
Scientific and Technical Computing in C++
Part 2 A C with Class

Luca Ferraro Mario Tacconi
CINECA Roma - SCAI Department

Rome, November 2016

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

Outline

1 Do you Need an Object?
Random Number Generators
A Classy Solution
Classes at Work
More Touches of Class
Polishing it Up
Wrapping it Up

2 Inheritance and Polymorphism

3 Class I/O

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

Lagged Fibonacci RNGs

• Let’s imagine we have a simple-minded implementation of a
pretty good RNG

• Defined by the recurrence relation:
xi = (xi−l + xi−k) mod 2M

• For specific, known (k , l) pairs the sequence has a period of
(2k − 1)2M−1 terms

• Not necessarily the best RNG, but good enough for our
purposes

• We want to make it better:
1 allow for many independent generators in a program
2 give users control on length (i.e. occupied memory, i.e. k)
3 hide implementation details (i.e. avoiding users ‘accidentally’

fiddling with internals)

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

Simple Minded Lagged Fibonacci
RNG

// Lagged Fibonacci RNG
// Possible (l, k) pairs could be, among others: (24, 55), (31, 73), (27,98)
// See Knuth, The Art of Computer Programming, v. 2, p. 26ff

#include <stdlib.h>
#include "lfrng.h"

#define LFRNG_K 55
#define LFRNG_L 24

static unsigned lfhstr[LFRNG_K];
static unsigned lfimk;
static unsigned lfiml;

void lfrng_init() {
int i;

for(i=0; i<LFRNG_K; ++i)
lfhstr[LFRNG_K-i-1] = rand();

lfimk = LFRNG_K-1;
lfiml = LFRNG_L-1;

}
unsigned lfrng_draw() {

unsigned r;

r = lfhstr[lfimk] + lfhstr[lfiml];
lfhstr[lfimk] = r;
if (lfimk-- == 0) lfimk = LFRNG_K-1;
if (lfiml-- == 0) lfiml = LFRNG_K-1;
return r;

}

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

A C Solution: lfrng.h

• Let’s define an opaque type, without publishing its internals
• Let’s restrict its manipulation to functions in a sober API

• Users will only access what’s published in the lfrng.h
header:
#ifndef LFRNG
#define LFRNG

struct LFRNG_inn;

typedef struct LFRNG_inn *LFrng;

LFrng lfrng_create(unsigned n);
void lfrng_init(LFrng g);
unsigned lfrng_draw(LFrng g);
void lfrng_destroy(LFrng g);
#endif

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

A C Solution: lfrng.c part 1 of 3

// Multiple Lagged Fibonacci RNGs
// Possible (l, k) pairs could be, among others: (24, 55), (31, 73), (27,98)
// See Knuth, The Art of Computer Programming, v. 2, p. 26ff

#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include "lfrng.h"

#define LFRNGL_K 98
#define LFRNGL_L 27
#define LFRNGM_K 73
#define LFRNGM_L 31
#define LFRNGS_K 55
#define LFRNGS_L 24

struct LFRNG_inn {
unsigned k, l;
unsigned imk, iml;
unsigned *hstr;

};

continues on next slide...

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

A C Solution: lfrng.c part 2 of 3

LFrng lfrng_create(unsigned n) {
LFrng g;

g = calloc(1, sizeof(*g));
if (!g) {

fprintf(stderr, "Not enough memory!\n");
exit(-2);

}

g->k = LFRNGL_K;
g->l = LFRNGL_L;
if (n <= LFRNGS_K) {

g->k = LFRNGS_K;
g->l = LFRNGS_L;

} else if (n <= LFRNGM_K) {
g->k = LFRNGM_K;
g->l = LFRNGM_L;

} else if (n > LFRNGL_K)
errno = EDOM;

g->hstr = calloc(g->k, sizeof(unsigned));

if (!g->hstr) {
fprintf(stderr, "Not enough memory!\n");
exit(-2);

}

return g;
}

continues on next slide...

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

A C Solution: lfrng.c part 3 of 3

void lfrng_destroy(LFrng g) {
free(g->hstr);
free(g);

}

void lfrng_init(LFrng g) {
int i;

for(i=0; i<g->k; ++i)
g->hstr[g->k-i-1] = rand();

g->imk = g->k-1;
g->iml = g->l-1;

}

unsigned lfrng_draw(LFrng g) {
unsigned r;

r = g->hstr[g->imk] + g->hstr[g->iml];
g->hstr[g->imk] = r;
if (g->imk-- == 0) g->imk = g->k-1;
if (g->iml-- == 0) g->iml = g->k-1;

return r;
}

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

Making It More Robust

• User guide:
1 create a LFrng using lfrng_create()
2 initialize it using lfrng_init()
3 call lfrng_draw() on it, from 1 to (2k − 1)231 − k times
4 destroy it using lfrng_destroy()

• Wait! What if step 2 is forgotten?
• a sequence of one term: 0
• separate initialization makes little sense

• Let’s fix it

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

A C Solution: lfrng.c part 2 of 3
Revised

LFrng lfrng_create(unsigned n) {
LFrng g;

g = calloc(1, sizeof(*g));
if (!g) {

fprintf(stderr, "Not enough memory!\n");
exit(-2);

}

g->k = LFRNGL_K;
g->l = LFRNGL_L;
if (n <= LFRNGS_K) {

g->k = LFRNGS_K;
g->l = LFRNGS_L;

} else if (n <= LFRNGM_K) {
g->k = LFRNGM_K;
g->l = LFRNGM_L;

} else if (n > LFRNGL_K)
errno = EDOM;

g->hstr = calloc(g->k, sizeof(unsigned));

if (!g->hstr) {
fprintf(stderr, "Not enough memory!\n");
exit(-2);

}

lfrng_init(g);

return g;
}

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

Adding Functionalities

• In need of a floating point RNG? Just include limits.h
and add:
double lfrng_frand(LFrng g) {

return lfrng_draw(g)/(double)UINT_MAX;
}

• Busy with heads and tails? Include bool.h too and add:
bool lfrng_toss(LFrng g) {

return lfrng_draw(g) > (UINT_MAX/2);
}

• And so on...

