data Structures

Finale

scanf () Conversions

Conversions discussed for print £ () work, the other way
around

They skip white-space characters before reading and
converting, except for $c

Number too big for the type? Result is implementation
defined

Fewer variations on the theme (for most conversions)
e %10d: no more than 10 characters considered (not for $c)
e %*d: looks for text matching an int, but ignores it

scanf ("%$4d%*6d%3d", &il, &i2);

Input: 12 34567890 (notice: 3 space characters)

Reads?
CINECA

CINECA 5 CAI

SuperComputing Applicatic

Pointers
Basics

And Arrays
void
Strings
Chars

Strings
Manipulations
Command Line

/0

Files

Binary
Memory

Allocation

Data Structures

Finale

Common Mistakes

Any mismatch in input to a secan£ () will stop input and
conversions

scanf () always returns the number of conversions
performed, do not discard it:
itemsread = scanf ("%$1f ,%1f", &a, &b);

check the result, and take correcting actions (or fail
gracefully)

Giving fewer arguments than conversion specifiers, as in:
itemsread = scanf ("%$1f ,%1f ,%1f", &a, &b);

is a very good recipe for disaster, and one difficult to debug
So is giving the wrong pointer or a pointer to the wrong type

CINECA

w1 SCAI user Input

SuperComputing Applicatio

Pointers
Basics

And Arrays
void
Strings
Chars
Strings
Manipulations
Command Line

/0

Files

Binary
Memory

Allocation

Data Structures

Finale

//...
printf ("Enter t max: ");

scanf ("$1f", &tmax);

e User mistypes u.0 for 7.0
e Program behaves in unintended ways

e Could check scanf () return value and fail gracefully, but
let’s give user a chance

CINECA

5CA| Wrong Solution

SuperComputing Applicatio

Pointers
Basics

int itemsread;
And Arrays
vid //...
Strings do {
Chars
Strings .
Fracer o printf ("Enter t max: ");

Command Line

/0 itemsread = scanf("%$1f", &tmax);

Files

Binary } while (itemsread == 0);
Memory

Allocation
Data Structures

Finale

e Again, user mistypes U.0 for 7.0

e Program stops responding, burning CPU cycles
e scanf () is very finicky about input
e As soon as a character doesn’t match the format string,
puts it back in input buffer

CINECA
e To find it again at each iteration

CINECA 5 CAI

i Better Solution
uperComputing Applicatior
Pointers
Basics
C;:A"ays int itemsread;
Strings /...
Chars do {
Stril
M;rrw‘i?:sulations char s [257];
Command Line
/0 printf ("Enter t max: ");
ez if (fgets(s, sizeof(s), stdin) == NULL)
Binary exit (EXIT FAILURE);
Memory
Allocation itemsread = sscanf(s, "%$1f", &tmax);
Data Structures
Finale } while (itemsread == 0);
°

This form causes wrong input to be consumed and removed
e Use fscanf () for rigidly formatted files
o With imprecise formats (as user input is), use £gets (), then

sscanf () CINECA

CINECA 5 CAI

// includes, defines, variable declarations,

SuperComputing Applications and Innovation
Pointers
Basics
xEA"WS int main(int argc, char *argv[]) {
int i;
Strings FILE *textfile = stdin;
Chars
Strings parsecmdln (arge, argv);
Manipulations
Command Line if (filename != NULL) {
110 textfile = fopen(filename, "r");
Files if (ltextfile) {
perror (filename) ;
Binary exit (EXIT_FAILURE);
Memory } }
Allocation

Data Structures

Finale

while (fgets(s, sizeof(s), textfile)

char c, *p = s;

while ((c=xp++))
if (isalpha(c))

++counts[toupper(c) - 'A’];

if (filename != NULL)
fclose (textfile);

for (i=0; i<LETTERS; ++i)

if (counts[i] >= minoutcount)

printf ("%c\t%9%u\n",

return 0;

i + outcase,

!= NULL)

counts[i]);

Ready for Release 2.0

{

and function definitions unchanged

CINECA

I SCAL Thars it

SuperComputing Applicatio

Pointers
Basics

And Arrays
void
Strings
Chars

Strings
Manipulations
Command Line

/0

Files

Binary
Memory

Allocation

Data Structures

Finale

fgets () is passed textfile, initialized 10 stdin FILE

pointer

If no filename was provided on command line, £ilename will

still be NULL
e Business as usual

Otherwise, £ilename will point to filename command line

argument string
e Let's open it
o Let’s fail orderly, if fopen () failed
e Let’s close file as soon as we are done with it

Let’s try it right now!

