CINECA 5 CAI

- O

Scientific and Technical Computing in C

Stefano Tagliaventi Isabella Baccarelli
CINECA Roma - SCAI Department

Rome, 3rd-5th May 2017

CINECA

mfﬁ SCAI Outline

SuperComputing Applications and Innovation

@ Introduction

@ C Basics

® More C Basics

@ Integer Types and lterating

@ More Flow Control and Types

PPeoe
CINECA

$i3t

5C AI C History

SuperComputing Applica

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C

1st Function
Testing

Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

More Flow
Recursion
Loops&Arrays
More Ways
Wrap Up 4

Born in the 70s as an operating system programming
language (traditional C)

Widely adopted for application development because of its
efficiency and availability on most systems

First ANSI standard in 1989 (C89), adopted by ISO in 1990

Second ISO standard in 1995 (C95), just a few extensions
and fixes

Third ISO standard in 1999 (C99), adding many new features
(usability, more numeric types and math, more characters,
inlining and restrict)

Current standard is C11 (more usability, threads, Unicode

characters, more robustness)
CINECA

it 5CAI C General Philosophy

SuperComputing Applicatio

sasics ® A simple and efficient language

1st Program

Gt e Only 44 reserved keywords

Wiap U 1 « Basic data types and operators mapping "naturally" to the

More C CPU

‘l‘n‘}.m * Facilities to build data types from the basic ones

R ¢ Flexible flow control structures mapping the most common
Integers use cases . .

et o Translated by a compiler to machine language

erton e Arich Standard Library

W Ups e Math functions, memory management, string manipulation,
More Flow I/O, ... are not part of the language

Epmy o Implemented separately in a library of subprograms

Weap Up 4 e Linked into the executable after compilation

e A “preprocessor” to manage the code

¢ Conditional compilation and automated code changes
¢ Manipulates the code before compilation CINECA

"t SCAI Technical and Scientific Computing

SuperComputing Applicatic

e Why C is bad
pasics e Number crunching has been traditionally done in Fortran
ez e Fortran is older and more “rigid” than C, compilers optimize
frn et better
More © o Nowadays, performance differences are often a matter of
e N— compiler flags and good programming techniques

vy Why C is good
From the beginning, it had more powerful data types
Non-numeric computing in Fortran is a real pain
There are more C than Fortran programmers
GUI and DB accesses are best programmed in C

Lt Mixing C and Fortran uses (used...) to be troublesome
;pg;v C99 seriously addressed numerical computing needs
WepUp e ... and solved aliasing rules for memory pointers
Bottom line:

¢ Significant scientific libraries written in C

¢ Significant scientific applications written in C CINECA

e C compilers got much better at optimizing

Integers
Iteration
Test&Fixes
Overflow
Wider Ints

Polishing
Wrap Up 3

More Flow

5CAI Our Aims

SuperComputing Applicatio

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C

1st Function
Testing

Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

More Flow
Recursion
Loops&Arrays
More Ways
Wrap Up 4

Teach you the fundamentals of the C language
For both reading and writing programs
Showing common idioms

lllustrating best practices

Blaming bad ones

Making you aware of the typical traps
Focusing on scientific and technical use cases

You'll happen to encounter something we didn’t cover, but it
will be easy for you to learn more... or to attend a more
advanced course!

A course is not a substitute for a reference manual or a good
book!

Neither a substitute for personal practice CINECA

5CAI Outline

s uper rc mpl ing Applications and Inn

@® C Basics
My First C Program
Making Choices
More Types and Choices
Wrapping it Up 1

PPeoe
CINECA

$i3t

" SCAI My First Scientific Program in C

SuperComputing Applications and Innovation

Intro /* roots of a 2nd degree equation
Basics with real coefficients x/

Ohoices #include <math.h>

More T&C #include <stdio.h>

Wrap Up 1

More C int main() {

1st Function

Testing double delta;

Compile and Link .

ot double x1, x2;

Wrap Up 2 double a, b, c;

Integers

Eﬁmw printf ("Solving ax”*2+bx+c=0, enter a, b, c: ");
Overflow scanf ("%$1f ,%1f ,%1f", &a, &b, &c);
Wider Ints

Polishing

Wrap Up 3 delta = sqrt(bxb - 4.0%xaxc); // square root of discriminant
More Flow xl = x2 = -b;

R i - .

L:::;i;l:rays x1l = x1 + delta;

More Ways x2 —-= delta;

Wrap Up 4

x1 x1/(2.0%a);
x2 /= 2.0%*a;

printf ("Real roots: %1f, %1f\n", x1, x2);

return O;

5CAI Comments to Code

SuperComputing Applicatio

Intro

Basics

ot e Text following /* is ignored up to the first x/ encountered,
Wiap Up 1 even if it’'s on a different line

More C H H

mean o |n C99, text following // is ignored up to the end of current
e liN€

Wrap Up 2

Integers Best practice: do comment your code!

Tearios e Variable contents

e e Algorithms

Wiep Up3 e Assumptions

Morg Flow ° Tricks

.

More Ways []

Best practice: do not over-comment your code!

e Obvious comments obfuscate code and annoy readers
e // square root of discriminant is a bad example

Wrap Up 4

CINECA

" SCAI Functions, main () in Particular

SuperComputing Applicatic

Intro

Basics

cucs e G code is organized in functions

et e Each function has a name

nores « Code goes in between braces

e N— e Arguments, if any, goes in between parentheses
Wapns e It can return one or zero results using return
Integers e More on this later...

Tonaoes

o ¢ In a program, the function main () can’t be dispensed with
i o It's called automatically to execute the program
MoreFlow ¢ main () returns an integer type value

Mo ey e A UNIX heritage

Wrap Up 4

e Passed to parent process (e.g. the command shell)
¢ Rule: 0 if everything completed successfully

CINECA

5CAI Variables

SuperComputing Applicatio

Intro
Basics

Choices
More T&C
Wrap Up 1

More C

1st Function
Testing

Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

More Flow
Recursion
Loops&Arrays
More Ways
Wrap Up 4

double x1, x2; declares two variables

¢ Named memory locations where values can be stored

e Declared by specifying a data type followed by a
comma-separated list of names, ended by a semicolon

e On x86 CPUs, double means that x1 and x2 host IEEE
double-precision (i.e. 64 bits) floating point values

A legal identifier must be used for a variable name:

e Permitted characters: a-z, A-Z, 0-9, _

e The first one cannot be a digit
(e.g. x1 is a valid identifier, 1x is not)

e 31 characters are guaranteed to be considered

e A good advice: do not exceed 31 characters in an identifier

Case counts: anIdent is not the same as anident!

Common convention: avoid variable names entirely made of

capital letters

CINECA

5C A| Using the Standard Library

SuperComputing Applicatic

Intro

A lot of functionalities are available in an external library of

Basics

onoces functions, whose content is defined by the Standard

More T&C . . .

Wiap Up 1 e The compiler knows nothing about them, so it needs

More C information about:

I:zsr::ﬁeandunk ° Arguments

ey Type of returned value

Inegers o |Information about functions is in header files

fae o Grouped by categories

i e Must be inserted in the source code before functions are used
feetes e #include causes the preprocessor to do it automatically
oo o e Specifying the header file name between angle brackets
Sal forces the preprocessor to look in the directories where the

Wrap Up 4

Standard header files are located
Want to compute a square root?

e #include <math.h>
e Use sqrt ()

CINECA

T SCAI A Few First Words on 1/0

SuperComputing Applicatic

Intro
Basics

Choices
More T&C
Wrap Up 1

More C

1st Function
Testing

Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

More Flow
Recursion
Loops&Arrays
More Ways
Wrap Up 4

Related functions are grouped in stdio.h
The bare minimum: textual input output from/to the user
terminal

e scanf () reads

e printf () writes
printf ("Solving ..."); is obvious

o Writes the text between double quotes
printf ("Real roots: %1f, %1f\n", x1, x2); is
more interesting

e Conversion specifiers $1£ are substituted by the textual
representation of values in x1 and x2
e And a new line is forced by \n

scanf ("$1f ,%1f ,%1f", &a, &b, &c);
e Reads three double precision numbers from the terminal,

converts them in internal binary format, stores them

. . CINECA
e Enough for now, disregard details

" SCAI Expressions and Operators

SuperComputing Applicatic

Intro

Basics

Choices
More T&C
Wrap Up 1

Most of program work takes place in expressions
Operators compute values from terms

More C

15t Functon e +, —, * (multiplication), and / behave like in “human” arithmetic
é?;:?zeanwnk e Sodounary -, (,and)
“wrE e x1 = x1 + delta assigns the value of expression
G x1 + delta to variable x1
tor « An ending ; makes it into an executable statement
el e But it’s still an e>.<pression, with the samelvaIL_Je assigned to x1
More Flow e Thus we can write x1 = x2 = -b;, whichis same as x1 =
e (x2 = -b);
weus ® Practical shorthands to read/modify/write a variable:

e x2 —-= deltaissameasx2 = x2 - delta

e x2 /= 2.0xaissameasx2 = x2/(2.0xa)

CINECA

" SCAL Try 1t Now!

SuperComputing Applications and Innovation

Intro
Basics

Choices
More T&C
Wrap Up 1

More C

1st Function
Testing

Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

More Flow
Recursion
Loops&Arrays
More Ways
Wrap Up 4

/* roots of a 2nd degree equation
with real coefficients x/

#include <math.h>

#include <stdio.h>

int main() {
double delta;
double x1, x2;
double a, b, c;

printf ("Solving ax*2+bx+c=0, enter a, b, c: ");
scanf ("%$1f ,%1f ,%1f", &a, &b, &c);

delta = sqrt(bxb - 4.0%xaxc); // square root of discriminant
x1l = x2 = -b;

x1l = x1 + delta;

x2 —-= delta;

x1 x1/(2.0%a);

x2 /= 2.0%*a;

printf ("Real roots: %1f, %1f\n", x1, x2);
CINECA

return O;

“ SCAI compile your first C program !