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

Still Dissatisfying

• OK, init is automated, but what if creation is forgotten?
• A segmentation fault, if we are lucky

• And what if the call to lfrng_destroy() is ‘omitted’?
• A memory leak, if the program does it in a cycle

• And what if an array of RNGs is needed?
• Each one must be created and destroyed explicitly

• lfrng_draw(), lfrng_frand(), lfrng_toss(): what
if the wrong one is called?

• A very surprising bug!

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

lfrng.h

// Multiple Lagged Fibonacci RNGs
// See Knuth, The Art of Computer Programming, v. 2, p. 26ff
#ifndef LFRNG_H
#define LFRNG_H

namespace LFRNG {

class rng {
unsigned k, l;
unsigned imk, iml;
unsigned *hstr;

const static unsigned l_k = 98;
const static unsigned l_l = 27;
const static unsigned m_k = 73;
const static unsigned m_l = 31;
const static unsigned s_k = 55;
const static unsigned s_l = 24;

public:
rng(unsigned n);
~rng();
void init();
unsigned draw();

};

} //namespace LFRNG

#endif

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

Enter class

• class defines a data type that ties together:
• data members
• function members (a.k.a. methods)

• By default, class members are private
• I.e. only accessible in the class scope
• public members must be explicitly tagged as such
• private members may also be tagged explicitly, if you like
• C++ structs are actually the same, only the default

accessibility differs (default to public accessibility)

• Data members can be const static:
• as usual, const means it cannot be writen to
• static means there is one and only one instance of the

member, common to all instances of the class
• it’s the preferred way of defining class specific constants

without polluting other scopes

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

lfrng.h

// Multiple Lagged Fibonacci RNGs
// See Knuth, The Art of Computer Programming, v. 2, p. 26ff
#ifndef LFRNG_H
#define LFRNG_H

namespace LFRNG {

class rng {
private:

unsigned k, l;
unsigned imk, iml;
unsigned *hstr;

const static unsigned l_k = 98;
const static unsigned l_l = 27;
const static unsigned m_k = 73;
const static unsigned m_l = 31;
const static unsigned s_k = 55;
const static unsigned s_l = 24;

public:
rng(unsigned n);
~rng();
void init();
unsigned draw();

};

} //namespace LFRNG

#endif

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

lfrng.h: struct Equivalence

// Multiple Lagged Fibonacci RNGs
// See Knuth, The Art of Computer Programming, v. 2, p. 26ff
#ifndef LFRNG_H
#define LFRNG_H

namespace LFRNG {

struct rng {
rng(unsigned n);
~rng();
void init();
unsigned draw();

private:
unsigned k, l;
unsigned imk, iml;
unsigned *hstr;

const static unsigned l_k = 98;
const static unsigned l_l = 27;
const static unsigned m_k = 73;
const static unsigned m_l = 31;
const static unsigned s_k = 55;
const static unsigned s_l = 24;

};

} //namespace LFRNG

#endif

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

Methods

• Must be declared inside the class declaration
• Can access all members of the class
• Are declared like regular functions

• Except for two special ones, with no return type
• The constructor:

• is named like the class
• is automatically invoked when a variable of the class type is

created
• The destructor:

• is named ~classname
• is automatically invoked when a variable of the class type

ceases to exist
• Avoid declarations at global scope of objects with non-trivial

constructors/destructors
• There are subtle rules which could reveal deadly

• Methods are commonly defined in a different file

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

lfrng.cpp: Constructor &
Destructor

#include <cstdlib>
#include <cerrno>
#include "lfrng.h"

using namespace LFRNG;

rng::rng(unsigned n) { // class contructor

k = l_k;
l = l_l;
if (n <= s_k) {

k = s_k;
l = s_l;

} else if (n <= m_k) {
k = m_k;
l = m_l;

} else if (n > l_k)
errno = EDOM;

hstr = new unsigned[k];

init();
}

rng::~rng() { // class destructor
delete[] hstr;

}

continues on next slide...

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

lfrng.cpp: Initialization & Draw

... follows from previous slide
void rng::init() {

int i;

for(i=0; i<k; ++i)
hstr[k-i-1] = rand();

imk = k-1;
iml = l-1;

}

unsigned rng::draw() {
unsigned r;

r = hstr[imk] + hstr[iml];
hstr[imk] = r;
if (imk-- == 0) imk = k-1;
if (iml-- == 0) iml = k-1;

return r;
}

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

Methods Definition

• Method definition must be qualified with the class it belongs
to

• Being in the class scope, it can access all members without
qualification

• The constructor:
• initializes lags and indexes
• then allocates the history array
• Note: allocation failure management is deferred to the user

through exception catching
• The destructor:

• deallocates the history array
• leaves the rest of the deallocation to default rules

• The remaining methods are pretty similar

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

User Guide

• To control the seed for initialization
srand(my_seed);

• To instantiate generators1:
LFRNG::rng myrgen(68);

using namespace LFRNG;
rng lrgen(98);
rng srgen(55);

rng *rgp;
rgp = new rng(55);

• To generate random numbers:
unsigned u1, u2;

u1 = myrgen.draw();
u2 = rgp->draw();

1. Did you notice that, unlike in C, typedefs are not needed?

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

Hands-on Session #1

• Write a simple test program that verifies some properties of
the generator (e.g. the average)