CINECA

CINECA 5 CAI

// includes, defines, variable declarations,

SuperComputing Applications and Innovation
Pointers
Basics
xEA"WS int main(int argc, char *argv[]) {
int i;
Strings FILE *textfile = stdin;
Chars
Strings parsecmdln (argc, argv);
Manipulations
Command Line if (filename != NULL) {
110 textfile = fopen(filename, "r");
Files if (!textfile) {
perror (filename) ;
Binary exit (EXIT_FAILURE);
Memory } }
Allocation

Data Structures

Finale

while (fgets(s, sizeof(s), textfile)

char c, *p = s;

while ((c=xp++))
if (isalpha(c))

++counts[toupper(c) - 'A’];

if (filename != NULL)
fclose (textfile);

for (i=0; i<LETTERS; ++i)

if (counts[i] >= minoutcount)

printf ("%c\t%9%u\n",

return 0;

i + outcase,

!= NULL)

counts[i]);

charfreq.c Release 2.0

{

and function definitions unchanged

CINECA

7 SCAI Dealing with Many Data

SuperComputing Applicatior

Pointers
Basics

And Arrays
void

Text I/O is human readable
Strings Text I/O is platform independent

Maniustins But text I/O is huge
Command Line
e Because of issues in base 2 vs. base 10 representation

/0

o ¢ To recover exact binary form of a floating type, you need:
F— o at least 9 decimal digits in text I/O for a £loat
Alocaton e at least 19 decimal digits in text I/O for a double

Data Structures

And text I/O is slow
e Because of size
e And because conversions take time
Best practice:
e Use text I/O to talk to humans or as a last resort for some

programs
e Use binary 1/0O otherwise CINECA

Finale

" SCAI Binary Reads and Writes

SuperComputing Applicatior

Pointers

Basics

And Ay size_t fread(void xdata, size t elsz,

Strings size_t count, FILE x*f);

S size t fwrite(const void *data, size t elsz,
Manipulations

Conmars e size_t count, FILE *f);

110

Fles e Read/write count elements of size elsz from/to file £

Text

; to/from address data
lemol
e o Both return the number of elements actually read/written

Data Structures
e Can be less than requested if error occurred, or (Eread ()
only) end of file was encountered
e Use feof () or ferror () to determine cause

Finale

e Best practice:
e do binary I/O in chunks as large as possible

o performance will sky-rocket
CINECA

“ SCAI walking Around in a File

SuperComputing Applicatior

Pointers

wwee | ® Each 1/O operation takes place from the position in the file
“;':rings where the last one ended
ol e But position can be changed

Manipulations
Command Line

Not special to binary files, but mostly used with them
fseek (£, 4096L, wherefrom) moves forward by 4096
bytes relative to:
file beginning, if wherefrom is SEEK_SET
current position, if wherefrom is SEEK_CUR
file end, if wherefrom is SEEK_END
and returns zero if successful, non zero otherwise
ftell (£) returns the current position (1long)
e on failure, returns -1L and sets errno
This is a 64 bits world: files can be huge!

e In case, use £setpos () and fgetpos ()
e They use an fpos_t type large enough

/0
Files
Text

Memory
Allocation
Data Structures

Finale

CINECA

"7 SCAI Dealing with Fortran Binary Files

SuperComputing Applicatio

Pointers
Basics

- You may need to read Fortran binary files
Strings And Fortran adds two extra 32 or 64 bits integers, one at

Chars

Vankuistons beginning and one at end of each record (i.e. of each WRITE

Command Line .
o for unformatted files)