SuperComputing Applications and Innovation

intro e We will use GNU C Compiler (GCC) during this course

:as'cs e Other compilers are available on the market

Moo Tao (Intel, PGl, Pathscale, etc)

More C e Linux systems comes with the C compiler

i‘ggdm » Windows systems does not have a default one

Robusiness e we will use MinGW (a minimal port of GCC for Windows)

Wrap Up 2

Integers

peon e Let's see how to compile and run your first C program:
Overflow

Wider nts e put your first C code into main.c file

Polishing
Wrap Up 3

More Flow e Compile your source code using the command:

Recursion
o
Wrap Up 4

An executable file named a.out will be generated

e Run the program with:

user@cineca$> ./a.out

CINECA

1 SCAIL - compile your first C program ! (1I)

SuperComputing Applications and Innovation

Intro
Basics i . .
tstProg e ... probably you got something like this:
More T&C
Wrap Up 1

user@cineca$> gcc main.c
More C /tmp/ccWpSr3h.o: In function ‘main’:
;ﬂFmﬂbn main.c: (.text+0xa8): undefined reference to ‘sqrt’
esting

collect2: 1ld returned 1 exit status

Gompile and Link
Robustness

L:::rs e #include<math.h> declares some math functions and
i constants (sgrt () among them)

Wit e the sqrt () function code is in the math library

Polishi

Wabs e gcc does not automatically link the math library

More Flow

resn e you have to link the library explicitly into the executable:

More Ways
Wrap Up 4
user@cineca$> gcc main.c -1lm

e now run the program!
CINECA

" SCAI Fixing a Problem

SuperComputing Applicatio

Intro

sasics | ® User wants to solve x2+1 =0

Crooss e Enters:1, 0, 1

More T&C

Wrap Up 1 e Gets: Real roots: nan, nan

More C
smem | ® Discriminant is negative, its square root is
Testing

Not A Number, nan

Wrap Up 2

megers o Let’s avoid this, by changing from:

Iteration

Test&Fixes delta = sqrt (bxb - 4xaxc);

Overflow

i to:

Wrap Up 3

- delta = bxb - 4xaxc;

oo PO 3 F (delta < 0.0)

mzs‘j‘v:;':ys return 0;

Wrap Up 4 delta = sqgrt(delta);

e Try it now!

¢ Did you check that normal cases still work? Good.

CINECA

CINECA 5 CAI

SuperComputing Applicatio

Intro

Basics
1st Program

More T&C
Wrap Up 1

More C

1st Function
Testing

Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

More Flow
Recursion
Loops&Arrays
More Ways
Wrap Up 4

Conditional Statement

e if (logical-condition) statement
e Executes statement only if logical-condition is true

e Comparison operators: == (equal), != (not equal), >, <, >=,

<=

e But our fix is not user friendly, let’s be more polite by
changing from:
if (delta < 0.0)
return 0;
to:

if (delta < 0.0)

{
printf ("No real roots!\n");
return 0;

}

e Try it now!
¢ Did you check that normal cases still work? Good.

CINECA

1 SCAI compound Statements

SuperComputing Applicatio

Intro

Basics
1st Program

More T&C
Wrap Up 1

More C

1st Function
Testing

Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

More Flow
Recursion
Loops&Arrays
More Ways
Wrap Up 4

Wherever a statement is legal in C, you can use a sequence
of statements enclosed in braces

Some folks prefer this:

if (delta < 0.0) {
printf ("No real roots!\n");
return O;

}

and it's OK

Some folks write:

if (delta < 0.0) {printf("No real roots!\n"); return O0;}

but this is not that good...

In general, C disregards white space and line breaks,

but indentation makes program control flow explicit
CINECA

« &= A Let's Refactor Our Program and
SuperComputing Applications and Innovation Te St I t !

Intro

Basics
1st Program
Choices

Wrap Up 1

More C

1st Function
Testing

Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

More Flow
Recursion
Loops&Arrays
More Ways
Wrap Up 4

/* roots of a 2nd degree equation
with real coefficients */

#include <math.h>

#include <stdio.h>

int main() {
double delta;
double rp;
double a, b, c;

printf("Solving ax”*2+bx+c=0, enter a, b, c: ");
scanf ("$1f ,%1f ,%1f", &a, &b, &c);

delta = bxb - 4.0*axc;

if (delta < 0.0)

{
printf ("No real roots!\n");
return 0;

}

delta = sqrt(delta)/(2.0%a);

rp = -b/(2.0%a);
printf ("Real roots: %1f, %1f\n", rp+delta, rp-delta);

return 0;

CINECA

CINECA 5 CAI

SuperComputing Applications and Innovation
Intro /* roots of a 2nd degree equation
. with real coefficients */
Basics #include <math.h>
oy erorem #include <stdio.h>
#include <stdbool.h>
Wrap Up 1
int main() {
More C double delta;
:_:‘s:i::g"c""“ double rp;
Compile and Link double a, b, c;
Robustness bool rroots = true;
Wrap Up 2
printf ("Solving ax”*2+bx+c=0, enter a, b, c: ");
Integers scanf ("$1f ,%1f ,%1f", &a, &b, &c);
Iteration
Test&Fi
5im;fs delta = bxb — 4.0%xaxc;
Wider Ints if (delta < 0.0)
Polishing {
Wi Uy delta = —delta;
More Flow rroots = false;
Recursion }
LoopsaArays delta = sqrt(delta)/(2.0%a);
More Ways
Wrap Up 4 rp = -b/(2.0%a);

if (rroots)
printf("Real roots: %1f, %1f\n", rp+delta, rp-delta);
else
printf ("Complex roots: %$1f+%1fI, %1f-%1fI\n", rp, delta, rp,

return 0;

And Now Make It More Complex!

delta);

CINECA

" SCAI More Types and Choices

SuperComputing Applicatic

Intro

Basics
1st Program
Choices

Wrap Up 1

More C

1st Function
Testing

Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

More Flow
Recursion
Loops&Arrays
More Ways
Wrap Up 4

bool represents logical values
e C99 only
e Actually an integer type in disguise
¢ And most types would work, if it's non zero then it's true

else has to match with an i£ (), and the immediately
following statement is executed when i£ () logical condition
is false

¢ Allows for choosing between alternative paths
¢ Again, a compound statement could be used
e Again, use proper indentation

By the way, variables can be initialized at declaration, as with
rroots

By the way, expressions can be passed as function
arguments, as to print£ ():
their value will be computed and passed to the function

CINECA

CINECA 5 CAI

SuperComputing Applications and Innovation

Intro

Basics
1st Program
Choices

Wrap Up 1

More C

1st Function
Testing

Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

More Flow
Recursion
Loops&Arrays
More Ways
Wrap Up 4

As Complex as Possible!

/* roots of a 2nd degree equation
with real coefficients x/
#include <math.h>
#include <stdio.h>
#include <complex.h>

int main()

{

double complex delta;

")

double complex zl, z2;

double a, b, c;

printf ("Solving ax*2+bx+c=0, enter a, b, c:
scanf ("%$1f ,%1f ,%1f", &a, &b, &c);

delta = csqrt(bxb — 4.0xaxc);

z1l = (-b+delta)/(2.0%a);

z2 = (-b-delta)/(2.0%*a);

printf ("Complex roots: $1f%+1fI, $1£f%+1fI\n",

return O;

creal (zl),

cimag(zl),

creal (z2),

cimag(z2));

CINECA

" SCAI complex Numbers and Other Stuff

SuperComputing Applicatic

Intro

Basics

1st Program

e 72 e C99 introduced the complex type

Wrap Up 1

More C e Include complex.h

T e All math and manipulation functions are defined

ey Use an expression to specify a constant, like 1.0-2.0+I
freetes ¢ In an older program that already defines its own complex
Integers type, use _Complex instead

Test&Fixes

Overflow

wens | o printf () doesn’t know about complex numbers, yet
¢ Output real and imaginary parts separately

Wrap Up 3
More Flow
Recursion
Loops&Arrays
More Ways

wwis ® By the way, the + in conversion specifiers forces output of the
sign, even if positive

CINECA

" SCAI Making It More Robust

SuperComputing Applicatio

Intro

Basics
1st Program
Choices

Wrap Up 1

More C

1st Function
Testing

Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

More Flow
Recursion
Loops&Arrays
More Ways
Wrap Up 4

e What if user inputs zeroes for a, or aand b?

e Let’s prevent these cases, inserting right after input:

if (a == 0.0)
{
if (b == 0.0)
if (¢ == 0.0)
fprintf (stderr, "A trivial identity!\n");
else
fprintf (stderr, "Plainly absurd!\n");
else
fprintf (stderr, "Too simple problem!\n");

return -1;

}
e Can you see the program logic?

e Try it now!

¢ Did you check that normal cases still work? Good.

CINECA

CINECA 5 CAI

SuperComputing Applicatic

Miscellaneous Remarks

Intro

sascs | ® Nested ifs can be a problem

ot e else always marries innermost i £

T ¢ Proper indentation is almost mandatory to sort it out

More C ¢ In doubt, put it in a compound statement: helps legibility too
1st Function y . R

- @ What'’s this fprintf (stderr, ...) stuff?

sy e fprint£f () allows to specify an output file

TiesEe e stderr is a special file, mandatory for error messages to the
Tengines user terminal

oo e By the way, print£ (...) is nothing more than

e fprintf (stdout, ...)

More Flow e And scanf (...) is nothing less than £scanf (stdin, ...)
e o Best practice: have your program always fail in a controlled
Wrap Up 4 Way

Convention: return negative values on failure

o Use different values for different failures, so that a

Unix shell script can test $? or $status and take action {9552

" SCAI A Program is Made of: |

SuperComputing Applicatio

Intro

Basi
wesan | © COmments

Choices

LIRS e Compiler disregards them, but humans do not

T @ o Please, use them

1o Puncton ¢ Do not abuse them, please

Compile and Link .