• Then try a few variations not covered by the User Guide
• Instantiate a generator like this:

LFRNG::rng whatrgen;

• Instantiate two generators and assign one to the other
• Pass a generator by value to a function
• Try something like this:

LFRNG::rng gen;
gen = 7;

or like:
LFRNG::rng g9 = 9;

• Use a generator for a while and then call its init() method

• Carefully recording what happens and your feelings

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

A Few Thoughts About Initialization

• Is init() necessary?
• Yes, it’s needed by the constructor
• No, initialization is already performed by the constructor
• No, accidental reinitialization of a generator in use could be

dangerous

• As a matter of fact, init() is a C remnant
• In good C++, initialization is usually completely delegated to

constructors
• Re-initialization can still be performed by destroying and

constructing again

• It would however be nice to initialize from an array of seeds,
insted of using rand() to generate them

• Time for refactoring

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

lfrng.cpp Refactored

#include <cstdlib>
#include <cerrno>
#include <cstring>
#include "lfrng.h"

using namespace LFRNG;

void rng::build(unsigned n) { // initializes lags and indexes, allocates history array

k = l_k; l = l_l;
if (n <= s_k) {

k = s_k; l = s_l;
} else if (n <= m_k) {

k = m_k; l = m_l;
} else if (n > l_k)

errno = EDOM;

hstr = new unsigned[k];
}

void rng::random_init() { // initializes history using rand()
for(int i=0; i<k; ++i)

hstr[k-i-1] = rand();

imk = k-1; iml = l-1;
}

void rng::array_init(const unsigned *a) { // initializes history from another array
memcpy(hstr, a, k*sizeof(unsigned));
imk = k-1; iml = l-1;

}

~rng() and draw() as before

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

lfrng.h Refactored

#ifndef LFRNG_H
#define LFRNG_H
#include <stdexcept>

namespace LFRNG {

class rng {
unsigned k, l;
unsigned imk, iml;
unsigned *hstr;

const static unsigned l_k = 98;
const static unsigned l_l = 27;
const static unsigned m_k = 73;
const static unsigned m_l = 31;
const static unsigned s_k = 55;
const static unsigned s_l = 24;

void build(unsigned n);
void random_init();
void array_init(const unsigned *a);

public:
rng(unsigned n) { build(n); random_init(); }
rng(unsigned n, const unsigned *a) {

build(n);
if (n==k) array_init(a);
else throw std::invalid_argument("unsupported length");

}
~rng();
unsigned draw();

};
} //namespace LFRNG
#endif

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

rng Class Refactored

• The new methods are made private
• So they are only accessible to other class methods

• Yes, methods can be defined inside the class definition
• Usually done for short ones (and are inline)

• ~rng() definition is better kept with build() definition
• The new in the latter matches delete in the former

• Yes, constructors can be overloaded

• When initializing from an array, we’d better be careful
• A size mismatch is dangerous
• In a constructor, throwing an exception is much better than

anything else
• throw throws a value of class type

• In real life, we’d define exception classes specific to
LFRNG::rng

• Let’s use a standard one here for simplicity

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

Default Constructor

• A constructor taking no arguments is termed a default
constructor

• If you define a class with no constructors, you get a bonus,
implicitly defined default constructor

• It’s free, and does next to nothing: call the default constructor
of each data member

• In this case, it wouldn’t initialize lags nor allocate the history
array

• Thus, we could accidentally use an uninitialized generator
• And when the object is destroyed delete would cause an

error

• But a default constructor is good for quick, casual use
• Let’s err on the safe side: let it build the longest supported

generator
• Do we have to write yet another constructor?

• Not really, in this case

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

lfrng.h No Default Constructor

#ifndef LFRNG_H
#define LFRNG_H
#include <stdexcept>

namespace LFRNG {

class rng {
unsigned k, l;
unsigned imk, iml;
unsigned *hstr;

const static unsigned l_k = 98;
const static unsigned l_l = 27;
const static unsigned m_k = 73;
const static unsigned m_l = 31;
const static unsigned s_k = 55;
const static unsigned s_l = 24;

void build(unsigned n);
void random_init();
void array_init(const unsigned *a);

public:
rng(unsigned n = 98) { build(n); random_init(); }
rng(unsigned n, const unsigned *a) {

build(n);
if (n==k) array_init(a);
else throw std::invalid_argument("unsupported length");

}
~rng();
unsigned draw();

};
} //namespace LFRNG
#endif

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

Let’s Use Default Arguments

• We simply provide a default value for the argument in the
declaration

• Remember the obvious limitation:
• If one argument has a default value, all arguments possibly

following it must have one too

• We could similarly ‘merge’ the two constructors:
• giving a a NULL pointer as default value
• and initializing with random_init() if a is NULL

• But this would be a confusing merge of two different
functions, and could slow down construction

• Use default arguments only where they make sense

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

Beware of Implicit Conversions

• What happens in the following code excerpt?
LFRNG::rng gen(98);
gen = 16;

• Objects can be used in expressions, like any other type
• Implicit type conversions can take place in expressions
• Constructors with a single argument can also be used for

implicit conversions

• Thus the compiler converts the above code into:
LFRNG::rng gen(98);
{ LFRNG::rng tmp(16);

gen = tmp;}

• We certainly don’t want this absurdity!
• Let’s forbid implicit calls to the constructor

by making it explicit

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

lfrng.h No Implicit Conversions

class rng {
unsigned k, l;
unsigned imk, iml;
unsigned *hstr;

const static unsigned l_k = 98;
const static unsigned l_l = 27;
const static unsigned m_k = 73;
const static unsigned m_l = 31;
const static unsigned s_k = 55;
const static unsigned s_l = 24;

void build(unsigned n);
void random_init();
void array_init(const unsigned *a);

public:
explicit rng(unsigned n = 98) { build(n); random_init(); }
rng(unsigned n, const unsigned *a) {

build(n);
if (n==k) array_init(a);
else throw std::invalid_argument("unsupported length");

