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Lagged Fibonacci RNGs

• Let’s imagine we have a simple-minded implementation of a
pretty good RNG

• Defined by the recurrence relation:
xi = (xi−l + xi−k ) mod 2M

• For specific, known (k , l) pairs the sequence has a period of
(2k − 1)2M−1 terms

• Not necessarily the best RNG, but good enough for our
purposes

• We want to make it better:
1 allow for many independent generators in a program
2 give users control on length (i.e. occupied memory, i.e. k )
3 hide implementation details (i.e. avoiding users ‘accidentally’

fiddling with internals)
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Simple Minded Lagged Fibonacci
RNG

// Lagged Fibonacci RNG
// Possible (l, k) pairs could be, among others: (24, 55), (31, 73), (27,98)
// See Knuth, The Art of Computer Programming, v. 2, p. 26ff

#include <stdlib.h>
#include "lfrng.h"

#define LFRNG_K 55
#define LFRNG_L 24

static unsigned lfhstr[LFRNG_K];
static unsigned lfimk;
static unsigned lfiml;

void lfrng_init() {
int i;

for(i=0; i<LFRNG_K; ++i)
lfhstr[LFRNG_K-i-1] = rand();

lfimk = LFRNG_K-1;
lfiml = LFRNG_L-1;

}
unsigned lfrng_draw() {

unsigned r;

r = lfhstr[lfimk] + lfhstr[lfiml];
lfhstr[lfimk] = r;
if (lfimk-- == 0) lfimk = LFRNG_K-1;
if (lfiml-- == 0) lfiml = LFRNG_K-1;
return r;

}
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A C Solution: lfrng.h

• Let’s define an opaque type, without publishing its internals
• Let’s restrict its manipulation to functions in a sober API

• Users will only access what’s published in the lfrng.h
header:
#ifndef LFRNG
#define LFRNG

struct LFRNG_inn;

typedef struct LFRNG_inn *LFrng;

LFrng lfrng_create(unsigned n);
void lfrng_init(LFrng g);
unsigned lfrng_draw(LFrng g);
void lfrng_destroy(LFrng g);
#endif
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A C Solution: lfrng.c part 1 of 3

// Multiple Lagged Fibonacci RNGs
// Possible (l, k) pairs could be, among others: (24, 55), (31, 73), (27,98)
// See Knuth, The Art of Computer Programming, v. 2, p. 26ff

#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include "lfrng.h"

#define LFRNGL_K 98
#define LFRNGL_L 27
#define LFRNGM_K 73
#define LFRNGM_L 31
#define LFRNGS_K 55
#define LFRNGS_L 24

struct LFRNG_inn {
unsigned k, l;
unsigned imk, iml;
unsigned *hstr;

};

continues on next slide...
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A C Solution: lfrng.c part 2 of 3

LFrng lfrng_create(unsigned n) {
LFrng g;

g = calloc(1, sizeof(*g));
if (!g) {

fprintf(stderr, "Not enough memory!\n");
exit(-2);

}

g->k = LFRNGL_K;
g->l = LFRNGL_L;
if (n <= LFRNGS_K) {

g->k = LFRNGS_K;
g->l = LFRNGS_L;

} else if (n <= LFRNGM_K) {
g->k = LFRNGM_K;
g->l = LFRNGM_L;

} else if (n > LFRNGL_K)
errno = EDOM;

g->hstr = calloc(g->k, sizeof(unsigned));

if (!g->hstr) {
fprintf(stderr, "Not enough memory!\n");
exit(-2);

}

return g;
}

continues on next slide...
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A C Solution: lfrng.c part 3 of 3

void lfrng_destroy(LFrng g) {
free(g->hstr);
free(g);

}

void lfrng_init(LFrng g) {
int i;

for(i=0; i<g->k; ++i)
g->hstr[g->k-i-1] = rand();

g->imk = g->k-1;
g->iml = g->l-1;

}

unsigned lfrng_draw(LFrng g) {
unsigned r;

r = g->hstr[g->imk] + g->hstr[g->iml];
g->hstr[g->imk] = r;
if (g->imk-- == 0) g->imk = g->k-1;
if (g->iml-- == 0) g->iml = g->k-1;

return r;
}
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Making It More Robust

• User guide:
1 create a LFrng using lfrng_create()
2 initialize it using lfrng_init()
3 call lfrng_draw() on it, from 1 to (2k − 1)231 − k times
4 destroy it using lfrng_destroy()

• Wait! What if step 2 is forgotten?
• a sequence of one term: 0
• separate initialization makes little sense

• Let’s fix it
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A C Solution: lfrng.c part 2 of 3
Revised

LFrng lfrng_create(unsigned n) {
LFrng g;

g = calloc(1, sizeof(*g));
if (!g) {

fprintf(stderr, "Not enough memory!\n");
exit(-2);