Robustness [] FunCtlonS

Wrap Up 2

T e One, at least: main ()

o s e Some of them come from the Standard Library

s e The proper header file must be #included to use them
Polishin .

wetes o Variables

More Flow ¢ Named memory locations you can store values into

Sal e Must be declared

Wrap Up 4

Variables declarations

¢ Give name to memory location you can store values into
e An initial value can be specified

CINECA

“ SCAI A Program is Made of: I

SuperComputing Applicatios

Intro

Basics

1st Program

Choices .

wezc o Expressions

More C e Compute values to store in variables
Tty e Compute values to pass to functions

Compile and Link

s o Statements

Integers o Units of work

Iteration .

e e Terminated by a ;

i e Compound statements (also said blocks)

Wrap Up 3

M:r:now e Group a sequence of statements in a single entity
e e e Wrapped in braces { }

i e Do not need a terminating ;

CINECA

5C A| Program Flow Control

SuperComputing Applicatio

Intro

Basics
1st Program
Choices
More T&C

More C

1st Function

Testing e return statements

Compile and Link

i e Complete execution of the current function
Integers e Allow to return back a result

Iteration

TowtaFbs e Conditional statements

Overflow

UL ¢ Allow conditional execution of code

Polishing

L ¢ Allow choice between alternate code paths

More Flow
Recursion
Loops&Arrays
More Ways
Wrap Up 4

CINECA

CINECA 5 CAI

SuperComputing Applicatio

Best Practices
Intro
Basics

Choices
More T&C

wrec | ® Use proper indentation

i e Compilers don't care about

Ao e Readers visualize flow control

Wrap Up 2 . .

| e Do non-regression testing

ntegers) .

e o Whenever functionalities are added
ot e Whenever you rewrite a code in a different way
Polishin -

wews e Fail in a controlled way

More Flow e Giving feedback to humans

A ¢ Giving feedback to the parent process
Wrap Up 4

CINECA

SCAI

SprCmplgAvpcaosa

PP4éd
CINECA

$i3t

CINECA 5 CAI

- O

Scientific and Technical Computing in C

Stefano Tagliaventi Isabella Baccarelli
CINECA Roma - SCAI Department

Rome, 3rd-5th May 2017

CINECA

5CA' Outline

s uper rc mpl ing Application:

® More C Basics
My First C Functions
Making it Correct
Compile and Link
Making it Robust
Wrapping it Up 2

PP4éd
CINECA

$i3t

CINECA 5 CAI

SuperComputing Applications and Innovation

Digital signal processing

Intro

Basics

1st Program

Choices x
More T&C
Wrap Up 1 o

More C

Compile and Link

|
Testing s 2 2 o
X
i

Robustness
Wrap Up 2 1

Integers

Iteration 05
Test&Fixes
Overflow
Wider Ints
Polishing ol
Wrap Up 3

y(x)

More Flow

Recursion

|
500

Loops&Arrays 2
More Ways
Wrap Up 4

H(x) =

sinc(x)

X

o

if | x]
if | x|
if ||

rect(x) =

— =

1 ifx>0,
0 ifx<O.

1 if x =0,
sin() - jf x £ 0.

NR NN N

. CINECA

= SCA

SuperComputing Applications and Innovation
Intro
#include <math.h>

Basics
1st Program
Choices //Heaviside function, useful in DSP
More T&C
Wrap Up 1 double theta (double x) {
More C if (x < 0.0)

return 0.0;
Testing return 1.0;
Compile and Link }
Robustness
Wrap Up 2 R R R

//sinc function, as used in DSP
Integers double sinc(double x) {
lteration const double pi = 3.141592653589793238;
Test&Fixes
Wier s x = xapi;
Polishing if (x == 0.0)
Wrap Up 3 return 1.0;
return sin(x)/x;

More Flow }
Recursion
;ﬁzﬁ:;?ys //generalized rectangular function, useful in DSP
Wrap Up 4 double rect (double t, double tau)

t = fabs(t);
tau = 0.5xtau;
if (t = tau)
return 0.5;
return theta(tau - t);

My First C Functions

{

CINECA

CINECA 5 CAI

HHE s Functions and Their Definition
Intro

Basics | o Like variables, functions have names and types
;:g;c;fic o Name must be an identifier

WD e Type is the type of the returned result

More C

i They have an associated compound statement, the function
Compile and Link “bodyu

Robustness
Wrap Up 2

Integers

Iteration

Functions have formal parameters

fessoes e Declared in a comma separated list, in parentheses
Ll o Each one is like a variable declaration

W8 ¢ In fact, they can be used like variables inside the function
More Flow
Loopsahrays
More Ways
Wrap Up 4

Parameters vs. arguments
e “Arguments” are the actual values passed to a function when
it is called
e Formal parameters are the names used in the function to
access these values CINECA

5CAI Function Parameters

SuperComputing Applicatio

Intro

Basics

‘ci“-":g""“ e What if two functions have parameters with identical names?
e ¢ No conflicts of sort, they are completely independent

More C

o What if a parameter has the same name of a variable
cmeadtik @|sewhere in the program?

¢ No conflicts of sort, they are completely independent

Wrap Up 2

Integers

Iteration

owion | Wait!

Wider Ints

wav o What happens on assignment to a parameter?
More Flow ¢ Does something change in the calling function?
Loopssrars e No!

More Ways
Wrap Up 4

Arguments are passed by value in C

e Parameters are like local variables, storing arguments values
o Feel free to change their content as needed!
CINECA

CINECA 5 CAI

SuperComputing Applicatic

Miscellaneous Remarks

Intro

Basics ® Ihe const qualifier

oo ¢ A const qualified variable can only be initialized
More T&C

Wiap Up 1 e Compilers will bark if you try to change its value
MereC | o Best practice: always give name to constants
g e Particularly if unobvious, like 1.0/137.0

Wiap o, e It also helps to centralize updates (well, not for 7)
Integers

Iteration

o’ @ fabs () returns absolute value of a floating point number
i e Remember to #include <math.h>

rap Up 3

Morg Flow

Lot o

return ends function execution returning a result

More Ways
Wrap Up 4

else isn’t always needed

¢ In this case, because return will end function execution
anyway CINECA

5CA| On to Testing

SuperComputing Applicatio

Intro

Basics

c:c e Let's put the code in a file named dsp. c

Vﬂ“:"”"; e Best practice: always put different groups of related functions
o puneion in different files

Conpiean ¢ Helps to tame complexity

Wiap Up 2 e You can always pass all source files to the compiler

Integers e And you'll learn to do better ...

m&TN e And let’s write a program to test all functions

weus © Best practice: always write a special purpose program to test

More Flow each subset of functions

Recursion

s ¢ Best to include in the program automated testing of all
More Ways

Wiap Up 4 relevant cases
e Let’'s do it by hand with I/O for now, to make it short

CINECA

T SCAI Try 1t Now!

SuperCompulmg Applications and Innovation

Testing

#include <math.h>

//Heaviside function, useful in DSP
double theta(double x) {

if (x < 0.0)
return 0.0;
return 1.0;

}

//sinc function, as used in DSP
double sinc(double x) {
const double pi = 3.141592653589793238;

X = xX*pi;

if (x == 0.0)
return 1.0;

return sin(x)/x;

}

//generalized rectangular function, useful in DSP
double rect (double t, double tau) {

t = fabs(t);
tau = 0.5xtau;
if (t = tau)
return 0.5; PPéé
return theta(tau - t); CINECA

’ $i3t

CINECA 5 CAI

SuperComputing Applications and Innovation

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C

1st Function

Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

More Flow
Recursion
Loops&Arrays
More Ways
Wrap Up 4

we collect DSP functions in dsp . ¢ source file
we want to test these functions
let’s write a test_dsp. c program:

#include <stdio.h>

int main() {

double t, tau;
printf ("Test DSP functions, enter t, tau: ");
scanf ("$1£f, %$1f", &t, &tau);

printf ("theta(%1f) = %1f\n", t, theta(t));
printf ("sinc(%1f) = %1f\n", t, sinc(t));

printf ("rect (%1£f,%1f) = %1f\n", t, tau, rect(t,tau));

return 0;

Testing DSP Functions

CINECA

CINECA 5 CAI

SuperComputing Applications and Innovation

Intro

Basics
1st Program
Choices.
More T&C
Wrap Up 1

More C
1st Function

Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

More Flow
Recursion
Loops&Arrays
More Ways
Wrap Up 4

e let’s build our test program putting all together:

user@cineca$> gcc test_dsp.c dsp.c

-o test_dsp

e —1m links the math library

e —o gives the name test_dsp to the executable

e Now run the program:

user@cineca$> ./test_dsp

Test DSP functions, enter t, tau:

theta(1.000000) = 0.000000
sinc(1.000000) = 654810880.000000

rect (1.000000,1.000000)

0.000000

1

.

1.

Testing DSP Functions (ll)

-1lm

CINECA

" SCAI Testing DSP Functions (I11)

SuperComputing Applications and Innovation

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function

Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

More Flow
Recursion
Loops&Arrays
More Ways
Wrap Up 4

results were incorrect since main function didn’t know
anything about our custom functions

compiler assumed they all take and return integer types
create and include a dsp . h header file in the main source
file

#include <stdio.h>
#include "dsp.h"

int main() {

now your compiler knows the right types for DSP functions
arguments and return values:

user@cineca$> ./test_dsp
Test DSP functions, enter t, tau: 1., 1.

theta (1.000000) = 1.000000
sinc(1.000000) = 0.000000
rect (1.000000,1.000000) = 0.500000

CINECA
much better ...

" SCAIl Header File: dsp.h

SuperComputing Applicatio

Intro

Basics #ifndef DSP_H

1st Program #define DSP_H

Choices double theta(double x);

More T&C double sinc(double x);

RUEEER double rect (double t, double tau);
More C #endif

1st Function

Compile and Link

s | * Function prototypes are function declarations: a ; replaces
Integers the function body

Iteration

TostFis e Parameters names are optional, but can be informative
Overflow
Wider Ints

e © IfDSP_H s already defined, preprocessor will remove the
e code before compiler is invoked
More Flow

Recursion e Best praCticeS .

Loops&Arrays
More Ways

Wiap Up 4 e Always play the above trick: complex programs cause multiple
inclusions of header files
o Use all capitals identifiers for preprocessor symbols
¢ Include dsp.hin dsp.c too: compiler will complain if you

. . CINECA
make them inconsistent

“ SCAI

SuperComputing Applications and Innovation
Intro
#include <math.h>
Basics #include "dsp.h"
1st Program
Choices //Heaviside function, useful in DSP
More T&C
Wrap Up 1 double theta (double x) {
More C if (x < 0.0)
1st Function return 0.0;

Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

More Flow
Recursion
Loops&Arrays
More Ways
Wrap Up 4

return 1.0;

}

//sinc function, as used in DSP
double sinc(double x) {

const double pi = 3.141592653589793238;

X = xX*pi;

if (x == 0.0)
return 1.0;

return sin(x)/x;

}

//generalized rectangular function, useful in DSP

double rect (double t, double tau)

t = fabs(t);
tau = 0.5xtau;
if (t = tau)
return 0.5;
return theta(tau - t);

My First C Functions

{

CINECA

" SCAI Debugging rect ()

SuperComputing Applicatio

Intro

mes * Everything fine with theta () and sinc(), but rect ()
e behaves unexpectedly
Wrap Up 1 . .
e If tauis zero, it always returns 1.0
More C . .
1t Funcion e If tauis non zero, it always returns 0.5
anne | Let’s reread it carefully
Wrap Up 2
imegers ® We wrote = where we actually meant ==
e e Assignments are expressions, so tau value is returned
Wier s e A zero means false to if ()
s e Anything different from zero means true to 1€ ()
Morg Flow
s @ Let’s fix it and test again!