}
~rng();
unsigned draw();

};

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

Default Copy and Assignment

• By defining a class you get two more ‘gifts’
• A default copy constructor :

• builds an instance from another object of the class
• by memberwise copy
• it’s a necessity to pass objects by value in function calls

• A default = assignment operator :
• performs a memberwise copy
• it’s a necessity to support objects assignments

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

Default Copy and Assignment

• When a data member is a pointer, memberwise copy is said
to be shallow copy
rng r1;
rng r2 = r1; // call copy constructor: trouble here
rng r3;

r3 = r2; // call copy assignment: trouble here

• May cause memory leaks overwriting the previous pointer
content

• May cause double deletion of the same memory area in
destructors (a fatal error)

• We need to explicitly define deep copy constructor and
assignment

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

lfrng.h Deep Copies

class rng {
unsigned k, l;
unsigned imk, iml;
unsigned *hstr;

const static unsigned l_k = 98;
const static unsigned l_l = 27;
const static unsigned m_k = 73;
const static unsigned m_l = 31;
const static unsigned s_k = 55;
const static unsigned s_l = 24;

void build(unsigned n);
void random_init();
void array_init(const unsigned *a);
void copy_in(const rng& g);

public:
explicit rng(unsigned n = 98) { build(n); random_init(); }
rng(unsigned n, const unsigned *a) {

build(n);
if (n==k) array_init(a);
else throw std::invalid_argument("unsupported length");

}
~rng();
unsigned draw();

rng(const rng& g) { copy_in(g); } // copy constructor
rng& operator= (const rng& g); // copy assignment

};

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

Implementing Deep Copies

• The combination of reference and const arguments in copy
constructor and assignment operator is mandatory

• Copy construction and assignment have much in common
• But one big difference:

• the left operand of the assignment operator must already
exist

• thus it contains an already allocated history array, which
should be deleted first

• But what about g = g?
• It’s perfectly legal!
• And we’d better not delete the history array in that case!

• this it’s a reserved keyword, the address of the object the
method was invoked on

• For the assignment operator, its left operand

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

Adding Deep Copy to lfrng.cpp

(Includes and previously defined methods unchanged)

void rng::copy_in(const rng& g) {
k = g.k;
l = g.l;
hstr = new unsigned[k];
memcpy(hstr, g.hstr, k*sizeof(unsigned));
imk = g.imk;
iml = g.iml;

}

rng& rng::operator= (const rng& g) {
if (this != &g) {

delete[] hstr;
copy_in(g);

}
return *this;

}

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

Few Thoughts on RNG Copy &
Assignment

• They could be unsafe if used without care
• The same term of the sequence could be used more than

once in a simulation
• We’d better to get rid of them
• We could make them private

• They could be useful if used with care
• E.g. to compare algorithms
• Or for very specific algorithms that need the same sequence

more than once
• best reasons are debugging and class specialization

• Let’s make them protected
• I.e. only selected classes and functions will be able to

access them
• More on this later

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

lfrng.h Private Deep Copies

class rng {
unsigned k, l;
unsigned imk, iml;
unsigned *hstr;

const static unsigned l_k = 98;
const static unsigned l_l = 27;
const static unsigned m_k = 73;
const static unsigned m_l = 31;
const static unsigned s_k = 55;
const static unsigned s_l = 24;

void build(unsigned n);
void random_init();
void array_init(const unsigned *a);
void copy_in(const rng& g);

rng(const rng& g) { copy_in(g); } // copy constructor
rng& operator= (const rng& g); // copy assignment

public:
explicit rng(unsigned n = 98) { build(n); random_init(); }
rng(unsigned n, const unsigned *a) {

build(n);
if (n==k) array_init(a);
else throw std::invalid_argument("unsupported length");

}
~rng();
unsigned draw();

};

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

lfrng.h Protected Deep Copies

class rng {
unsigned k, l;
unsigned imk, iml;
unsigned *hstr;

const static unsigned l_k = 98;
const static unsigned l_l = 27;
const static unsigned m_k = 73;
const static unsigned m_l = 31;
const static unsigned s_k = 55;
const static unsigned s_l = 24;

void build(unsigned n);
void random_init();
void array_init(const unsigned *a);
void copy_in(const rng& g);

protected:
rng(const rng& g) { copy_in(g); } // copy constructor
rng& operator= (const rng& g); // copy assignment

public:
explicit rng(unsigned n = 98) { build(n); random_init(); }
rng(unsigned n, const unsigned *a) {

build(n);
if (n==k) array_init(a);
else throw std::invalid_argument("unsupported length");

}
~rng();
unsigned draw();

};

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

Better Lag Management

• Up to now, we only support three good pairs of lags, which
is easy

• But there is a numerable infinity available
• So we could add more in future releases
• Managing them with names is tough and requires code

changes

• A sensible plan:
• Add a static table of lags pairs to the class
• Parameterize the logic to choose the right one

• We need a base type for this table, but don’t want to pollute
or cause name clashes

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

lfrng.h: Table of Lags

class rng {
unsigned k, l;
unsigned imk, iml;
unsigned *hstr;

struct pair {
unsigned k, l;
pair(unsigned i, unsigned j) : k(i), l(j) {}

};
const static unsigned n_lags = 3;
const static pair lags[n_lags];

void build(unsigned n);
void random_init();
void array_init(const unsigned *a);
void copy_in(const rng& g);

protected:
rng(const rng& g) { copy_in(g); }
rng& operator= (const rng& g);

public:
explicit rng(unsigned n = 98) { build(n); random_init(); }
rng(unsigned n, const unsigned *a) {

build(n);
if (n==k) array_init(a);
else throw std::invalid_argument("unsupported length");