Files
Text

o Option 1: skip them with £seek ()

Option 2: read them and forget the values

Finale

Option 3: write the file from Fortran opening it in STREAM
mode

¢ Designed to match the C file concept

¢ Introduced in Fortran 2003

e But already available in most implementations e

Scientific and Technical Computing in C

Stefano Tagliaventi Isabella Baccarelli
CINECA Roma - SCAI Department

Rome, 3rd-5th May 2017

Outline

@ Pointer Types
@® Characters and Strings

® Input and Output

Memory

O Managing Memory
Dynamic Memory Allocation
Sketchy Ideas on Data Structures

@ Conclusions

Pointers
Basics.

And Arrays
void

Strings
Chars

Strings
Manipulations
Command Line

e}

Files
Text
Binary

Allocation
Data Structures

Finale

A PDE Problem

e Let's imagine we have to solve a PDE
¢ On a dense, Cartesian, uniform grid
e Mesh axes are parallel to coordinate ones
e Steps along each direction have the same size
e And we have some discretization schemes in time and space
to solve for variables at each point

A Rigid Solution

Pointers

i::*f"ays #define NX 200

void #define NY 450

Strings #define Nz 320

Chars

Mo naons double deltax; // Grid steps

Command Line double deltay;

I[o} double deltaz;

File

T;f /...

Binary double u[NX] [NY][NZ]; // x velocity component
double v[NX][NY][NZ]; // y velocity component

S"::as"(ﬂ"(double w[NX] [NY][NZ]; // z velocity component

ata Structures
double p[NX] [NY][NZ]; // pressure

Finale

e We could write something like that at file scope
e But it has annoying consequences
e Recompile each time grid resolution changes

¢ A slow process, for big programs
e And error prone, as we may forget about

e Couldn’t we size data structures according to user input?

Looking for Flexibility

Pointers

Basics

And Arrays

id

°) int main(int argc, char xargv[]) {

3:?95 double deltax, deltay, deltaz; // Grid steps
Strings int nx, ny, nz

Manipulations
Command Line // ..

o double u[nx] [ny] [nz];
Files double v[nx] [ny] [nz];
oy double w[nx] [ny] [nz];

double p[nx] [ny] [nz];

Allocation
Data Structures

Finale ¢ We could think of declaring variable length arrays inside
main () or other functions
e This is unwise

e Automatic arrays are usually allocated on the process stack
e Which is a precious resource
¢ And limited in most system configurations

A Better Approach

Pointers #define MAX NX 400

And Arays #define MAX NY 400

o #define MAX NZ 400

Strings

) double u[MAX NX*MAX NY«MAX NZ];
Manipulations double v[MAX NX*MAX NY*MAX NZ];

Command Line

double w[MAX NX+*MAX NY*MAX NZ];

LO double p[MAX NX*MAX NYx*MAX NZ];

Files
Text

Bil
- void my pde_solver(int nx, int ny, int nz,

ey double u[nx] [ny] [nz],
Data Structures double v[nx] [ny] [nz],
double w[nx] [ny] [nz],
double p[nx] [ny] [nz]);

Finale

e We could use VLA parameters
¢ But we should cast on calls, to avoid compiler warnings
e How would you cast u[MAX NX+*MAX_ NY*MAX NZ] into
double u[nx][ny] [nz]?
e Maximum problem size is program limited: nx*ny*nz
must be at most equal to MAX_NX+*MAX NY*MAX NZ

Pointers
Basics

And Arrays
void

Strings
Chars

Strings
Manipulations
Command Line

/0
Files
Text
Binary

Allocation
Data Structures

Finale

Slightly More Comfortable, the Old
Way

void my pde_solver(int nx, int ny, int nz,
double ul],
double vI[],
double wl[],
double p[]) {
// variable declarations and solver code...

u[(i*ny + j)*nz + k] = .
v[(i*ny + j)*nz + k] = .
w[(i*ny + j)*nz + k] = .
pl(i*xny + j)*nz + k] = .

// more solver code...