More Ways
Wrap Up 4

Best practice:

¢ Always enable compiler warnings and pay attention to them

° CINECA

" SCAI My First C Functions

SuperComputing Applications and Innovation

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C

1st Function

Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

More Flow
Recursion
Loops&Arrays
More Ways
Wrap Up 4

#include <math.h>
#include "dsp.h"

//Heaviside function, useful in DSP
double theta (double x) {

if (x < 0.0)
return 0.0;
return 1.0;

}

//sinc function, as used in DSP
double sinc(double x) {
const double pi = 3.141592653589793238;

X = xX*pi;

if (x == 0.0)
return 1.0;

return sin(x)/x;

}

//generalized rectangular function, useful in DSP
double rect (double t, double tau) {

t = fabs(t);
tau = 0.5xtau;
if (t == tau)
return 0.5;
return theta(tau - t);

Fixed!

CINECA

" SCAI compiler Errors and Warnings

SuperComputing Applications and Innovation

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function

Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

More Flow
Recursion
Loops&Arrays
More Ways
Wrap Up 4

compiler stops on grammar and syntax violations
goes on if you write code semantically absurd, but
syntactically correct!
compiler can perform extra checks and report warnings
o very useful in early development phases
e pinpoint “suspect” code... sometimes pedantically
o read them carefully anyway
-Wall option turns on all-warnings on gec
if only we used it earlier ...

user@cineca$> gcc -Wall -o test_dsp test_dsp.c dsp.c -1lm
test_dsp.c: In function 'main’:

test_dsp.c:9: warning: implicit declaration of ’theta’
test_dsp.c:10: warning: implicit declaration of ’sinc’

test_dsp.c:11: warning: implicit declaration of ’rect’

dsp.c: In function 'rect’:

dsp.c:20: warning: suggest parentheses around assignment
used as truth value

something is an error for a selected C standard CINECA
e use —std=c99 to force C99 standard

1 SCAI Building a Program

SuperComputing Applicatio

Intro

Basics Creating an executable from source files is a three step
oo process:

waisi | e Pre-processing:

More C e each source file is read by the pre-processor

e substitute (#define) MACROs

omusiess e insert code per #include statements

Integers e insert or delete code according #ifdef, #if ...

e | ® compiling:

zli"h"fz e each source file is translated into an object code file

W Up3 ¢ an object code file contains global variables and functions
More Flow defined in the code, as well as references to external ones

Recursion
Loops&Arrays

wewae. | ® linking:
Wrap Up 4
o e object files are combined into a single executable file
e every symbol should be resolved

e symbols can be defined in your object files
e or in other object code (Standard or external libraries) CINECA

7 SCAI - compiling and Linking with GCC

SuperComputing Applications and Innovation

Intro e when you give the command:
Basics
:;f.‘;cr:gam user@cineca$> gcc test_dsp.c dsp.c -lm
More T&C
Wrap Up 1

K it's like going through three steps:

m‘;’u'fmim e pre-processing: with —E option compiler stops after this stage
bt e compiling: with —e compiler produces an object file . o without
e linking

::::Dgers user@cineca$> gcc -E dsp.c > dsp_cpp.c

Test&Fixes user@cineca$> gcc -E test_dsp.c > test_dsp _cpp.c

Overflow

ey e —E option, tells gec to stop after pre-process

e s e simply call cpp

More Flow e by default output is sent to standard output (use > to redirect to
Voo a file)

Wrap Up 4 e compiling sources

user@cineca$> gcc -c dsp_cpp.c

user@cineca$> gcc -c test_dsp _cpp.c

e —c option, tells gec to compile the source o IS

e an object file . o is produced from each source file

| P L LI T o) [R 1 JRLY 1 PR TR T [PR

7 SCAI - compiling and Linking with GCC

SuperComputing Applications and Innovation

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C
1st Function
Testing

Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

More Flow
Recursion
Loops&Arrays
More Ways
Wrap Up 4

¢ |n order to resolve symbols defined in external libraries, you

have to specify:

e which libraries to use (-1 option)
e in which directories they are (-L option)

e an example: let’s use the library
/home/user/mylibs/libfoo.a

user@cineca$> gcc filel.o file2.o -L/home/user/mylibs -1lfoo

e we just use the name of the library for -1 switch
e the DSP example:

user@cineca$> gcc dsp.o test_dsp.o -lm

e the sqgrt () function is contained in the 1ibm. a library

e the math library is part of the Standard C Library, thus resides

in a directory the compiler already knows about

CINECA

" SCAI Creating a library with GCC

SuperComputing Applications and Innovation

Intro

Basics o o create a library from object files filel.o file2.o
1 rogram . .

Cnis filen.o put them in an archive

e e e In our example

More C

1st Function

Testing user@cineca$> gcc —c dsp.c

Robusiness user@cineca$> ar curv libdsp.a dsp.o

Wrap Up 2 user@cineca$> ranlib libdsp.a

Integers

Iteration : i

Tearios e ar create the archive 1ibdsp. a containing dsp. o
W e ranlib generate index to archive

:“::;ow e Then compile the file containing the main function and link it
s with the new library

Loops&Arrays

More Ways
Wrap Up 4 .
user@cineca$> gcc test_dsp.c -L. -ldsp

e To include header files .h, specify
¢ in which directories they are (-I option) CINECA

" SCAI Managing Wrong Arguments

SuperComputing Applicatio

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C

1st Function
Testing

Compile and Link

Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

More Flow
Recursion
Loops&Arrays
More Ways
Wrap Up 4

#include <math.h>
double rect (double t, double tau) {

t = fabs(t);
tau = 0.5xfabs(tau); // fix for tau<0
if (t == tau)

return 0.5;

return theta(tau - t);

}

What if rect () is passed a negative argument for tau?
e Wrong results

e Taking the absolute value of tauis a possibility
e But not a good one, because:

e a negative rectangle width is nonsensical
e probably flags a mistake in the calling code CINECA
e and a zero rectangle width is also a problem

" SCAI Failing Predictably

SuperComputing Applications and Innovation

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C

1st Function
Testing

Compile and Link

Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

More Flow
Recursion
Loops&Arrays
More Ways
Wrap Up 4

#include <math.h>
#include <stdio.h>
#include <stdlib.h>

double rect (double t, double tau) {

if (tau <= 0.0) {
fprintf (stderr, "rect() invalid argument, tau: %1£f\n", tau);
exit (EXIT FAILURE);

}

t = fabs(t);

tau = 0.5xtau;

if (t == tau)
return 0.5;

return theta(tau - t);

e A known approach...
e with a new twist!
e return doesn’t terminate programs unless in main ()
e exit () from stdlib.h works everywhere
e -1 may be used instead of EXIT_FAILURE, but is less
portable

CINECA

CINECA 5 CAI

SuperComputing Applications and Innovation
Intro #include <math.h>
; #include <errno.h>
Basics
1st Program
Choices double rect (double t, double tau) {
More T&C
Wrap Up 1 if (tau <= 0.0) {
errno = EDOM;
More_c return 0.0;
1st Function
Testing }
Compile and Link
t = fabs(t);
Wrap Up 2 tau = 0.5xtau;
Integers iE (£ == taw)
,g return 0.5;
Iteration
Test&Fixes
Overflow return theta(tau - t);
Wider Ints }
Polishing
Wrap Up 3
moreFlow o And a prudent user would check it,
Recursion .
Loops&Ai i .
Lopssaras stdio.h, asin:
ys
Wrap Up 4 errno = 0;

a = rect(b, c);
if (errno)
{
perror("rect():");
//recovery action or controlled failure

}
e But there is more...

A More “Standard” Approach

and use perror () from

CINECA

5CAI Total Robustness

SuperComputing Applicatio

Intro

Your platform could support IEEE floating point standard

Basics

istProgam e Most common ones do, at least in a good part

wew: ® This means more bad cases:

More C ¢ one of the arguments is a NAN

‘l‘n‘fﬁm e both arguments are infinite (they are not ordered!)

W,a:upz e Best strategy: return a NAN and set errno in these bad
Integers cases

e e And do it also for non positive values of tau

e i « But then the floating point environment configuration should
W U be checked, proper floating point exceptions set...

More Flow

Recursion
Loops&Arrays
More Ways
Wrap Up 4

Being absolutely robust is difficult

Too advanced stuff to cover in this course

But not an excuse, some robustness is better than none

It's a process to do in steps

Always comment in your code bad cases you don’t CINECA
address yet!

" SCAI we Did Progress!