}
~rng();
unsigned draw();

};

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

Nested Classes & More

• Nested classes are classes defined inside another class
• Only visible in the enclosing class scope
• Good for local utilities

• Initialization of data members:
• is better performed by invoking their constructor directly
• unless preliminary calculations are needed

• Unfortunately, static array members cannot be initialized
inside the class

• We’ll put initialization in lfrng.cpp, where we have to
change build as well

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

lfrng.cpp: Table of Lags

#include <exception>
#include "lfrng.h"

using namespace LFRNG;

const rng::pair rng::lags[rng::n_lags] = {rng::pair(55,24),
rng::pair(73,31),
rng::pair(98,27)};

void rng::build(unsigned n) {
int i;

for(i = 0; i < n_lags; ++i) {
l = lags[i].l;
k = lags[i].k;
if (n <= k) break;

}
if (n > k) throw std::invalid_argument("unsupported length");

hstr = new unsigned[k];
}

Other methods follow unchanged

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

Static & Const Methods

• It would be nice for users to know:
• maximum length supported by rng
• actual length of a rng object

• Let’s add two query methods

• Wait! To call max_len() we need an instance of the class
• This is nonsensical
• Let’s make it callable independently

• static methods can be called without instantiating the
class, like this:
unsigned ml = rng::max_len();

• const methods cannot modify the object

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

lfrng.h: Table of Lags

class rng {
unsigned k, l;
unsigned imk, iml;
unsigned *hstr;

struct pair {
unsigned k, l;
pair(unsigned i, unsigned j) : k(i), l(j) {}

};
const static unsigned n_lags = 3;
const static pair lags[n_lags];

void build(unsigned n);
void random_init();
void array_init(const unsigned *a);
void copy_in(const rng& g);

protected:
rng(const rng& g) { copy_in(g); }
rng& operator= (const rng& g);

public:
explicit rng(unsigned n = 98) { build(n); random_init(); }
rng(unsigned n, const unsigned *a) {

build(n);
if (n==k) array_init(a);
else throw std::invalid_argument("unsupported length");

}
~rng();
static unsigned max_len() { return lags[n_lags-1].k; }
unsigned len() const { return k; }
unsigned draw();

};

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

A Final Touch

• Let’s make draw() method protected
• And use the function call operator () to draw terms of the

sequence

• Thus, if g is an instance of LFRNG::rng class, we can draw
random numbers like this:
i = g();

• An object like this is termed a functor

• We are doing this for two reasons
• It’s unbelievably cool! Isn’t it?
• Will come useful later on

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

lfrng.h: Table of Lags

class rng {
unsigned k, l;
unsigned imk, iml;
unsigned *hstr;

struct pair {
unsigned k, l;
pair(unsigned i, unsigned j) : k(i), l(j) {}

};
const static unsigned n_lags = 3;
const static pair lags[n_lags];

void build(unsigned n);
void random_init();
void array_init(const unsigned *a);
void copy_in(const rng& g);

protected:
unsigned draw();
rng(const rng& g) { copy_in(g); }
rng& operator= (const rng& g);

public:
explicit rng(unsigned n = 98) { build(n); random_init(); }
rng(unsigned n, const unsigned *a) {

build(n);
if (n==k) array_init(a);
else throw std::invalid_argument("unsupported length");

}
~rng();
static unsigned max_len() { return lags[n_lags-1].k; }
unsigned len() const { return k; }
unsigned operator() () { return draw(); }

};

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

Hands-on Session #2

• Time to try the latest and greatest version

• Check all misuses are not allowed anymore

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

What Objects are Good For?

• Tie together data structures and their manipulating functions
• Protect innards of a data type from inappropriate access
• Hide implementation details
• Automate elaborate initialization and disposal of data

structures
• Control in detail what operations can be performed on a

data type

• And more...

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

Outline

1 Do you Need an Object?

2 Inheritance and Polymorphism
Heads and Tails
Floating Point RNGs
Summing it Up

3 Class I/O

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

A Coin Class

#include <limits>

// rng class definition omitted

class coin : public rng {
public:

explicit coin(unsigned n=98) : rng(n) {}
coin(unsigned n, const unsigned *a) : rng(n,a) {}
bool operator() () {

unsigned h = std::numeric_limits<unsigned>::max()/2;
return rng::draw() > h;

}
};

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

Derived and Base Classes

• LFRNG::coin is a derived class of LFRNG::rng, i.e.:
• inherits all rng members
• may ovverride them or add new ones
• has access to public and protected rng members

• rng is a public base class of coin:
• all rng public members (like max_len() or len()) are

accessible through coin
• classes derived from coin have access to rng protected

members
• Were rng a protected base class of coin:

• only coin methods and classes derived from coin would
have access to rng public and protected members

• Were rng a private base class of coin:
• only coin has access to rng public and protected members

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

Constructors & Destructors in
Derivation

• Base class constructor must be invoked:
• before constructing data members possibly added in the

derived class
• between a : and the derived class constructor body

• Common mistake: should you write
coin(unsigned n) {};

the base class constructor would still be implicitly invoked
first, not the one you want however!