}

g->k = LFRNGL_K;
g->l = LFRNGL_L;
if (n <= LFRNGS_K) {

g->k = LFRNGS_K;
g->l = LFRNGS_L;

} else if (n <= LFRNGM_K) {
g->k = LFRNGM_K;
g->l = LFRNGM_L;

} else if (n > LFRNGL_K)
errno = EDOM;

g->hstr = calloc(g->k, sizeof(unsigned));

if (!g->hstr) {
fprintf(stderr, "Not enough memory!\n");
exit(-2);

}

lfrng_init(g);

return g;
}
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Adding Functionalities

• In need of a floating point RNG? Just include limits.h
and add:
double lfrng_frand(LFrng g) {

return lfrng_draw(g)/(double)UINT_MAX;
}

• Busy with heads and tails? Include bool.h too and add:
bool lfrng_toss(LFrng g) {

return lfrng_draw(g) > (UINT_MAX/2);
}

• And so on...
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Still Dissatisfying

• OK, init is automated, but what if creation is forgotten?
• A segmentation fault, if we are lucky

• And what if the call to lfrng_destroy() is ‘omitted’?
• A memory leak, if the program does it in a cycle

• And what if an array of RNGs is needed?
• Each one must be created and destroyed explicitly

• lfrng_draw(), lfrng_frand(), lfrng_toss(): what
if the wrong one is called?

• A very surprising bug!
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lfrng.h

// Multiple Lagged Fibonacci RNGs
// See Knuth, The Art of Computer Programming, v. 2, p. 26ff
#ifndef LFRNG_H
#define LFRNG_H

namespace LFRNG {

class rng {
unsigned k, l;
unsigned imk, iml;
unsigned *hstr;

const static unsigned l_k = 98;
const static unsigned l_l = 27;
const static unsigned m_k = 73;
const static unsigned m_l = 31;
const static unsigned s_k = 55;
const static unsigned s_l = 24;

public:
rng(unsigned n);
~rng();
void init();
unsigned draw();

};

} //namespace LFRNG

#endif
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Enter class

• class defines a data type that ties together:
• data members
• function members (a.k.a. methods)

• By default, class members are private
• I.e. only accessible in the class scope
• public members must be explicitly tagged as such
• private members may also be tagged explicitly, if you like
• C++ structs are actually the same, only the default

accessibility differs (default to public accessibility)

• Data members can be const static:
• as usual, const means it cannot be writen to
• static means there is one and only one instance of the

member, common to all instances of the class
• it’s the preferred way of defining class specific constants

without polluting other scopes
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lfrng.h

// Multiple Lagged Fibonacci RNGs
// See Knuth, The Art of Computer Programming, v. 2, p. 26ff
#ifndef LFRNG_H
#define LFRNG_H

namespace LFRNG {

class rng {
private:

unsigned k, l;
unsigned imk, iml;
unsigned *hstr;

const static unsigned l_k = 98;
const static unsigned l_l = 27;
const static unsigned m_k = 73;
const static unsigned m_l = 31;
const static unsigned s_k = 55;
const static unsigned s_l = 24;

public:
rng(unsigned n);
~rng();
void init();
unsigned draw();

};

} //namespace LFRNG

#endif
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lfrng.h: struct Equivalence

// Multiple Lagged Fibonacci RNGs
// See Knuth, The Art of Computer Programming, v. 2, p. 26ff
#ifndef LFRNG_H
#define LFRNG_H

namespace LFRNG {

struct rng {
rng(unsigned n);
~rng();
void init();
unsigned draw();

private:
unsigned k, l;
unsigned imk, iml;
unsigned *hstr;

const static unsigned l_k = 98;
const static unsigned l_l = 27;
const static unsigned m_k = 73;
const static unsigned m_l = 31;
const static unsigned s_k = 55;
const static unsigned s_l = 24;

};

} //namespace LFRNG

#endif
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Methods

• Must be declared inside the class declaration
• Can access all members of the class
• Are declared like regular functions

• Except for two special ones, with no return type
• The constructor:

• is named like the class
• is automatically invoked when a variable of the class type is

created
• The destructor:

• is named ~classname
• is automatically invoked when a variable of the class type

ceases to exist
• Avoid declarations at global scope of objects with non-trivial

constructors/destructors
• There are subtle rules which could reveal deadly

• Methods are commonly defined in a different file
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lfrng.cpp: Constructor &
Destructor

#include <cstdlib>
#include <cerrno>
#include "lfrng.h"

using namespace LFRNG;

rng::rng(unsigned n) { // class contructor

k = l_k;
l = l_l;
if (n <= s_k) {

k = s_k;
l = s_l;

} else if (n <= m_k) {
k = m_k;
l = m_l;

} else if (n > l_k)
errno = EDOM;

hstr = new unsigned[k];

init();
}

rng::~rng() { // class destructor
delete[] hstr;