We could write code as the above, no need for casting on
my_pde_solver () calls

And you’ll encounter code like this, that was a C89 way
But so old fashioned!! Don’t do that for new codes
And remember, maximum problem size is limited

Pointers
Basics

And Arrays
void

Strings
Chars

Strings
Manipulations
Command Line

/0
Files
Text
Binary

Allocation
Data Structures

Finale

More Comfortable, Thanks to C99

void my pde_solver(int nx, int ny, int nz,
double
double
double
double

double
double
double
double

(*u) [ny] [nz]
(*v) [ny] [nz]
(*w) [ny] [nz]
(*p) [ny] [nz]

um[],
vm[],
wm[],

pm[]) {

(double
(double
(double
(double

// solver code using u, v, w,

function declaration as well!)

¢ Definitely easier to use

(%) [ny] [nz])um;
(*) [ny] [nz]) vm;
(*) [ny] [nz]) wm;
(*) [ny] [nz])pm;

and p as humans do

Let’s rewrite my_pde_solver () like this (and update

¢ No casting on my_pde_solver () calls
e And writing my_pde_solver () is easier too

e Maximum problem size still program limited, however

Pointers
Basics

And Arrays
void

Strings
Chars

Strings
Manipulations
Command Line

/0
Files
Text
Binary

Allocation
Data Structures

Finale

Removing Limitations

e Being program limited is annoying

¢ |t's much better to accommodate to any user specified
problem size
¢ Right, as long as there is enough memory
e But if memory is not enough, not our fault
e |t's computer or user’s fault

¢ And there are many complex kinds of computations
¢ Those in which memory need cannot be foreseen in advance

e Those in which arrays do not fit
e Those in which very complex data structures are needed

Pointers
Basics

And Arrays
void
Strings
Chars

Strings
Manipulations
Command Line

/0

Files

Text

Binary
Memory

Data Structures

Finale

Enter Dynamic Allocation (from
stdlib.h)

void *malloc(size_t size)

void *calloc(size_t el _count, size_ t el_size)
e malloc () allocates a memory area suitable to host

a variable whose size is size

o Allocated memory is uninitialized.
o Use it like this:

a_ion_ptr = (ion *)malloc(sizeof (ion));

e calloc () allocates a memory area suitable to host
an array of count elements, each of size size

¢ Allocated memory is initialized to zero: can be slow, but useful
o Use it like this:

a_flt ptr = (float x)calloc(nx*ny*nz, sizeof (float));

e Best practice: always cast return values, gives less
compiler warnings and helps readability

Pointers
Basics

And Arrays
void
Strings
Chars

Strings
Manipulations
Command Line

/0

Files

Text

Binary
Memory

Data Structures

Finale

The Biggest Mistake

Assuming malloc () or calloc () succeeded!
Where all these ‘dynamic allocated memory’ comes from?

e From an internal area, often termed “memory heap”

e When that is exhausted, OS is asked to give the process more
memory

e And if OS is short of memory, or some configuration limit is
exhausted...

On failure, malloc () and calloc () return null pointers

o Dereferencing it forces program termination (usually a
“segmentation fault”)

e We could say you deserve it

¢ But all time spent in previous computations would be lost

Best practice: ALWAYS, ALWAYS, always check

if ((p = malloc(some_size)) == NULL) {

}

// save your precious data, if any
// and fail gracefully

Pointers
Basics

And Arrays
void
Strings
Chars

Strings
Manipulations
Command Line

/0

Files

Text

Binary
Memory

Data Structures

Finale

Resizing

void *realloc(void *ptr, size_t new_size)
realloc () takes a previously allocated memory area, and
gives you a new area whose size is size

¢ Original area contents are copied in the new area, up to
min(oldsize, size)
o Use it like this:

new_ptr = (float x)realloc(a_flt_ ptr,
nx*ny*2xnzxsizeof (float));

Particularly handy to shrink or lengthen arrays

On failure, returns null pointer and leaves old area
unchanged

Biggest mistakes
e Assuming realloc () succeeded: always check
e Assuming only size changes and address remains
the same: it can happen, but only in particular cases