• Destructors:
• take no parameters, so implicit invocation is ok
• are invoked in the opposite order

• As we added no data members in coin, the bonus default
destructor is all we need

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

Methods Override

• The coin class has its own constructors and destructors
• max_len() and len() are the base class ones
• () operator is overridden to do the right thing

• draw a random unsigned integer using its base class
protected method draw()

• converting it to a bool according to which half of its range it
falls into

• By the way:
• limits is the C++ header providing info on integer and

floating point types
• in form of static methods of special purpose classes
• std::numeric_limits<type> is a template class (guess

what, we’ll learn more later)

• Good ol’ C defines are provided in the climits header to
ease conversion, but avoid them in new codes

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

Hands-on Session #3

• Toss the coin

• Derive from LFRNG::rng two classes to generate odd and
even random numbers

• Derive from LFRNG::rng a bingo class:
• returning integers from 1 to 90
• each of them once
• providing useful utility functions
• with reasonable behavior when extractions are over

• Hint:
1 set m to 90
2 initialize an array with integers from 1 to 90
3 generate a random index i : 0 ≤ i < m
4 swap i-th and m-th elements of the array
5 return the m-th element of the array
6 set m to m − 1
7 if m > 0 goto 3

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

Floating Point RNGs

• We need a floating point RNG and want to reuse
LFRNG::rng, which is tested and tried

• Coins, odd and even RNGs, bingos, are special cases of an
integer RNG (isA relationship)

• A floating point RNG is not, for a number of reasons
• FP numbers mimic real numbers, which are a superset of

integers, not a subset
• Lagged Fibonacci is not the best RNG in the world, we may

possibly have to change in the future
• Other fast and very good floating point generators like AWC

or SWB are available

• We’ll not derive from LFRNG::rng, will use the latter as a
member of the new class (hasA relationship)

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

frng.h

#ifndef FRNG_H
#define FRNG_H

#include <limits>
#include "lfrng.h"

namespace FPRNG {

class frng {
LFRNG::rng intgen;

public:
explicit frng(unsigned n = 98) : intgen(n) {}
frng(unsigned n, const unsigned *a): intgen(n, a) {}
unsigned len() { return intgen.len(); }
static unsigned max_len() { return LFRNG::rng::max_len(); }
double operator() () {

double m = std::numeric_limits<unsigned>::max();
return intgen()/m;

}
};

} // namespace FPRNG

#endif

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

Member Classes Construction

• Data members are constructed like base classes
• Except that member name is used instead of class name

• As with base classes, members constructors can be
implicitly called

• Common mistake: writing
class foo {bar b; public: foo(bar inb) {b = inb; }};

which is equivalent to:
class foo {bar b; public: foo(bar inb) : b() {b = inb; }};

• For native types, this is irrelevant, for classes this could
double the cost of costruction of each member

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

Looking for More Flexibility

• This solution is rigid
• frng generates according to a uniform distribution
• Many distributions are available and useful

• Moreover, we want to write some algorithms (like
Montecarlo integrators) independently from the actual
distribution of the RNG

• Again, class derivation comes to the rescue

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

Enter Polymorphism

• In C++, pointers and references to a base class can
point/refer to a derived class

• Of course, if a method is invoked on the pointer/reference, it
will be the one of the base class

• Unless the method was made virtual, in which case the
one of the actual object class will be called

• More flexibility at a cost: consulting tables of addresses in
memory

• Access to polymorphism can be controlled:
• for public base classes, polymorphism is available to any

function
• for protected base classes, polymorphism is available only

to the derived classes and its descendants
• for private base classes, polymorphism is available only to

the derived class

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

Implementing Polymorphism

• Let’s add to frng a protected draw() method
• It bridges the gap with the underlying, private generator

• Let’s make the () method a virtual function
• Let’s make it a pure virtual function by ’assigning’ 0 to it
• This makes frng an abstract class, i.e. no object can be

instantiated
• We only need it for pointers and references

• Now let’s add the furng class
• Which has nothing special, except the virtual method is not

pure

• But to realize the power of polymorphism, we need more
RNGs

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

frng.h: Polymorphism

#ifndef FRNG_H
#define FRNG_H

#include <limits>
#include "lfrng.h"

namespace FPRNG {

class frng { // generic FP RNG
LFRNG::rng intgen;

protected:
double draw() {

double m = std::numeric_limits<unsigned>::max()
return intgen()/m;
}

public:
explicit frng(unsigned n = 98) : intgen(n) {}
frng(unsigned n, const unsigned *a): intgen(n, a) {}
unsigned len() { return intgen.len(); }
static unsigned max_len() { return LFRNG::rng::max_len(); }
virtual double operator() () = 0;

};

class furng : public frng { // uniform FP RNG in [0,1)
public:

explicit furng(unsigned n = 98) : frng(n) {}
furng(unsigned n, const unsigned *a): frng(n, a) {}
virtual double operator() () { return frng::draw(); }

};
} // namespace FPRNG

#endif

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

frng.h: More RNGs

class fsurng : public frng { // scaled uniform FP RNG
double offset, scale;

public:
fsurng(double o, double s, unsigned n = 98) : offset(o), scale(s), frng(n) {}
fsurng(unsigned n, const unsigned *a): frng(n, a) {}
virtual double operator() () { return frng::draw()*scale + offset; }

};

class ferng : public frng { // exponential FP RNG
public:

explicit ferng(unsigned n = 98) : frng(n) {}
ferng(unsigned n, const unsigned *a): frng(n, a) {}
virtual double operator() ();

};

class fnrng : public frng { // normal FP RNG
const static double pi2 = 2.0*3.1415926535897932384626433832795;
double ndr;
bool cached;

public:
explicit fnrng(unsigned n = 98) : cached(false), frng(n) {}
fnrng(unsigned n, const unsigned *a): cached(false), frng(n, a) {}
virtual double operator() ();

};

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

frng.cpp: More RNGs

#include <cmath>
#include "frng.h"

using namespace FPRNG;

double ferng::operator() () { // exponentially distributed
double r;
while(0.0 == (r = frng::draw()));
return -log(r);

}

double fnrng::operator() () { // normally distributed
double x1, x2, r2, f;

if (cached) {
cached = false;
return ndr;

}

do {
x1 = frng::draw()*2.0 - 1.0;
x2 = frng::draw()*2.0 - 1.0;
r2 = x1*x1 + x2*x2;

} while(r2 > 1.0 || 0.0 == r2);
f = sqrt(-2.0*log(r2)/r2);
ndr = x2*f;
cached = true;
return x1*f;

};

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

Hands-on Session #4

• Let’s experiment how it works

• Try to instantiate and use all FP generator classes (frng
too!)