}

continues on next slide...
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lfrng.cpp: Initialization & Draw

... follows from previous slide
void rng::init() {

int i;

for(i=0; i<k; ++i)
hstr[k-i-1] = rand();

imk = k-1;
iml = l-1;

}

unsigned rng::draw() {
unsigned r;

r = hstr[imk] + hstr[iml];
hstr[imk] = r;
if (imk-- == 0) imk = k-1;
if (iml-- == 0) iml = k-1;

return r;
}
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Methods Definition

• Method definition must be qualified with the class it belongs
to

• Being in the class scope, it can access all members without
qualification

• The constructor:
• initializes lags and indexes
• then allocates the history array
• Note: allocation failure management is deferred to the user

through exception catching
• The destructor:

• deallocates the history array
• leaves the rest of the deallocation to default rules

• The remaining methods are pretty similar
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User Guide

• To control the seed for initialization
srand(my_seed);

• To instantiate generators1:
LFRNG::rng myrgen(68);

using namespace LFRNG;
rng lrgen(98);
rng srgen(55);

rng *rgp;
rgp = new rng(55);

• To generate random numbers:
unsigned u1, u2;

u1 = myrgen.draw();
u2 = rgp->draw();

1. Did you notice that, unlike in C, typedefs are not needed?
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Hands-on Session #1

• Write a simple test program that verifies some properties of
the generator (e.g. the average)

• Then try a few variations not covered by the User Guide
• Instantiate a generator like this:

LFRNG::rng whatrgen;

• Instantiate two generators and assign one to the other
• Pass a generator by value to a function
• Try something like this:

LFRNG::rng gen;
gen = 7;

or like:
LFRNG::rng g9 = 9;

• Use a generator for a while and then call its init() method

• Carefully recording what happens and your feelings
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A Few Thoughts About Initialization

• Is init() necessary?
• Yes, it’s needed by the constructor
• No, initialization is already performed by the constructor
• No, accidental reinitialization of a generator in use could be

dangerous

• As a matter of fact, init() is a C remnant
• In good C++, initialization is usually completely delegated to

constructors
• Re-initialization can still be performed by destroying and

constructing again

• It would however be nice to initialize from an array of seeds,
insted of using rand() to generate them

• Time for refactoring
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lfrng.cpp Refactored

#include <cstdlib>
#include <cerrno>
#include <cstring>
#include "lfrng.h"

using namespace LFRNG;

void rng::build(unsigned n) { // initializes lags and indexes, allocates history array

k = l_k; l = l_l;
if (n <= s_k) {

k = s_k; l = s_l;
} else if (n <= m_k) {

k = m_k; l = m_l;
} else if (n > l_k)

errno = EDOM;

hstr = new unsigned[k];
}

void rng::random_init() { // initializes history using rand()
for(int i=0; i<k; ++i)

hstr[k-i-1] = rand();

imk = k-1; iml = l-1;
}

void rng::array_init(const unsigned *a) { // initializes history from another array
memcpy(hstr, a, k*sizeof(unsigned));
imk = k-1; iml = l-1;

}

~rng() and draw() as before
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lfrng.h Refactored

#ifndef LFRNG_H
#define LFRNG_H
#include <stdexcept>

namespace LFRNG {

class rng {
unsigned k, l;
unsigned imk, iml;
unsigned *hstr;

const static unsigned l_k = 98;
const static unsigned l_l = 27;
const static unsigned m_k = 73;
const static unsigned m_l = 31;
const static unsigned s_k = 55;
const static unsigned s_l = 24;

void build(unsigned n);
void random_init();
void array_init(const unsigned *a);

public:
rng(unsigned n) { build(n); random_init(); }
rng(unsigned n, const unsigned *a) {

build(n);
if (n==k) array_init(a);
else throw std::invalid_argument("unsupported length");

}
~rng();
unsigned draw();

};
} //namespace LFRNG
#endif
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rng Class Refactored

• The new methods are made private
• So they are only accessible to other class methods

• Yes, methods can be defined inside the class definition
• Usually done for short ones (and are inline)

• ~rng() definition is better kept with build() definition
• The new in the latter matches delete in the former

• Yes, constructors can be overloaded

• When initializing from an array, we’d better be careful
• A size mismatch is dangerous
• In a constructor, throwing an exception is much better than

anything else
• throw throws a value of class type

• In real life, we’d define exception classes specific to
LFRNG::rng

• Let’s use a standard one here for simplicity
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Default Constructor

• A constructor taking no arguments is termed a default
constructor

• If you define a class with no constructors, you get a bonus,
implicitly defined default constructor

• It’s free, and does next to nothing: call the default constructor
of each data member

• In this case, it wouldn’t initialize lags nor allocate the history
array

• Thus, we could accidentally use an uninitialized generator
• And when the object is destroyed delete would cause an

error

• But a default constructor is good for quick, casual use
• Let’s err on the safe side: let it build the longest supported

generator
• Do we have to write yet another constructor?