SuperComputing Applicatio

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C

1st Function
Testing

Compile and Link
Robustness

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

More Flow
Recursion
Loops&Arrays
More Ways
Wrap Up 4

Functions and their parameters

Arguments are passed to functions by value

A program can be subdivided in more source files
Header files help to do it

Preprocessor helps to write good header files
Function prototypes

const variables

Toif (), zerois false and non zero is true
Mistyping = for == is very dangerous

exit () terminates a program

errno is a standard way to report issues

And perror () translates each issue for humans CINECA

E’CAI Best Practices

SuperComputing Applicatic

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

Name constants, do not use magic numbers in the code
Group different sets of functionalities in different files
¢ Helps to separate concerns and simplifies work

More C
wmmcin o Plan for header files to be included more than once
ey e It happens, sooner or later and it's easy to take care of

Integers
Iteration
Test&Fixes

Use all capitals names to easily spot preprocessor symbols
B Test every function you write

Pl e Writing specialized programs to do it

s Use compilers and other tools to catch mistakes

Anticipate causes of problems

Find a rational way to react

Fail predictably and in a standard way

The road to robustness is a long walk to do in steps

Comment issues still to be addressed in your code CINECA

More Flow
Recursion
Loops&Arrays
More Ways
Wrap Up 4

SCAI

SprCmplgAvpcaosa

PP4éd
CINECA

$i3t

CINECA 5 CAI

- O

Scientific and Technical Computing in C

Stefano Tagliaventi Isabella Baccarelli
CINECA Roma - SCAI Department

Rome, 3rd-5th May 2017

CINECA

5CAI Outline

SuperComputing Applicatio

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C

1st Function
Testing

Compile and Link
Robustness
Wrap Up 2

Iteration

wre @ Integer Types and Iterating

Overflow

ier e Play it Again, Please
feetes Testing and Fixing it
More Flow

Hitting Limits

s Wider Integer Types
Polishing it Up
Wrapping it Up 3

CINECA

CINECA 5 CAI

SuperComputing Applicatic

Greatest Common Divisor

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

worec | ® Euclid’s Algorithm

e © Take two integers aand b
Compile and Link

Robustness 9 Let r < a mOd b
Wrap Up 2

o @® Leta—b
Hteration 9 Letb«r

Test&Fixes

Overtow @ If bis not zero, go back to step 2

Wider Ints

Polishing 6 ais the GCD

Wrap Up 3

More Flow
Recursion

wstas | ® | et’s implement it and learn some more C

More Ways
Wrap Up 4

CINECA

T SCAIl gepaLeum

Supercompuung Applications and Innovation

#include "numbertheory.h"

// Greatest Common Divisor
int ged(int a, int b) {

do {

int t = a % b;
a = b;

b = t;

} while (b != 0);

return a;

}

// Least Common Multiple
int lem(int a, int b) {

return axb/gecd(a,b);
}

PPeoe
CINECA

$i3t

" SCAI The Integer Type

SuperComputing Applicatio

Intro
Basics

int means that a value is an integer
1st Program
Snokes ¢ Only integer values, positive, negative or zero

el ¢ On most platforms, int means a 32 bits value, ranging from
More C —2%1 10 231 —1

Eb"g" Want to know the actual size?

Wrap Up2 e sizeof (int) will return the size in bytes of the internal
Integ binary representation of type int

fae Want to know more? #include <limits.h>

Overflow
Wider Ints

oo e INT_MAX is the greatest positive value an int can assume
B EED e INT_MIN is the most negative value an int can assume
Loopsahrays e These are preprocessor macros expanding to literal constants
e (more on this later...)

Want to convert to/from textual decimal representation?

e Use conversion specifier $d in print £ () format string
e Use conversion specifier $d in scanf () format string CINECA

" SCAI jteratingwithdo ... while ()

SuperComputing Applicatic

Intro

Basics e do

g statement

Wiap U 1 while (logical-condition)

i @ Executes statement

et and ink @® Evaluates logical-condition

otres © |[f logical-condition is true (i.e. not zero), goes back to 1
- O |f logical-condition is false, proceeds to execute the following
Test&Fixes COde

Overflow

werns o while (b) will also do, but while (b != 0) is more

Polishing

WiepUps readable and costs no more CPU work
More Flow

Recursion
Loops&Arrays

R e What's this variable declaration here?

b e t can only be used inside the block it is declared into
e |.e.its scope is limited to the block it is declared into
e It's not special to do. . .while (),it works in any
compound statement fosse

" SCAI tterating with while ()

SuperComputing Applicatio

Intro

Basics
1st Program
Choices
More T&C

Wrep Up 1 e while (/ogical-condition)
More C

1ot Furctlon Statement

Testing

S @ Evaluates logical-condition
Wrap Up 2

® If logical-condition is false (i.e. zero), goes to 5

Integers @ Executes statement

e @ Goes back to 1

i @ Skips statement and proceeds to execute the following code
Wrap Up 3

moreFlow ® while () isvery similartodo ... while (), butthe
Lomeanrrs latter always performs at least one iteration

Wrap Up 4

CINECA

1 SCAI Time for Testing

SuperComputing Applicatio

Intro
Basics
%:'FTZ: e Put the code in file numbertheory.c
:’:"”"; e Write a suitable numbertheory.h

ore
woien o \Write a program to test both ged () and 1em() on a pair of
s | iNteger numbers
Wrap Up 2
ntegers ® Remember using %4 for 1/0
Iteration
Ovrion e Testit:
N ¢ with pairs of small positive integers
More Flow ¢ with the following pairs: 15, 18; -15, 18; 15, -18;
Loopsahrays -15,-18;0,15;15,0;0,0
W Up

¢ In some cases, we get wrong results or runtime errors

e Euclid’s algorithm is only defined for positive integers

CINECA

" SCAIl GeD & LCM: Try It Now!

Supercompuung Applications and Innovation

#include "numbertheory.h"

// Greatest Common Divisor
int ged(int a, int b) {

do {

int t = a % b;
a = b;

b = t;

} while (b != 0);

Test&Fixes

return a;

}

// Least Common Multiple
int lem(int a, int b) {

return axb/gecd(a,b);
}

PPeoe
CINECA

$i3t

" SCEAIL Lers Fixit...

SuperComputing Applicatio

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C

1st Function
Testing

Compile and Link
Robustness
Wrap Up 2

Integers

Iteration

Overflow
Wider Ints
Polishing
Wrap Up 3

More Flow
Recursion
Loops&Arrays
More Ways
Wrap Up 4

Best way: generalize algorithm to the whole integer set
gcd(a, b) is non negative, even if a or b is less than zero

e Taking the absolute value of a and b using abs () will do
gcd(a,0) is |4

o Conditional statements will do
gcd(0,0)is 0

o Already covered by the previous item, but let’s pay attention to

lem ()

By the way, && is the logical AND of two logical conditions

Try and test it:

with pairs of small positive integers

with the following pairs: 15, 18; -15, 18; 15, -18;

-15,-18;0, 15;15,0; 0, 0

and with the pair: 1000000, 1000000 ossa

ws g A GCD & LCM: Dealing with 0 and
SuperComputing Applications and Innovation N e g at i Ve S

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C

1st Function
Testing

Compile and Link
Robustness
Wrap Up 2

Integers

Iteration

Overflow
Wider Ints
Polishing
Wrap Up 3

More Flow
Recursion
Loops&Arrays
More Ways
Wrap Up 4

#include <stdlib.h>
#include "numbertheory.h"

// Greatest Common Divisor
int ged(int a, int b) {

a
b

abs (a) ;
abs (b) ;

if (a == 0)
return b;
if (b == 0)
return a;

do {

b =t;
} while (b != 0);

return a;

}

// Least Common Multiple
int lem(int a, int b) {

if (a == 0 && b == 0)
return 0;
return axb/gcd(a,b);

CINECA

5CA| Beware of Type Ranges

SuperComputing Applicatio

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C

1st Function
Testing

Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes

Wider Ints
Polishing
Wrap Up 3

More Flow
Recursion
Loops&Arrays
More Ways
Wrap Up 4

axb/gcd(a,b) same as (axb) /ged(a,b)

What if the result of a calculation cannot be represented in

the given type?

e Technically, you get an arithmetic overflow
e Cis quite liberal: the result is implementation defined
o Best practice: be very careful of intermediate results

Easy fix: gcd(a, b) is an exact divisor of b

Try and test it:
¢ with pairs of small positive integers

¢ on the following pairs: 15, 18; -15, 18; 15, -18;

-15,-18;0, 15;15,0; 0,0
¢ with the pair: 1000000, 1000000
e and let’s test also with: 1000000, 1000001

CINECA

CINECA 5 CAI

SuperComputing Applications and Innovation
Intro
#include <stdlib.h>

Basics #include "numbertheory.h"
1st Program
Oigtzs // Greatest Common Divisor
More T&G int ged(int a, int b) {
Wrap Up 1
More C a = abs(a);
1st Function b = abs(b);
Testing
Compile and Link if (a == 0)
Robustness
Wrap Up 2 return b;

if (b == 0)
Integers return a;
Iteration
Test&Fixes do {
Wider Ints int t =a % b;
Polishing a = b;
Wrap Up 3 b =t;

} while (b != 0);
More Flow
Recursion return a;
Loops&Arrays
More Ways }
Wrap Up 4

GCD & LCM: Avoiding an Overflow

// Least Common Multiple
int lem(int a, int b) {

if (a == 0 && b == 0)
return 0;
return a*(b/gecd(a,b));

CINECA

© SCAI wider Integer Types

SuperComputing Applicatic

Intro
Basics

g | ® SOmetimes an integer type with a wider range of values is

Choices

More T&C needed

Wrap Up 1

morec | ® long int (commonly shortened to long)

g LONG_MAX and LONG_MIN from limits.h

iy %1d conversion specifier in print £ () and scanf£ ()

e But C Standard only says: can’t be narrower than an int

toraion In practice, it can be 32 or 64 bits wide, depending on platform
Cvtton and compiler

Integers

e e As usual, use sizeof (long int) to check

moreflow ® C99 long long int (shortened to long long)
o e LLONG_MAX and LLONG_MIN from limits.h

More Ways . s .

Viap Up e %11d conversion specifier in print £ () and scanf ()

e (C99 Standard requires: must be at least 64 bits wide!
e As usual, use sizeof (long long) to check if you got more

than that CINECA

" SCAI Integers from <stdint .h>

SuperComputing Applicatic

Intro

asics ® Exact-width integer types

1st Program

Gt o intN_t represents an integer with exactly N bits and is
Woap Up encoded as a two’s complement signed integer.

More C e e.g, int8_t denotes a signed integer type with a width of
Tty exactly 8 bits

Ftuanass e INTN_MIN and INTN_MAX are the limits of intN_t.

Wrap Up 2

Integers e [INT32_MIN, INT32_MAX] is the range of int32_t
e o Minimum-width integer types

o e int_leastN_t designates a signed integer type with a width of
Wap s at least N.

More Flow e Thus, int_least32_t denotes a signed integer type with a
Loopstarays width of at least 32 bits.

More Ways .

iap Up 4 e [INT_LEASTN_MIN, INT_ LEASTN_MAX] is the range of

int_leastN _t.

e Do you want to represent every signed integer for the
implementation ? Use intmax_t CINECA

CINECA 5 CAI

SuperComputing Applications and Innovation
Intro
#include <stdlib.h>

Basics #include "numbertheory.h"
1st Program
Clocss // Greatest Common Divisor
x&ﬁﬁri long long int gcd(long long int a, long long int b)
More C a = llabs(a);
1st Function b = llabs(b);
Testing
Compile and Link if (a == 0)
Robustness t b:
Wrap Up 2 _ return b;

if (b == 0)
Integers return a;
Iteration
Test&Fixes do {
CI long long int t = a % b;
Polishing a = b;
Wrap Up 3 b =t;

} while (b != 0);
More Flow
Recursion return a;
Loops&Arays } !
More Ways
Wrap Up 4

// Least Common Multiple
long long int lcm(long long int a, long long int b)

if (a == || b == 0)
return 0;
return a*(b/gecd(a,b));
}

GCD & LCM: Wider Integers

CINECA

"t SCAI call the Right Function!