• Write a function:
• accepting an frng pointer or reference as argument
• exercising it to compute average, variance or some other

moment

• Test with all the generators we defined

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

More Polymorphism

• A derived class can be abstract too
• And a protected method can be virtual too

• Let’s write a generic rejecton RNG class
• Basic idea of rejection generation

• you have a PDF f (x) mapping [a,b) to [0,P)
• randomly generate xi uniformly distributed in [a,b)
• randomly generate xi+1 uniformly distributed in [0,P)
• if xi+1 < f (xi) then return xi and throw xi+1 away
• otherwise throw away both and retry

• Then let’s derive from it a generator with a triangle
distribution in [−1,1)

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

frng.h: Adding Rejection RNGs

class frejrng : public frng { // rejection method RNGs abstract base
protected:

virtual bool accept(double u1, double u2, double& r) = 0;
public:

explicit frejrng(unsigned n = 98) : frng(n) {}
frejrng(unsigned n, const unsigned *a): frng(n, a) {}
double operator() ();

};

class ftrianglerng : public frejrng {
protected:

virtual bool accept(double u1, double u2, double& r);
public:

explicit ftrianglerng(unsigned n = 98) : frejrng(n) {}
ftrianglerng(unsigned n, const unsigned *a): frejrng(n, a) {}

};

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

frng.cpp: Adding Rejection
RNGs

double frejrng::operator() () {
double r;
while(!accept(frng::draw(), frng::draw(), r));
return r;

}

bool ftrianglerng::accept(double u1, double u2, double& r) {
r = u1*2.0 - 1.0;
if (u2 > (1.0 - fabs(r)))

return false;
return true;

};

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

Hands-on Session #5

• Test it

• Then derive another for the distribution:

p(x) =


3
2x2 x ∈ [−1,1)

0 otherwise

• Or for a different distribution of your choice

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

What Inheritance is Good For?

• To reuse code without rewriting it
• To properly differentiate behavior of similar classes in a

robust way
• To define methods that derived classes must implement
• To write functions that can operate on objects of different

classes in the same hierarchy
• To control in detail where polymorphism is allowed

• And more...

• A caveat : if you are concerned with performances,
polymorphism could impact them

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

Outline

1 Do you Need an Object?

2 Inheritance and Polymorphism

3 Class I/O
Basics
Inheritance and I/O

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

User Defined I/O

• Actually quite simple
• Just write overloaded versions of << and >>
• And make them rng friends

• A member function declaration specifies three logically
distinct things:

• the function can access the private part of class declaration
• the function is in the scope of the class
• the function must be invoked on an object (has a this pointer)

• By declaring a member function static, we get the first twos
• By declaring a function as a friend, we get only the first

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

User Defined I/O for rng

• So, let’s add to rng class the declarations:
friend ostream& operator<< (ostream& s, const rng& g);
friend istream& operator>> (istream& s, rng& g);

• Write them for ostream and istream respectively
• All others streams of interest inherit from them

• Beware: rng class definition is in LFRNG namespace
• All member declarations are in the same namespace
• You don’t need to explicitly put their definitions in it
• The rng:: scope resolution in their definitions is enough
• Friends are not members!
• Their definitions must be explicitly put in the namespace

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

Managing Failures

• The really important thing is to correctly address failures

• Easy for output
• The object state doesn’t change
• Failure and bad state are preserved by next operations

• Crucial for input
• The object state will change
• And we want the new one to be consistent

• Possible source of input errors:
1 read of an rng member fails
2 lags read from the stream differ from the ones already stored

in the object

• For ease of use, it is of paramount importance that the
specialized >> version behaves consistently with Standard
Library versions

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

rng::operator<<

std::ostream& operator<< (std::ostream& s, const rng& g) {
int i;

s << g.k << ’ ’ << g.l << std::endl;
s << g.imk << ’ ’ << g.iml << std::endl;
for(i = 0; i<g.k; ++i)

s << g.hstr[i] << ’ ’;
s << std::endl;

return s;
}

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

rng::operator>>

std::istream& operator>> (std::istream& s, rng& g) {
unsigned k, l, imk, iml;
unsigned *hstr;
k = l = 0;

s >> k >> l;
if (k != g.k || l != g.l) {

s.clear(std::ios_base::failbit);
return s;

} else {
hstr = new unsigned[k];
s >> imk >> iml;
for(int i = 0; i<k; ++i)

s >> hstr[i];
}
if (s) {

g.k = k;
g.l = l;
g.imk = imk;
g.iml = iml;
memcpy(g.hstr, hstr, k*sizeof(unsigned));

}
delete[] hstr;
return s;

}

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

Managing Input Failures

• We first read in the lags

• By design, the object is alredy initialized so the lags must
match

• If they don’t, we fail
• By setting the stream fail state bit and returning
• s.clear() actually sets the state, very intuitive name!