• Not really, in this case
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lfrng.h No Default Constructor

#ifndef LFRNG_H
#define LFRNG_H
#include <stdexcept>

namespace LFRNG {

class rng {
unsigned k, l;
unsigned imk, iml;
unsigned *hstr;

const static unsigned l_k = 98;
const static unsigned l_l = 27;
const static unsigned m_k = 73;
const static unsigned m_l = 31;
const static unsigned s_k = 55;
const static unsigned s_l = 24;

void build(unsigned n);
void random_init();
void array_init(const unsigned *a);

public:
rng(unsigned n = 98) { build(n); random_init(); }
rng(unsigned n, const unsigned *a) {

build(n);
if (n==k) array_init(a);
else throw std::invalid_argument("unsupported length");

}
~rng();
unsigned draw();

};
} //namespace LFRNG
#endif
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Let’s Use Default Arguments

• We simply provide a default value for the argument in the
declaration

• Remember the obvious limitation:
• If one argument has a default value, all arguments possibly

following it must have one too

• We could similarly ‘merge’ the two constructors:
• giving a a NULL pointer as default value
• and initializing with random_init() if a is NULL

• But this would be a confusing merge of two different
functions, and could slow down construction

• Use default arguments only where they make sense



Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

Beware of Implicit Conversions

• What happens in the following code excerpt?
LFRNG::rng gen(98);
gen = 16;

• Objects can be used in expressions, like any other type
• Implicit type conversions can take place in expressions
• Constructors with a single argument can also be used for

implicit conversions

• Thus the compiler converts the above code into:
LFRNG::rng gen(98);
{ LFRNG::rng tmp(16);

gen = tmp;}

• We certainly don’t want this absurdity!
• Let’s forbid implicit calls to the constructor

by making it explicit
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lfrng.h No Implicit Conversions

class rng {
unsigned k, l;
unsigned imk, iml;
unsigned *hstr;

const static unsigned l_k = 98;
const static unsigned l_l = 27;
const static unsigned m_k = 73;
const static unsigned m_l = 31;
const static unsigned s_k = 55;
const static unsigned s_l = 24;

void build(unsigned n);
void random_init();
void array_init(const unsigned *a);

public:
explicit rng(unsigned n = 98) { build(n); random_init(); }
rng(unsigned n, const unsigned *a) {

build(n);
if (n==k) array_init(a);
else throw std::invalid_argument("unsupported length");

}
~rng();
unsigned draw();

};
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Default Copy and Assignment

• By defining a class you get two more ‘gifts’
• A default copy constructor :

• builds an instance from another object of the class
• by memberwise copy
• it’s a necessity to pass objects by value in function calls

• A default = assignment operator :
• performs a memberwise copy
• it’s a necessity to support objects assignments
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Default Copy and Assignment

• When a data member is a pointer, memberwise copy is said
to be shallow copy
rng r1;
rng r2 = r1; // call copy constructor: trouble here
rng r3;

r3 = r2; // call copy assignment: trouble here

• May cause memory leaks overwriting the previous pointer
content

• May cause double deletion of the same memory area in
destructors (a fatal error)

• We need to explicitly define deep copy constructor and
assignment



Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

lfrng.h Deep Copies

class rng {
unsigned k, l;
unsigned imk, iml;
unsigned *hstr;

const static unsigned l_k = 98;
const static unsigned l_l = 27;
const static unsigned m_k = 73;
const static unsigned m_l = 31;
const static unsigned s_k = 55;
const static unsigned s_l = 24;

void build(unsigned n);
void random_init();
void array_init(const unsigned *a);
void copy_in(const rng& g);

public:
explicit rng(unsigned n = 98) { build(n); random_init(); }
rng(unsigned n, const unsigned *a) {

build(n);
if (n==k) array_init(a);
else throw std::invalid_argument("unsupported length");

}
~rng();
unsigned draw();

rng(const rng& g) { copy_in(g); } // copy constructor
rng& operator= (const rng& g); // copy assignment

};
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Implementing Deep Copies

• The combination of reference and const arguments in copy
constructor and assignment operator is mandatory

• Copy construction and assignment have much in common
• But one big difference:

• the left operand of the assignment operator must already
exist

• thus it contains an already allocated history array, which
should be deleted first

• But what about g = g?
• It’s perfectly legal!
• And we’d better not delete the history array in that case!