Pointers
Basics

And Arrays
void
Strings
Chars

Strings
Manipulations
Command Line

/0

Files

Text

Binary
Memory

Data Structures

Finale

Getting Rid of Memory Areas

void free(void xptr)

¢ An allocated memory area persists until it is “freed”

e Of course, heap allocated memory is claimed back at
process termination

e But better give back a memory area to the dynamic memory
“pool” for reuse, as soon as you are over with it
¢ Just imagine you are processing one item at a time...
¢ Allocating new memory areas at each item without freeing
previously allocated ones...
e Your process size will grow until...
¢ Injargon, this is a memory leak

e Remember: programmers causing memory leaks have
particularly bad reputation

The First Big Mistake with free ()

Pointers

i:jfrmys char s[BIG_STRING + 1];

void char x*p;

Strings /] ..

g:‘?'s if ((p = malloc(BIG_STRING + 1)) == NULL) {
rings

Mm&mmS // save your precious data, if any
Command Line // and fail gracefully

) }

fes strncpy (p, s, BIG_STRING);

Binary

Memory while (++p) {

s Stuetres } // process characters

Finale

free(p); // p has been incremented!
free(s); // MADNESS: s not ‘malloced’!

free () MUST be passed a pointer returned by malloc ()
and friends

e Otherwise behavior is implementation defined
¢ In most practical cases, program execution is aborted

The Second Big Mistake with

free()

Pointers
o int *p, i;
void long long *q;
Strings
xﬁs if ((p = malloc(sizeof(int)*n)) == NULL) { /*take actionx/ }
Maripuiations // process some data
Command Line free (p) ;
I{O
Qf if (! (g = malloc(sizeof (long long)#*m))) { /xtake actionx/ }
Bl for (i=0; i<m; ++i)
Memory plil =i - m; // a typo!
Data Structures // AR
Finale

e Memory still there, but could have been reused!

e Or could have not been reused as well...

e Could appear to work, very difficult to catch

e Good advice: always zero a pointer after freeing it

¢ Can be done “automagically” if you
#define free (ptr_var) (free(ptr_var), ptr_var = NULL)

The Third Big Mistake with £ree ()

Pointers
Basics typedef struct mydata {
C;:Arrays int n;
& double *somedata;
Chal[':ngs int *moredata;
Stril .
M;:i?:sula(ions } mydata;
Command Line
10 mydata *p = calloc(l, sizeof (mydata));
Files if (!'p) { /* take action */ }
Text
B?:ary
p->n = datasize;
Memory .)
p—>somedata = calloc(datasize, sizeof (double));
PR p->moredata = calloc(datasize, sizeof (int));
Finale if (!p->somedata || !p->moredata) { /% take action %/ }

//input and process data
free(p); // forgot something?
e Freeing p, p—>somedata and p—>moredata are gone,

so we can'’t free their pointees, memory leak!
¢ Free p—>somedata and p—>moredata first, then p

Memory Friends from string.h

Pointers Function Does

Bai void *memmove (void xd,

C:i: GUEE const void s, copies a len bytes sized memory area from s to d, returns d
size_t len)

Strings void xmemset (void *p, writes 1en copies of (unsigned char)val

Chars int val, starting from address p,

Sinc=a size_t len) returns p

Command Line

vo e You'll happen to encounter memcpy () too

Text .

Binary e Copies almost as memmove () does

Memory ¢ If memory areas happen to overlap, memmove () is safe and

Data Structures does the rlght thlng

Finale e While memcpy () could be faster, but is unsafe

e Be prudent, and prefer memmove ()
e Surprisingly, memmove () is also faster in quite a few
implementations!

¢ Way too common mistake: forgetting about and writing code
doing the same

e Don't reinvent the wheel, use library functions!