SuperComputing Applicatio

Intro

Basics
1st Program

cece o \We had to call different functions for absolute value

et e labs () for long ints
More C

fsiFuncton e llabs() for long long ints
I:eosr::ﬁs and Link
Robustness i
e o e What if you call, say, 1abs () for int or long long values?
Integers . . .
teraton ¢ Automatic conversion between different types happens!
Test&Fixes .
Overtow e But a narrower type cannot represent all possible values of a
:Iolishil:\gS wider one
rap Up . .
More Flow e No problem when converting to a wider type
Feoison e At risk of overflow (i.e. implementation defined surprise) when
e X
More Ways converting to a narrower one

Wrap Up 4

e Best practice: enable compiler warnings or use tools like
lint to catch mistakes

CINECA

1 SCAI Unsigned Integer Types

SuperComputing Applicatic

intro e unsigned int (often shortened to unsigned)

Basics

e E— e Same width as an int
hoices . " . .
Mors Tac ¢ No negative values, only positive integers, but nearly twice the
Wrap Up 1 .
M° °c ones in an int
ore e
Bl e UINT MAX (from limits.h) is its greatest value
Testing . I .
Gampl and Link e Use conversion specifier $u in print£ () and scanf ()
Robustness
wwwz o And there are more unsigned types...
e e Like unsigned long and unsigned long long
vt ¢ ULONG_MAX and ULLONG_MAX from limits.h
Polting e %1luand $1lluin print£ () and scanf ()
Wrap Up 3 . .
More Fiow ® No arithmetic overflows!
o o C Standard requires arithmetic in any unsigned type to be
m; Lv:f exact modulo 2type width in bits

Beware of signed to/from unsigned conversions!
e Negative values cannot be represented in an unsigned
e And vice versa for the biggest half of unsigned values CINECA
e You are in for implementation defined surprises!

«o e Al Unsigne integers from
e <gtdint L h>

Intro

Basics | o Exact-width unsigned integer types

1st Program

o e uintN_t represents an integer with exactly N bits and is
e encoded as a two’s complement signed integer.

Mo e e.g, uint8_t denotes an unsigned integer type with a width
I:e;::ﬁe and Link of exaCtly 8 bits.

s e UINTN_ MAX is the maximum of uint N_t type.

Integers e UINT64_ MAX is the maximum of uint32_¢t,i.e. 2V —1

Iteration

menee o Minimum-width integer types

i e uint_leastN_t designates an unsigned integer type with a
et width of at least N.

e e Thus, uint_least32_t denotes an unsigned integer type
Voo W with a width of at least 32 bits.

Wrap Up 4

e UINT LEASTN_MAX is the maximum of uint_leastN t.

e Do you want to represent every unsigned integer for the

implementation ? Use uintmax_t BN

1 SCAI A couple of Issues

SuperComputing Applicatio

Intro

Basics

aee © Best practice: avoid useless work

More T&C

Tt e a*x (b/gecd(a,b)) causes error if both a and b are zero
More C e but it's useless anyway if a or b is zero, let's use | | (logical
‘(I;es(in.g : OR) to avoid it

ompile and Link

Robustness

Wrap Up 2

integers o Best practice: be loyal to C approach

fessoes ¢ You have now a ged () function that works on the widest
W available integer type

Wil e And you could use it safely for narrower types

More Flow « But at the cost of getting compiler warnings, even if you do it
e correctly

Wrap Up 4

e And this is not the C way (think of abs (), 1labs (), 11labs ())
e Let’s try an easy solution

CINECA

5CAI GCD Flavors

SuperCompulmg Applications and Innovation

Polishing

#include <stdlib.h>
#include "numbertheory.h"

// Greatest Common Divisor
long long int llgcd(long long int a, long long int b) {

a
b

llabs(a);
llabs (b);

if (a == 0)
return b;
if (b == 0)
return a;

do {
long long int t = a % b;
} while (b != 0);

return a;

}

long int lgcd(long int a, long int b) {
return (long int)llgcd((long long int)a, (long long int)b);
}

int ged(int a, int b) { PP44d
return (int)llged((long long int)a, (long long int)b); CINECA

’ $i3t

:—,C A| Getting in Control of Type
e Conversions

Intro

(type) expression

Basics

Fe e Is an explicit cast

WU e Forces conversion from expression type to specified one

More C ¢ And tells the compiler you know what you are doing

1st Function . .

mm o ® 1hesolution is not perfect

Wapns e If you are working with a lot of basic ints, you are spending a
Integers lot of work in type conversions and wider than necessary
Tonaoes arithmetic

Wa s e And there are more integer types we didn’t mention yet...
wews o \Writing specialized copies is not an option

e o ¢ If you want to change something, you have to make the same
Voo W change in different places

Wrap Up 4

e Best practice: avoid replicating similar code

The preprocessor can generate specialized function
copies for you el

i SCA GCD: 3 for the Price of 1

SuperComputing Applications and Innovation

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C

1st Function
Testing

Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints

Wrap Up 3

More Flow
Recursion
Loops&Arrays
More Ways
Wrap Up 4

#include <stdlib.h>
#include "numbertheory.h"

#define GGCD (TYPE,PREFIX) \
TYPE PREFIX ## gcd(TYPE a, TYPE b) { \
a = PREFIX ## abs(a); \
b = PREFIX ## abs(b); \
if (a == 0) \
return b; \

if (b == 0) \
return a; \

do {\

TYPE t = a % b; \
a =b; \

b =t; \

} while (b); \
return a; \

}

#define GLCM(TYPE,PREFIX) \
TYPE PREFIX ## lcm(TYPE a, TYPE b) { \
if (a == || b == 0)
return 0; \
return ax (b/PREFIX ## gcd(a,b)); \
}

GGCD (int,)
GGCD (long int, 1)
GGCD (long long int, 11)
CINECA
GLCM (int,)

GLCM(long int, 1)
GLCM(long long int, 11)

" SCAI Generating Code With Macros

SuperComputing Applicatic

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C

1st Function
Testing

Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints

Wrap Up 3

More Flow
Recursion
Loops&Arrays
More Ways
Wrap Up 4

Preprocessor macros
e Their content is substituted wherever the macros appear in
the code
e Every occurrence of each parameter is replaced by the text
given as argument
A macro must be a “one-liner”
e A\ at end of line is needed to continue on the next line
The ## operator concatenates two neighbouring tokens
¢ As if they had been typed with no space in between
Six functions are defined by macro expansion
int ged(int a, int b)
long int lgecd(long int a, long int b)
long long int llgcd(long long int a, long long int b)
int lcm(int a, int b)

long int llcm(long int a, long int b)
long long int lllcm(long long int a, long long int b)

Beware: debugging macros can be difficult FINECE

1 SCAI ¢11 Type-Generic Macros

SuperComputing Applicatio

Intro

Basics

sren o Sill, unlike in higher level languages, you have to remember
e e the right function name to invoke according to argument
Wrap Up 1

More C types

g

ewexst o C11 has a better way:

Wrap Up2 #define ged (A, B) _Generic((A), \

Integers int: ged \

Iteration long int: lgcd \

Test&Fixes long long int: llged \

Overflow) (&, B)

Wider Ints

Wrap Up 3 #define lcm(A, B) 7Gel’xericj(.x(llg):,lcm t

More Flow long int: llcm

Recursion long long int: lllcm \

Loops&Arrays) (&, B)

More Ways

Wrap Up 4

e Now you can use ged () and 1em () for all argument types

e Coming to a compiler near you...
CINECA

5CA| More Types and Flow Control

SuperComputing Applicatic

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C

1st Function
Testing

Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing

More Flow
Recursion
Loops&Arrays
More Ways
Wrap Up 4

There are many integer types
o With implementation dependent ranges
e Range limits are defined in 1imits.h
e sizeof (fype) can be used to know their size in bytes
Automatic type conversions take place
¢ And can be controlled with explicit casts
Different library functions for different types
o Ditto for print £ () and scanf () conversion specifiers
Behavior on integer overflow is implementation defined
e Some control is possible using parentheses
Variables can be declared inside a block
¢ Limiting access to the block scope

Sequence of statements can be iterated according to a
logical condition

Logical conditions can be combined using | | (OR) and
&& (AND) operators

CINECA

5CAI Best Practices

SuperComputing Applicatio

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

Do not rely on type sizes, they are implementation dependent

ore Think of intermediate results in expressions: they can
1 overflow or underflow

e o Unintended implicit conversions can take you by surprise
e Put compiler warnings and specialized tools to good use

Robustness
Wrap Up 2

Intggers

s | ® Avoid unnecessary computations
Overflow

wam ® Avoid code replication

woreFlow ® D€ consistent with C approach

Recursion
Loops&Arrays
More Ways
Wrap Up 4

Even if it costs more work

Even if it costs learning more C
Once again, you can do it in steps
You'll appreciate it in the future

CINECA

SCAI

SprCmplgAvpcaosa

PP4éd
CINECA

$i3t

CINECA 5 CAI

- O

Scientific and Technical Computing in C

Stefano Tagliaventi Isabella Baccarelli
CINECA Roma - SCAI Department

Rome, 3rd-5th May 2017

CINECA

5CAI Outline

s uper rc mpl ing Application:

@® More Flow Control and Types
Recursion and its Perils
More Loops, Arrays, ...
Where to go From Here
Wrapping it Up 4 ZILJEJE:

$i3t

CINECA 5 CAI

SuperComputing Applicatio

Fibonacci Numbers

Intro

Basics
1st Program
Choices

were | ® Fibonacci numbers are of interest in many fields

Wrap Up 1

More e Computer science: sorting, searching, algorithm analysis
L ¢ Finance: trading algorithms and strategies

Comple s ik e Simulation: pseudo random number generators

Wap Up2 e Data management: Fibonacci heaps, Fibonacci compression
Integers °

Iteration

Mathematics: number theory, graph theory
o, @ Defined by a recurrence relation

Wider Ints

Polishing n FO f— o
Wrap Up 3
O F=1
L ®r -
S Fn="Fn1+Fnz
More Ways
Wrap Up 4

e Let's implement this definition in C

CINECA

5CAI Recursive Fibonacci

Supercommmng Applications and Innovation

#include "fibonacci.h"

unsigned int fib(unsigned int n) {
unsigned int £n;

if (n < 2)
return n;

£n = fib(n-1) + f£ib (n-2);

return fn;

}

PPeoe
CINECA

$i3t

5CAI Recursion

SuperComputing Applicatio

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C

1st Function
Testing

Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

More Flow
Loops&Arrays

More Ways
Wrap Up 4

C supports recursive function calls
e Direct: £na () calls £na ()

e Indirect: £na () calls £nb (), that calls £nec (), that in turn
calls £na()...