• this it’s a reserved keyword, the address of the object the
method was invoked on

• For the assignment operator, its left operand
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Adding Deep Copy to lfrng.cpp

(Includes and previously defined methods unchanged)

void rng::copy_in(const rng& g) {
k = g.k;
l = g.l;
hstr = new unsigned[k];
memcpy(hstr, g.hstr, k*sizeof(unsigned));
imk = g.imk;
iml = g.iml;

}

rng& rng::operator= (const rng& g) {
if (this != &g) {

delete[] hstr;
copy_in(g);

}
return *this;

}
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Few Thoughts on RNG Copy &
Assignment

• They could be unsafe if used without care
• The same term of the sequence could be used more than

once in a simulation
• We’d better to get rid of them
• We could make them private

• They could be useful if used with care
• E.g. to compare algorithms
• Or for very specific algorithms that need the same sequence

more than once
• best reasons are debugging and class specialization

• Let’s make them protected
• I.e. only selected classes and functions will be able to

access them
• More on this later
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lfrng.h Private Deep Copies

class rng {
unsigned k, l;
unsigned imk, iml;
unsigned *hstr;

const static unsigned l_k = 98;
const static unsigned l_l = 27;
const static unsigned m_k = 73;
const static unsigned m_l = 31;
const static unsigned s_k = 55;
const static unsigned s_l = 24;

void build(unsigned n);
void random_init();
void array_init(const unsigned *a);
void copy_in(const rng& g);

rng(const rng& g) { copy_in(g); } // copy constructor
rng& operator= (const rng& g); // copy assignment

public:
explicit rng(unsigned n = 98) { build(n); random_init(); }
rng(unsigned n, const unsigned *a) {

build(n);
if (n==k) array_init(a);
else throw std::invalid_argument("unsupported length");

}
~rng();
unsigned draw();

};
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lfrng.h Protected Deep Copies

class rng {
unsigned k, l;
unsigned imk, iml;
unsigned *hstr;

const static unsigned l_k = 98;
const static unsigned l_l = 27;
const static unsigned m_k = 73;
const static unsigned m_l = 31;
const static unsigned s_k = 55;
const static unsigned s_l = 24;

void build(unsigned n);
void random_init();
void array_init(const unsigned *a);
void copy_in(const rng& g);

protected:
rng(const rng& g) { copy_in(g); } // copy constructor
rng& operator= (const rng& g); // copy assignment

public:
explicit rng(unsigned n = 98) { build(n); random_init(); }
rng(unsigned n, const unsigned *a) {

build(n);
if (n==k) array_init(a);
else throw std::invalid_argument("unsupported length");

}
~rng();
unsigned draw();

};
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Better Lag Management

• Up to now, we only support three good pairs of lags, which
is easy

• But there is a numerable infinity available
• So we could add more in future releases
• Managing them with names is tough and requires code

changes

• A sensible plan:
• Add a static table of lags pairs to the class
• Parameterize the logic to choose the right one

• We need a base type for this table, but don’t want to pollute
or cause name clashes
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lfrng.h: Table of Lags

class rng {
unsigned k, l;
unsigned imk, iml;
unsigned *hstr;

struct pair {
unsigned k, l;
pair(unsigned i, unsigned j) : k(i), l(j) {}

};
const static unsigned n_lags = 3;
const static pair lags[n_lags];

void build(unsigned n);
void random_init();
void array_init(const unsigned *a);
void copy_in(const rng& g);

protected:
rng(const rng& g) { copy_in(g); }
rng& operator= (const rng& g);

public:
explicit rng(unsigned n = 98) { build(n); random_init(); }
rng(unsigned n, const unsigned *a) {

build(n);
if (n==k) array_init(a);
else throw std::invalid_argument("unsupported length");

}
~rng();
unsigned draw();

};
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Nested Classes & More

• Nested classes are classes defined inside another class
• Only visible in the enclosing class scope
• Good for local utilities

• Initialization of data members:
• is better performed by invoking their constructor directly
• unless preliminary calculations are needed

• Unfortunately, static array members cannot be initialized
inside the class

• We’ll put initialization in lfrng.cpp, where we have to
change build as well
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lfrng.cpp: Table of Lags

#include <exception>
#include "lfrng.h"

using namespace LFRNG;

const rng::pair rng::lags[rng::n_lags] = {rng::pair(55,24),
rng::pair(73,31),
rng::pair(98,27)};

void rng::build(unsigned n) {
int i;

for(i = 0; i < n_lags; ++i) {
l = lags[i].l;
k = lags[i].k;
if (n <= k) break;

}
if (n > k) throw std::invalid_argument("unsupported length");

hstr = new unsigned[k];
}

Other methods follow unchanged
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Static & Const Methods

• It would be nice for users to know:
• maximum length supported by rng
• actual length of a rng object

• Let’s add two query methods

• Wait! To call max_len() we need an instance of the class
• This is nonsensical
• Let’s make it callable independently

• static methods can be called without instantiating the
class, like this:
unsigned ml = rng::max_len();