• Otherwise, we read in the generator recent history in
temporary areas

• Eventually, we get rid of temporary storage

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

In Real Life

• We are not managing new exceptions, we’d better:
try {

hstr = new unsigned[k];
} catch (...) { // catch any exception

s.clear(std::ios_base::failbit);
throw; // re-throw the catched exception

}

• It is improbable for a rng to be input by keyboard
• But a file could be changed by mistake
• We’d better:

• add a prolog and epilog string like "LFRNG::rng" in output
• and check for both on input
• and output a good checksum too
• to be verified on input

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

Hands-on Session #6

• Get back at the xyz-format exercise

• Define a class for data of a single atom

• And overload I/O operators for it

• Once again, check you correctly managed exceptions using:

• file names that do not exist
• files in the wrong format
• files with missing data

• Homework assignment: building on the above class,
• define a class to hold all data from an xyz-format file
• independently of the number of atoms
• and write consistent I/O operators for them

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

I/O for rng Derived Classes

• For coin, nothing to do
• A derived class can be implicitly converted to its base class
• rng overloaded I/O operators will match it
• They are ok, as coin doesn’t define new data members

• Things are different if we add or redefine data members

• Let’s imagine that for a really insane reason, we don’t want
to get the first random number again

• Let’s derive a nofirst class from rng
• throwing an exception if the first one is drawn again

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

nofirst Class

class nofirst : public rng {
unsigned first;
bool takeit;

public:
struct first_twice : public std::runtime_error {

first_twice(const first_twice& e) : std::runtime_error(e) {}
first_twice(const char *s) : std::runtime_error(s) {}

};

explicit nofirst(unsigned n=98) : rng(n), takeit(true) {}
nofirst(unsigned n, const unsigned *a) : rng(n,a), takeit(true) {}

unsigned operator() () {
unsigned next = rng::draw();
if (takeit) {

first = next;
takeit = false;

} else if (next == first)
throw first_twice("first one occurred again");

return next;
}

friend std::ostream& operator<< (std::ostream& s, const nofirst& g);
friend std::istream& operator>> (std::istream& s, nofirst& g);

};

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

nofirst Remarks

• Exceptions are classes
• If an exception is very specific, it’s better to define a specific

class
• Inheriting from standard ones makes it easy, but not

mandatory
• We can now catch LFRNG::nofirst::wrap

• We added data members
• Thus we have to specialize I/O operators

• They’ll invoke the base class one
• Then care of nofirst specific stuff

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

nofirst I/O Operators

std::ostream& operator<< (std::ostream& s, const nofirst& g) {

return s << static_cast<const rng&>(g)
<< g.takeit << ’ ’ << g.first << std::endl;

}

std::istream& operator>> (std::istream& s, nofirst& g) {
nofirst temp(g);

s >> static_cast<rng&>(temp);
if (s)

s >> temp.takeit >> temp.first;
if (s)

g = temp;
return s;

}

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

Safety First

• To invoke base class operators, we must cast to base class
references

• Otherwise, the operator would recursively call itself

• Cast of pointers and references is dangerous
• And should be limited to controlled places

• Like member and friend functions

• C casts do not allow safety checks: strongly discouraged!
• C++ static_cast<> allows for some compiler checks

• Like forbid casting const references to non-const ones

• We have to use a temporary to change the object only when
all I/O succeded

• Our protected copy constructor and assignment found a
proper use

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

Hands-on Session #7

• Easy: test that I/O operators work on rng and its
descendants

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

I/O for frng Inheritance Tree

• Easy, if you don’t support runtime polymorphism in I/O
• Add to frng and descendants the protected copy

constructors and assignments we dispensed with for
simplicity

• Write friend overloaded I/O operators for frng
• They simply read/write its rng member, intgen
• And will also work for furng, ferng, frejrng, and
ftrianglerng

• Then overload them for descendants adding data members

• If you need polymorphic I/O in a function accepting any
frng descendant, it’s a different story

• Make frng class a friend of rng class
• Add to frng two virtual methods: read() and write()
• Make frng I/O operators defer all actual I/O to them
• Then simply override read() and write() for descendants

adding data members

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

Polymorphic I/O

void frng::write(std::ostream& s) const {

s << intgen;
}

void frng::read(std::istream& s) {
LFRNG::rng temp(this->intgen);

s >> temp;
if (s)

this->intgen = temp;
}

std::ostream& operator<< (std::ostream& s, const frng& g) {

g.write(s);
return s;

}

std::istream& operator>> (std::istream& s, frng& g) {

g.read(s);
return s;

}

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

Homework Assignment

• Override read() and write() virtual methods in
• fsurng class
• fnrng class

• Their overridden versions must be modeled on nofirst I/O
operators

• But you have to use dynamic_cast<> for casting
• Much like static_cast<>
• But adds runtime safety checks

• No need to overload frng I/O operators
• That’s the beauty of runtime polymorphism!

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

Strict Formatting Requirements

• frng descendants add floating point data members
• Exact translation requires a minimum precision

• Like 9 digits for floats
• And 19 digits for doubles
• Default precision (6 digits) is a bad mistake

• You must enforce it inside overridden I/O functions
• surrounding I/O operations might need a different one
• deferring issue to users is error prone and annoying

• Beware! formatting state is stateful on streams
• You’d better save it beforehand:

ios_base::fmtflags savefmt = s.flags();

to restore it when you are done:
s.flags(savefmt);

Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

Rights & Credits

These slides are c©CINECA 2014 and are released under
the Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)
Creative Commons license, version 3.0.

Uses not allowed by the above license need explicit, written
permission from the copyright owner. For more information
see:

http://creativecommons.org/licenses/by-nc-nd/3.0/

Slides and examples were authored by:
• Michela Botti
• Federico Massaioli
• Luca Ferraro
• Stefano Tagliaventi

	A C with Class
	Do you Need an Object?
	Random Number Generators
	A Classy Solution
	Classes at Work
	More Touches of Class
	Polishing it Up
	Wrapping it Up

	Inheritance and Polymorphism
	Heads and Tails
	Floating Point RNGs
	Summing it Up

	Class I/O
	Basics
	Inheritance and I/O