How can it work?

Variables declared in a function are of automatic storage
class

o Automatically allocated when the function is called

e Automatically deallocated when the function exits

e Each call gets separate instances of the variables

¢ Ditto for function parameters

An elegant way to express some algorithms
e As long as recursion terminates at some point...

CINECA

" SCAI Tests and Performance

Intro
Basics
1st Program
Choices
et e Put the code in file fibonaceci.c
More€ o \Write a suitable fibonacci.h
smewsinc o Write a program to test £ib ()
“®®¥ o Remember using %u for I/0
Integers
Iteration
oo e Testit:
P e with integers from 0 to 10
e o with 45
More Flow
wewe o OK for small arguments, but gets really slow as the argument
rap Up
grows

CINECA

" SCAIl Recursive Fibonacci:

Supercompuung Applications and Innovation

#include "fibonacci.h"

unsigned int fib(unsigned int n) {
unsigned int £n;

if (n < 2)
return n;

£n = fib(n-1) + f£ib (n-2);

return fn;

}

Try It Now!

PPeoe
CINECA

$i3t

" SCAI Recursion Can Be Really Bad

SuperComputing Applicatic

Intro

gasics | ® Recursive Fibonacci helps explain recursion and why it can

e be bad

Wiap U 1 To compute £ib (n), £ib (n-1) and £ib (n-2) are called
But £ib (n-2) is also called to compute £ib (n-1) !

And £ib (n-3) is called three times...
And £ib (n-k) is called k times

itegers Bottom line, the number of calls grows exponentially

e | ® Memory can be an issue too!

Overflow

More C

1st Function
Testing

Compile and Link
Robustness
Wrap Up 2

e e The deepest chain of recursive calls has n levels

Wiap Up e What if the function uses many variables?

More Flow e Particularly when a limited memory area is used as a stack for
Lossgaren automatic variables, as most implementations do

Wrap Up 4

e Best practices:

e avoid recursion if not strictly necessary
e and pay attention to memory usage
e Let’s do better CINECA

5CA' lterative Fibonacci

Supercompuung Applications and Innovation

#include "fibonacci.h"

unsigned int fib(unsigned int n) {
unsigned int fn = 1;
unsigned int fnml = 0;

if (n < 2)
return n;

for (int i=0; i<n-1; i++) {
unsigned int fnpl = fn + fnml;
fnml = fn;
fn = fnpl;

}

return f£n;
Loops&Arrays }

PPeoe
CINECA

$i3t

CINECA 5CAI for (; ;

SuperComputing Applicatio

Intro . . ars .

seics | ® for (init-expr; logical-condition; incr-expr)

IR Statement

WU same as

More C init-expr ;

1st Function . iy

wm | while (logical-condition)

Hgbups(::ss {

Wrap Up 2

|ntegers Statement

Iteration .

Levselﬁlj:les InCI’-eXpr;

Wider Ints }

Polishing

Wrap Up 3 oy . . [l

M° i e But it's more compact and makes iteration bounds explicit in
ore Flow

Recursion a Single Iine

More Ways
Wrap Up 4

e What's i++7?
¢ A shorthand for expression (i = i + 1)
e And --i is a shorthand for expression (i = i - 1) CINECA
e —— and ++ are operators with side effects

" SCAI terative Fibonacci: Try It Now!

Supercompuung Applications and Innovation

#include "fibonacci.h"

unsigned int fib(unsigned int n) {
unsigned int fn = 1;
unsigned int fnml = 0;

if (n < 2)
return n;

for (int i=0; i<n-1; i++) {
unsigned int fnpl = fn + fnml;
fnml = fn;
fn = fnpl;

}

return f£n;
Loops&Arrays }

PP4éd
CINECA

$i3t

5CA| More Tests, and Robustness

SuperComputing Applicatio

Intro

Basics

%ﬂn"’;m e Test the new version:

Wizp Up 1 ¢ with integers from 0 to 10
More C e with 45, then 46, 47, and 48

Testing
Compile and Link

e o Much faster! but...

Integers e £ib (48) isless than £ib (47)!

e e The range of unsigned int has been exceeded
Wiar s e Let’s take care in a standard way

o U

MoeFow o When a result exceeds the range of the function type
More Ways e Set errno to ERANGE

Wrap Up 4

e And return a value that makes sense
e The maximum representable value makes sense

CINECA

m SCAN lterative Fibonacci: More

SuperComputing Applications and Innovation

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C

1st Function
Testing

Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

More Flow

Recursion

More Ways
Wrap Up 4

#include <limits.h>
#include <errno.h>
#include "fibonaceci.h"

#define UINT MAX FIB N 47

unsigned int fib(unsigned int n) {
unsigned int fn = 1;
unsigned int fnml = 0;

if (n > UINT MAX FIB N) {
errno = ERANGE;
return UINT_MAX;

if (n < 2)
return n;

for (int i=0; i<n-1; i++) {
unsigned int fnpl = fn + fnml;
fnml = fn;
fn = fnpl;

return fn;

Robust

CINECA

5CAI More About Performance

Intro
Basics

1st Program
Choices

. e The new version is much faster

Wrap Up 1 . . .
oo « In a single call, each term in the sequence is evaluated only
1st Function once

Testing
cmesitn o But still less than optimal
o e Aterm in the sequence can be evaluated again and again in

Int: .

o different calls

Test&Fixes

Overflow

Wltfer.lms

wwia o Possible solution:

More Flow e let’s build an indexed table of Fibonacci numbers,
e and let £ib () return entries from it

L e we need to index the table with £ib () argument

e we need the table to persist across function calls

CINECA

“ SCAI

SuperComputing Applications and Innovation

Intro

Basics #include <limits.h>

ésh'?mgmm #include <errno.h>

i

Mo:ec'er;C #include "fibonaceci.h"

Wrap Up 1
#define UINT MAX FIB N 47

More C

1st Function unsigned int FibonacciNumbers[UINT MAX FIB N+1];

Testing

Compile and Link . . .

B void fibinit (void) {

Wrap Up 2 int i;

"“?Qers FibonacciNumbers[0] = 0;

ieration FibonacciNumbers[1l] = 1;

Test&Fixes

Overflow

Wider Ints for (i = 2; i <= UINT MAX FIB N; ++i)

Polishing

Wrap Up 3

More Flow !

Recursion :
unsigned int fib(unsigned int n)

More Ways if (n > UINT_MAX FIB N) {

Wrap Up 4 errno = ERANGE;

FibonacciNumbers[i] = FibonacciNumbers[i-1] + FibonacciNumbers[i-2];

return UINT_MAX;
}

return FibonacciNumbers[n];

Fast Fibonacci

{

CINECA

5CA| Arrays

SuperComputing Applicatio

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C

1st Function
Testing

Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

More Flow

Recursion

More Ways
Wrap Up 4

e some_type nameln]

declares a collection of n variables of type some_type
the variables are laid out contiguously in memory

each variable can be read or written using the syntax
name [index]

where index is an integer expression ranging from 0 to n-1

e Variables declared at file scope

Variables declared outside of any function

Persist for the whole program life

By default, they can be accessed by any function...
...except where the same name is used for a parameter or
local variable

e n can also be an expression, as long as it can be evaluated
at compile time

5CA| Avoiding types

SuperComputing Applicatio

Intro

Basics

1st Program

Choices

More T&C

Wrap Up 1

morec o What type is void?

ol and ik e |tis an incomplete type that cannot be completed.
s o As areturn type, it tells a function returns nothing
e o As a parameter, it tells no arguments are accepted
:M& o Why there is no return statement in £ibinit () ?
Lol ns e |t returns nothing and completes at the closing brace
Wrap Up 3

woreriow ® THe only object that can be declared with void is a pointer.
Recursion More on this Iater-

More Ways
Wrap Up 4

CINECA

" SCAI Hiding Implementation Details

SuperComputing Applicatic

Intro

e Array FibonacciNumbers is by default visible to the whole

Basics

S program

et e |t could be accidentally modified or clash with another variable
T of the same name

o paneten e Declaring it static will make it invisible to other modules

Compile and Link

meres @ fibinit () must be called in advance for £ib () to return
rap Up
correct results

Integers

';:;f;jzies o What if the call is omitted? Let’s automate the process

o e Declaring it static, we make a function invisible to other
N modules

More Flow e A variable declared in a function “disappears” when function
fecursien returns, static will make it persist from call

W Up to call

e Best practices:

¢ always hide irrelevant implementation details

. , L . R CINECA
o if possible, automate initialization mechanisms

" SCAIl Fast Fibonacci: More Robust

SuperComputing Applications and Innovation

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C

1st Function
Testing
Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

More Flow

Recursion

More Ways
Wrap Up 4

#include <limits.h>

#include <stdbool.h>

#include <errno.h>

#include "fibonacci.h"

#define UINT MAX FIB N 47

static unsigned int FibonacciNumbers[UINT MAX FIB N+1];

static void fibinit (void) {

int i;
FibonacciNumbers[0] = 0;
FibonacciNumbers[l] = 1;

for (i = 2; i <= UINT MAX FIB_N; ++i)
FibonacciNumbers[i] = FibonacciNumbers[i-1] + FibonacciNumbers[i-2];

unsigned int fib(unsigned int n) {
static bool doinit = true;

if (doinit) {
fibinit () ;
doinit = false;
}
if (n > UINT_MAX FIB N) {
errno = ERANGE;
return UINT_MAX;
}

return FibonacciNumbers[n];

CINECA

“ SCAI More Speed ...

SuperComputing Applicatio

Intro

¢ More efficiency is possible

Basics . .

IR e The first £ib () call is slower

et ¢ In subsequent calls, the call itself costs more than actual
T @ operations in £ib ()

1o Puncton ¢ No known plans to change Fibonacci numbers

SO e Let’s initialize the array with a list of precomputed values
Heetpe e And make it const to forbid assignments

Integers

Iteration .

wenes o Pay attention to those capital U!