• const methods cannot modify the object
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lfrng.h: Table of Lags

class rng {
unsigned k, l;
unsigned imk, iml;
unsigned *hstr;

struct pair {
unsigned k, l;
pair(unsigned i, unsigned j) : k(i), l(j) {}

};
const static unsigned n_lags = 3;
const static pair lags[n_lags];

void build(unsigned n);
void random_init();
void array_init(const unsigned *a);
void copy_in(const rng& g);

protected:
rng(const rng& g) { copy_in(g); }
rng& operator= (const rng& g);

public:
explicit rng(unsigned n = 98) { build(n); random_init(); }
rng(unsigned n, const unsigned *a) {

build(n);
if (n==k) array_init(a);
else throw std::invalid_argument("unsupported length");

}
~rng();
static unsigned max_len() { return lags[n_lags-1].k; }
unsigned len() const { return k; }
unsigned draw();

};
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A Final Touch

• Let’s make draw() method protected
• And use the function call operator () to draw terms of the

sequence

• Thus, if g is an instance of LFRNG::rng class, we can draw
random numbers like this:
i = g();

• An object like this is termed a functor

• We are doing this for two reasons
• It’s unbelievably cool! Isn’t it?
• Will come useful later on



Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

lfrng.h: Table of Lags

class rng {
unsigned k, l;
unsigned imk, iml;
unsigned *hstr;

struct pair {
unsigned k, l;
pair(unsigned i, unsigned j) : k(i), l(j) {}

};
const static unsigned n_lags = 3;
const static pair lags[n_lags];

void build(unsigned n);
void random_init();
void array_init(const unsigned *a);
void copy_in(const rng& g);

protected:
unsigned draw();
rng(const rng& g) { copy_in(g); }
rng& operator= (const rng& g);

public:
explicit rng(unsigned n = 98) { build(n); random_init(); }
rng(unsigned n, const unsigned *a) {

build(n);
if (n==k) array_init(a);
else throw std::invalid_argument("unsupported length");

}
~rng();
static unsigned max_len() { return lags[n_lags-1].k; }
unsigned len() const { return k; }
unsigned operator() () { return draw(); }

};
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Hands-on Session #2

• Time to try the latest and greatest version

• Check all misuses are not allowed anymore
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What Objects are Good For?

• Tie together data structures and their manipulating functions
• Protect innards of a data type from inappropriate access
• Hide implementation details
• Automate elaborate initialization and disposal of data

structures
• Control in detail what operations can be performed on a

data type

• And more...
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Outline

1 Do you Need an Object?

2 Inheritance and Polymorphism
Heads and Tails
Floating Point RNGs
Summing it Up

3 Class I/O
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A Coin Class

#include <limits>

// rng class definition omitted

class coin : public rng {
public:

explicit coin(unsigned n=98) : rng(n) {}
coin(unsigned n, const unsigned *a) : rng(n,a) {}
bool operator() () {

unsigned h = std::numeric_limits<unsigned>::max()/2;
return rng::draw() > h;

}
};
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Derived and Base Classes

• LFRNG::coin is a derived class of LFRNG::rng, i.e.:
• inherits all rng members
• may ovverride them or add new ones
• has access to public and protected rng members

• rng is a public base class of coin:
• all rng public members (like max_len() or len()) are

accessible through coin
• classes derived from coin have access to rng protected

members
• Were rng a protected base class of coin:

• only coin methods and classes derived from coin would
have access to rng public and protected members

• Were rng a private base class of coin:
• only coin has access to rng public and protected members
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Constructors & Destructors in
Derivation

• Base class constructor must be invoked:
• before constructing data members possibly added in the

derived class
• between a : and the derived class constructor body

• Common mistake: should you write
coin(unsigned n) {};

the base class constructor would still be implicitly invoked
first, not the one you want however!

• Destructors:
• take no parameters, so implicit invocation is ok
• are invoked in the opposite order

• As we added no data members in coin, the bonus default
destructor is all we need
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Methods Override

• The coin class has its own constructors and destructors
• max_len() and len() are the base class ones
• () operator is overridden to do the right thing

• draw a random unsigned integer using its base class
protected method draw()

• converting it to a bool according to which half of its range it
falls into

• By the way:
• limits is the C++ header providing info on integer and

floating point types
• in form of static methods of special purpose classes
• std::numeric_limits<type> is a template class (guess

what, we’ll learn more later)

• Good ol’ C defines are provided in the climits header to
ease conversion, but avoid them in new codes
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Hands-on Session #3

• Toss the coin

• Derive from LFRNG::rng two classes to generate odd and
even random numbers

• Derive from LFRNG::rng a bingo class:
• returning integers from 1 to 90
• each of them once
• providing useful utility functions
• with reasonable behavior when extractions are over

• Hint:
1 set m to 90
2 initialize an array with integers from 1 to 90
3 generate a random index i : 0 ≤ i < m
4 swap i-th and m-th elements of the array
5 return the m-th element of the array
6 set m to m − 1
7 if m > 0 goto 3



Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

Floating Point RNGs

• We need a floating point RNG and want to reuse
LFRNG::rng, which is tested and tried