Pointers
Basics

And Arrays
void
Strings
Chars

Strings
Manipulations
Command Line

/0

Files

Text

Binary
Memory

Data Structures

Finale

Comfortable, and User Friendly

void my pde_solver(int nx, int ny, int nz,
// physical parameters

) 1
//. ..
double (%u) [ny] [nz]
double (*v) [ny] [nz]
double (*w) [ny] [nz]
double (*p) [ny] [nz]

(double
(double
(double
(double

if (u == NULL || v == NULL ||
fprintf (stderr, "Not enough
exit (exit_failure);

}

// solver code using u, v, W,

(%) [ny] [nz])calloc (nx*ny*nz,
(%) [ny] [nz])calloc (nx*ny*nz,
(%) [ny] [nz])calloc (nx*ny*nz,
(%) [ny] [nz])calloc (nx*ny*nz,

w == NULL || p == NULL) {
memory!\n");

and p in as humans do

e Now available memory is the limit
¢ And still easy to use

sizeof (double));
sizeof (double));
sizeof (double));
sizeof (double));

Pointers
Basics

And Arrays
void

Strings
Chars

Strings
Manipulations
Command Line

e}

Files
Text
Binary

Memory

Allocation

Finale

Nonuniform Grids

e Let’s imagine we have to solve a PDE
e On a dense, Cartesian, non uniform grid

e Mesh axes are parallel to coordinate ones
e Steps along each direction differ in size from point to point

Pointers
Basics

And Arrays
void

Strings
Chars

Strings
Manipulations
Command Line

/0
Files
Text
Binary

Memory

Allocation

Finale

Keeping Information Together

typedef struct nonuniform grid {
int nx, ny, nz;

double xdeltax; // Grid steps
double xdeltay;
double =xdeltaz;

} nonuniform grid;

//...

nonuniform grid my grid;
//. ..

mygrid.deltax = calloc(nx - 1, sizeof (double));
mygrid.deltay = calloc(ny - 1, sizeof (double));
mygrid.deltaz = calloc(nz - 1, sizeof (double));
// Check immediately for NULL pointers!

¢ Related information is best kept together
e Grid size and grid steps are related information

Structured Grids in General Form

Data Structures

e Let’'s imagine we have to solve a PDE
e On a dense structured mesh

e Could be continuously morphed to a Cartesian grid
e Need to know coordinates of each mesh point

Pointers
Basics

And Arrays
void

Strings
Chars

Strings
Manipulations
Command Line

/0
Files
Text
Binary

Memory
Allocation

Finale

Sketching a Mesh Description

typedef vect3D meshpoint;
typedef vect3D normal;

typedef struct mesh {

int nx,

ny, nz;

meshpoint *coords;

normal
normal
normal

double
} mesh;

/7. ..

*xnormals;
*ynormals;
*znormals;

*volumes;

nonuniform_grid my_ grid;

mygrid.coords = calloc(nx*ny*nz, sizeof (meshpoint));
mygrid.xnormals = calloc (nx*ny*nz, sizeof (normal));
mygrid.ynormals = calloc(nxx*ny*nz, sizeof (normal));
mygrid.znormals = calloc(nx*ny*nz, sizeof (normal));
mygrid.volumes = calloc((nx-1)*(ny-1)*(nz-1), sizeof (double));

// Check

immediately for NULL pointers!

e No VLAs allowed in structures
e Cast to VLA array pointer in functions using it

Pointers
Basics

And Arrays
void

Strings
Chars

Strings
Manipulations
Command Line

/0
Files
Text
Binary

Memory

Allocation

Finale

Multiblock Meshes and More

¢ A multiblock mesh is an assembly of connected structured
meshes
¢ You could dynamically allocate a mesh array
e Or build a block type including a mesh and connectivity
information

e Adaptive Mesh Refinement
¢ You want your blocks resolution to adapt to dynamical
behavior of PDE solution

e Which means splitting blocks to substitute part of them with
more resolved meshes

e Eventually, you'll need more advanced data structures
¢ Like lists (and recursion comes handy)
o Like binary trees, oct-trees, n-ary trees (and recursion
becomes essential)

If You Read Code Like This...

Pointers

Basics

And Arrays

void struct block_item;

Strings

?m typedef struct block_item {
trings

Maripuatons block sthis_block;

Command Line

1/0 struct block_item *next;
Fil :

ot } block item;

Binary

Memory //...