P e Tell the compiler the type is unsigned int

:’:pup; e Use L for long, LL for long long, UL for unsigned long,
P ULL for unsigned long long

Loops&Arrays

e |Lowercase letters also do, but are less readable
e Best practice:

e rules assigning types to literal constants are complicated
¢ and differ from C89 to C99
¢ always make literal constants types explicit

Wrap Up 4

CINECA

CINECA 5 CAI

fastestfibonacci.c

SuperComputing Applications and Innovation
Intro
Basics
1st Program
Choices
More T&C
Wrap Up 1
More C
1st Function #include "fastestfibonacci.h"
Testing
Compile and Link const unsigned int FibonacciNumbers[UINT_MAX FIB N+1] =
:;::sgrf { 0u, 1U, 1U, 2U, 3U, 5U, 8U, 13U, 21U, 34U, 55U,
89U, 144U, 233U, 377U, 610U, 987U, 1597U, 2584U,
Integers 4181U, 6765U, 10946U, 17711U, 28657U, 46368U,
Iteration 75025U, 121393U, 196418U, 317811U, 514229U,
TestaFixes 832040U, 1346269U, 2178309U, 3524578U, 5702887U,
Overflow 9227465U, 14930352U, 24157817U, 39088169U, 63245986U,
‘g’;l‘i‘:;i:‘“ 102334155U, 165580141U, 267914296U, 433494437U, 701408733U,
W,apug3 1134903170U, 1836311903U, 2971215073U
}i
More Flow
Recursion
Loops&Arrays
Wrap Up 4

CINECA

il SCAI fastestfibonacci.h

‘SuperComputing Applications and Innovation

More Ways

#ifndef FASTESTFIBONACCI_H

#define FASTESTFIBONACCI_H

#define UINT MAX FIB N 47

extern const unsigned int FibonacciNumbers[UINT_MAX FIB N+1];
#define fib(n) (FibonacciNumbers[(n)])

#endif

PP4éd
CINECA

$i3t

“ SCAI | using Some “Magic’...

SuperComputing Applicatic

Intro

Basics

extern tells the compiler that FibonacciNumbers array is
Craces a global symbol

More T&C
Wrap Up 1

More€ e fib () became a preprocessor macro:

Gompe and L e its body is textually substituted wherever £ib () appears
vy e n occurrences are replaced by the text given as argument
integers ¢ In macros, do not spare parentheses

e e £ib () could appear inside an expression

Polating. e Macro parameter n could be an expression as well
:’:::;ow e Parentheses ensure correct order of subexpression

e evaluations

Loops&Arrays

Wrap Up 4

As fast as possible, but we lost something
e Robustness: where is error checking?
e Preprocessor macros are text replacements
e £ib() is not a real function, no statements can be inserted'NE<4

ws & A] fastestfibonacci.h, Release
SuperComputing Applications and Innovation 1 . 5

Intro

Basics

1st Program

Choices

More T&C

Wrap Up 1

More C #ifndef FASTESTFIBONACCI_H
1t Function X

Testing #define FASTESTFIBONACCI_H
Compile and Link

Robustness #include <limits.h>

Wrap Up 2 #include <errno.h>

Integers
Iteration
Test&Fixes
Overflow extern const unsigned int FibonacciNumbers[UINT_MAX FIB N+1];
Wider Ints
Polishing
Wrap Up 3

#define UINT MAX FIB N 47

#define fib(n) ((n)>UINT_MAX FIB_ N ? (errno = ERANGE , UINT_MAX) \
FibonacciNumbers|[(n)])

More Flow

Recursion #endif

Loops&Arrays

Wrap Up 4

CINECA

1 SCAI | and More C “Magic’...

SuperComputing Applicatio

Intro

Basics

In C is possible to do in an expression what is usually done
oo with statements

More T&C
Wrap Up 1

More operators:

More C

e e cond ? exprl : expr2 evaluates expr1 or expr2 if cond is true
Ftuanass or false respectively

et e exprl, expr2 evaluates both operands but returns the value
Integers

Heraon of the second one

S

mem ® Again, a macro must be a “one-liner”

Wrap Up 3

ore Flow e A\ at end of line is needed to continue on the next line

Recursion
Loops&Arrays

But a macro has no parameter types
e Thus no argument type checking
e Thus n could be negative...
o Let’s play the same trick with ? : and ,
« In a different way, to make it more readable o

Wrap Up 4

ws & A] fastestfibonacci.h, Release
SuperComputing Applications and Innovation 2 . O

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C

1st Function #define FASTESTFIBONACCI_H
Testing

el el #include <limits.h>

Robustness #include <errno.h>
Wrap Up 2

#ifndef FASTESTFIBONACCI_H

Integers #define UINT_MAX FIB N 47
Iteration

Test&Fixes extern const unsigned int FibonacciNumbers|[UINT_MAX FIB N+1];
Overflow
‘ﬁ';ﬁ:,:i'n’;s #define _ONLYPOSN fib(n) ((n)>UINT MAX FIB N ? (errno = ERANGE

Wrap Up 3 : FibonacciNumbers[(n)])

, UINT_MAX) \

More Flow #define fib(n) ((n)<0 ? (errno = EDOM, 0) : _ONLYPOSN_fib(n))
Recursion

Loops&Arrays #endif

Wrap Up 4

CINECA

5CAI ... at a Price

SuperComputing Applicatio

Intro

Basics (] CompleXItY'

1st Program

cecs o Macros can ...

e e be nested

Mo e generate code for you

g e play elegant tricks

EE . bt

Hee® e You loose type checking of arguments

Ot ¢ An expression passed for n may be evaluated more than once
i e And this is particularly bad if expression contains operators
e with side effects like = or ++

More Flow

Recursion

westies o Best practices:

Wrap Up 4

e use macros only if you really need them

o force correct calculations with parentheses

e avoid , operator, it's confusing, and at least enclose its
expression in parentheses EANECA

" SCAI Really Big Flbonacci Numbers

SuperComputing Applicatic

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C

1st Function
Testing

Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow

Wider Ints
Polishing

Wrap Up 3
More Flow
Recursion

Loops&Arrays

Wrap Up 4

unsigned type range usually allows for 47 exact terms to be
computed

unsigned long long will guarantee you at least 93 exact
terms

Want more headroom and all digits?
e Use a multiple precision library like GMP
Just need a wider range and the most significant digits?
o Use floating point types
o Atypical IEEE double will give you 53 bits for the mantissa
(i.e. ~17 decimal digits) and ranges up to 103%8
e Along double, on an x86 CPU, will give you 64 mantissa
bits (i.e. ~20 decimal digits) and ranges up to 104932

CINECA

" SCAI A possible Range Extension

SuperComputing Applications and Innovation
Intro #include <math.h>
) #include <errno.h>
Basics #include "fibonacci.h>
1st Program
Choices . : :
More T&C long double fibl (unsigned int n) {
Wrap Up 1 unsigned int f£n;
More C errno = 0;
1st Function £n = £ib(n);
Testing i£ L
Compile and Link if (errno == ERANGE) ({
Robustness. const long double s5 = sqrtl(5.0);
Wrap Up 2 long double nl = (long double)n;
I!::Zg"ers errno = 0;
Test&Fixes return (powl((1.0+s5)%0.5, nl) + powl((1.0-s5)*0.5, nl))/s5;
Overflow }
Wider Ints
Polishing return (long double) fn;
Wrap Up 3 }
More Flow
Recursion

wwanms | ® Galls exact one for small values

wss o Should exact one fail, computes (in finite precision!) a closed

CE o (=9)" o 14V5
form: F, = 5 =5
¢ Robustness for free:
e Argument is guaranteed to be a positive integer

¢ Relies on normal floating point behavior

CINECA

" SCAIL More and More C

SuperComputing Applicatio

Intro

gasics ® More types:

Fe e unsigned integers and 1long double

Wiap U 1 e void

More C o types of integer literal constants

g e careful mixing of different types

e e and arrays!

Wrap Up 2

megers ® More flow control

Tonaoes e recursion (if really needed)

Wir e e while () and for (;;)

Polishing

wews o More operators:

e o+, —— 2

Sal e and , (if really needed)
e How to make a local variable outlast a function call
e How to control variable and function “visibility”
e Something about preprocessor macros e

5CAI Best Practices

SuperComputing Applicatio

Intro

Basics
1st Program
werc Avoid recursion if possible
Wrap Up 1
- e May impact performance
ot neton e May consume a lot of memory
s ® Hide implementation details
Wrap Up 2 .
Integers e They are often irrelevant
foraton e Exposing them paves the way to troubles
werns | ® Always give explicit types to literal constants
Polishing .
Wiep Up3 ¢ Unless the value can be represented in all types
MoreFlew o Use macros only when really needed
Mo Wys e And parenthesize pedantically
[]

For robustness, rely on the language whenever possible

CINECA

SCAI

SprCmplgAvpcaosa

PP4éd
CINECA

$i3t

“ SCAI Rights & Credits

SuperComputing Applicatic

Intro

Basics
1st Program
Choices
More T&C
Wrap Up 1

More C

1st Function
Testing

Compile and Link
Robustness
Wrap Up 2

Integers
Iteration
Test&Fixes
Overflow
Wider Ints
Polishing
Wrap Up 3

More Flow
Recursion
Loops&Arrays
More Ways

These slides are ©CINECA 2016 and are released under
the Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)
Creative Commons license, version 3.0.

Uses not allowed by the above license need explicit, written

permission from the copyright owner. For more information
see:

http://creativecommons.org/licenses/by-nc-nd/3.0/

Slides and examples were authored by:

Michela Botti

Federico Massaioli

Luca Ferraro

Stefano Tagliaventi giNECA

	Introduction
	C Basics
	My First C Program
	Making Choices
	More Types and Choices
	Wrapping it Up 1

	More C Basics
	My First C Functions
	Making it Correct
	Compile and Link
	Making it Robust
	Wrapping it Up 2

	Integer Types and Iterating
	Play it Again, Please
	Testing and Fixing it
	Hitting Limits
	Wider Integer Types
	Polishing it Up
	Wrapping it Up 3

	More Flow Control and Types
	Recursion and its Perils
	More Loops, Arrays, ...
	Where to go From Here
	Wrapping it Up 4