• Coins, odd and even RNGs, bingos, are special cases of an
integer RNG (isA relationship)

• A floating point RNG is not, for a number of reasons
• FP numbers mimic real numbers, which are a superset of

integers, not a subset
• Lagged Fibonacci is not the best RNG in the world, we may

possibly have to change in the future
• Other fast and very good floating point generators like AWC

or SWB are available

• We’ll not derive from LFRNG::rng, will use the latter as a
member of the new class (hasA relationship)
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frng.h

#ifndef FRNG_H
#define FRNG_H

#include <limits>
#include "lfrng.h"

namespace FPRNG {

class frng {
LFRNG::rng intgen;

public:
explicit frng(unsigned n = 98) : intgen(n) {}
frng(unsigned n, const unsigned *a): intgen(n, a) {}
unsigned len() { return intgen.len(); }
static unsigned max_len() { return LFRNG::rng::max_len(); }
double operator() () {

double m = std::numeric_limits<unsigned>::max();
return intgen()/m;

}
};

} // namespace FPRNG

#endif
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Member Classes Construction

• Data members are constructed like base classes
• Except that member name is used instead of class name

• As with base classes, members constructors can be
implicitly called

• Common mistake: writing
class foo {bar b; public: foo(bar inb) {b = inb; }};

which is equivalent to:
class foo {bar b; public: foo(bar inb) : b() {b = inb; }};

• For native types, this is irrelevant, for classes this could
double the cost of costruction of each member
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Looking for More Flexibility

• This solution is rigid
• frng generates according to a uniform distribution
• Many distributions are available and useful

• Moreover, we want to write some algorithms (like
Montecarlo integrators) independently from the actual
distribution of the RNG

• Again, class derivation comes to the rescue
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Enter Polymorphism

• In C++, pointers and references to a base class can
point/refer to a derived class

• Of course, if a method is invoked on the pointer/reference, it
will be the one of the base class

• Unless the method was made virtual, in which case the
one of the actual object class will be called

• More flexibility at a cost: consulting tables of addresses in
memory

• Access to polymorphism can be controlled:
• for public base classes, polymorphism is available to any

function
• for protected base classes, polymorphism is available only

to the derived classes and its descendants
• for private base classes, polymorphism is available only to

the derived class
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Implementing Polymorphism

• Let’s add to frng a protected draw() method
• It bridges the gap with the underlying, private generator

• Let’s make the () method a virtual function
• Let’s make it a pure virtual function by ’assigning’ 0 to it
• This makes frng an abstract class, i.e. no object can be

instantiated
• We only need it for pointers and references

• Now let’s add the furng class
• Which has nothing special, except the virtual method is not

pure

• But to realize the power of polymorphism, we need more
RNGs
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frng.h: Polymorphism

#ifndef FRNG_H
#define FRNG_H

#include <limits>
#include "lfrng.h"

namespace FPRNG {

class frng { // generic FP RNG
LFRNG::rng intgen;

protected:
double draw() {

double m = std::numeric_limits<unsigned>::max()
return intgen()/m;
}

public:
explicit frng(unsigned n = 98) : intgen(n) {}
frng(unsigned n, const unsigned *a): intgen(n, a) {}
unsigned len() { return intgen.len(); }
static unsigned max_len() { return LFRNG::rng::max_len(); }
virtual double operator() () = 0;

};

class furng : public frng { // uniform FP RNG in [0,1)
public:

explicit furng(unsigned n = 98) : frng(n) {}
furng(unsigned n, const unsigned *a): frng(n, a) {}
virtual double operator() () { return frng::draw(); }

};
} // namespace FPRNG

#endif
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frng.h: More RNGs

class fsurng : public frng { // scaled uniform FP RNG
double offset, scale;

public:
fsurng(double o, double s, unsigned n = 98) : offset(o), scale(s), frng(n) {}
fsurng(unsigned n, const unsigned *a): frng(n, a) {}
virtual double operator() () { return frng::draw()*scale + offset; }

};

class ferng : public frng { // exponential FP RNG
public:

explicit ferng(unsigned n = 98) : frng(n) {}
ferng(unsigned n, const unsigned *a): frng(n, a) {}
virtual double operator() ();

};

class fnrng : public frng { // normal FP RNG
const static double pi2 = 2.0*3.1415926535897932384626433832795;
double ndr;
bool cached;

public:
explicit fnrng(unsigned n = 98) : cached(false), frng(n) {}
fnrng(unsigned n, const unsigned *a): cached(false), frng(n, a) {}
virtual double operator() ();

};
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frng.cpp: More RNGs

#include <cmath>
#include "frng.h"

using namespace FPRNG;

double ferng::operator() () { // exponentially distributed
double r;
while(0.0 == (r = frng::draw()));
return -log(r);

}

double fnrng::operator() () { // normally distributed
double x1, x2, r2, f;

if (cached) {
cached = false;
return ndr;

}

do {
x1 = frng::draw()*2.0 - 1.0;
x2 = frng::draw()*2.0 - 1.0;
r2 = x1*x1 + x2*x2;

} while(r2 > 1.0 || 0.0 == r2);
f = sqrt(-2.0*log(r2)/r2);
ndr = x2*f;
cached = true;
return x1*f;

};
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Hands-on Session #4

• Let’s experiment how it works

• Try to instantiate and use all FP generator classes (frng
too!)