Allocation Whl le (P) {

Final advance_block_in_time (p—>this_block);
inale

P = p—->next;

}

e It is processing a singly-linked list of mesh blocks
¢ You need to learn more on abstract data structures
e Don’t be afraid, it’s not that difficult

Pointers
Basics

And Arrays
void

Strings
Chars

Strings
Manipulations
Command Line

/0
Files
Text
Binary

Memory

Allocation

Finale

And If You Read Code Like This...

struct block_tree_node;

typedef struct block tree node {
block *this_block;

int children_no;
struct block_tree_node *xchildrens;
} block_tree_node;

//...
void tree_advance_in_time (block_tree_node x*p) {
int i;

for (i=0; i<p->children_no; ++i)
tree_advance_in_time (p—>childrens[i]);

advance_block_in_time (p—>this_block) ;

}

e ltis processing a tree of mesh blocks (AMR, probably)
e You need to learn more on abstract data structures
e Don’t be afraid, it's not that difficult

Outline

@ Pointer Types

@ Characters and Strings
® Input and Output

@ Managing Memory

@® Conclusions

Pointers
Basics

And Arrays
void

Strings
Chars

Strings
Manipulations
Command Line

/0
Files
Text
Binary

Memory
Allocation
Data Structures

What We Left Out (1 of 2)

More preprocessor magic, like:
¢ |ots of predefined macros to automatically adapt your code to
platforms and compilers
e macros to write function with variable number of arguments
More types, like:
¢ extended integer types
¢ wide and Unicode characters and related facilities
e unions and bit fields, mostly used for OS programming
More facilities to:
¢ control the floating point environment
e interact with the process environment
e localize your program
More facilities for robustness:
e static and dynamic assertions
e bounds checking functions for /0 and string management
(C11 Annex K)
e precise control of process termination

Pointers
Basics

And Arrays
void

Strings
Chars

Strings
Manipulations
Command Line

/0
Files
Text
Binary

Memory
Allocation
Data Structures

What We Left Out (2 of 2)

More facilities for performance:

e inline functions

¢ control of data alignment in memory
C11 threads support

More functions

More C practice
e That’s your job

More about programming
o Code development management tools
¢ Debugging tools
e Look among Cineca HPC courses

Pointers
Basics.

And Arrays
void

Strings
Chars

Strings
Manipulations
Command Line

e}
Files
Text
Binary

Memory
Allocation
Data Structures

>

¢ ¢ ¢ = ¢

Looking for More

ANSI WG14

C Standard and Technical Corrigenda
http://www.open-std.org/jtcl/sc22/wgld/www/standards
http://www.open-std.org/jtcl/sc22/wgld/www/docs/nl1570.pdf

S. Summit
comp.lang.c Frequently Asked Questions
http://www.c-faqg.com/

D. Dyer
The Top 10 Ways to get screwed by the "C" programming language
http://www.andromeda.com/people/ddyer/topten.html

S. Harbison, G. Steele
C A Reference Manual
Prentice Hall, 5th ed., 2002

A. Kelley, I. Pohl
C by Dissection: The Essentials of C Programming
Addison Wesley, 4th ed., 2000

A. Koenig
C Traps and Pitfalls
Addison Wesley, 1989

Rights & Credits

Pointers
Basics
And Arrays

These slides are ©CINECA 2016 and are released under

o the Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)
i Creative Commons license, version 3.0.

Strings

ammste Uses not allowed by the above license need explicit, written
o permission from the copyright owner. For more information
By see:

M

cuten http://creativecommons.org/licenses/by-nc-nd/3.0/

Data Structures

Slides and examples were authored by:
Michela Botti

Federico Massaioli

Luca Ferraro

Stefano Tagliaventi

	Pointer Types
	Pointers Basics
	Pointers and Arrays
	Generic Pointers

	Characters and Strings
	Characters
	Strings
	String Manipulation Functions
	Parsing the Command Line

	Input and Output
	Files
	Text I/O
	Binary I/O

	Managing Memory
	Dynamic Memory Allocation
	Sketchy Ideas on Data Structures

	Conclusions