• Write a function:
• accepting an frng pointer or reference as argument
• exercising it to compute average, variance or some other

moment

• Test with all the generators we defined



Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

More Polymorphism

• A derived class can be abstract too
• And a protected method can be virtual too

• Let’s write a generic rejecton RNG class
• Basic idea of rejection generation

• you have a PDF f (x) mapping [a,b) to [0,P)
• randomly generate xi uniformly distributed in [a,b)
• randomly generate xi+1 uniformly distributed in [0,P)
• if xi+1 < f (xi) then return xi and throw xi+1 away
• otherwise throw away both and retry

• Then let’s derive from it a generator with a triangle
distribution in [−1,1)
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frng.h: Adding Rejection RNGs

class frejrng : public frng { // rejection method RNGs abstract base
protected:

virtual bool accept(double u1, double u2, double& r) = 0;
public:

explicit frejrng(unsigned n = 98) : frng(n) {}
frejrng(unsigned n, const unsigned *a): frng(n, a) {}
double operator() ();

};

class ftrianglerng : public frejrng {
protected:

virtual bool accept(double u1, double u2, double& r);
public:

explicit ftrianglerng(unsigned n = 98) : frejrng(n) {}
ftrianglerng(unsigned n, const unsigned *a): frejrng(n, a) {}

};
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frng.cpp: Adding Rejection
RNGs

double frejrng::operator() () {
double r;
while(!accept(frng::draw(), frng::draw(), r));
return r;

}

bool ftrianglerng::accept(double u1, double u2, double& r) {
r = u1*2.0 - 1.0;
if ( u2 > (1.0 - fabs(r)) )

return false;
return true;

};



Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

Hands-on Session #5

• Test it

• Then derive another for the distribution:

p(x) =


3
2x2 x ∈ [−1,1)

0 otherwise

• Or for a different distribution of your choice
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What Inheritance is Good For?

• To reuse code without rewriting it
• To properly differentiate behavior of similar classes in a

robust way
• To define methods that derived classes must implement
• To write functions that can operate on objects of different

classes in the same hierarchy
• To control in detail where polymorphism is allowed

• And more...

• A caveat : if you are concerned with performances,
polymorphism could impact them
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Outline

1 Do you Need an Object?

2 Inheritance and Polymorphism

3 Class I/O
Basics
Inheritance and I/O
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User Defined I/O

• Actually quite simple
• Just write overloaded versions of << and >>
• And make them rng friends

• A member function declaration specifies three logically
distinct things:

• the function can access the private part of class declaration
• the function is in the scope of the class
• the function must be invoked on an object (has a this pointer)

• By declaring a member function static, we get the first twos
• By declaring a function as a friend, we get only the first
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User Defined I/O for rng

• So, let’s add to rng class the declarations:
friend ostream& operator<< (ostream& s, const rng& g);
friend istream& operator>> (istream& s, rng& g);

• Write them for ostream and istream respectively
• All others streams of interest inherit from them

• Beware: rng class definition is in LFRNG namespace
• All member declarations are in the same namespace
• You don’t need to explicitly put their definitions in it
• The rng:: scope resolution in their definitions is enough
• Friends are not members!
• Their definitions must be explicitly put in the namespace
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Managing Failures

• The really important thing is to correctly address failures

• Easy for output
• The object state doesn’t change
• Failure and bad state are preserved by next operations

• Crucial for input
• The object state will change
• And we want the new one to be consistent

• Possible source of input errors:
1 read of an rng member fails
2 lags read from the stream differ from the ones already stored

in the object

• For ease of use, it is of paramount importance that the
specialized >> version behaves consistently with Standard
Library versions



Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

rng::operator<<

std::ostream& operator<< (std::ostream& s, const rng& g) {
int i;

s << g.k << ’ ’ << g.l << std::endl;
s << g.imk << ’ ’ << g.iml << std::endl;
for(i = 0; i<g.k; ++i)

s << g.hstr[i] << ’ ’;
s << std::endl;

return s;
}
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rng::operator>>

std::istream& operator>> (std::istream& s, rng& g) {
unsigned k, l, imk, iml;
unsigned *hstr;
k = l = 0;

s >> k >> l;
if (k != g.k || l != g.l) {

s.clear(std::ios_base::failbit);
return s;

} else {
hstr = new unsigned[k];
s >> imk >> iml;
for(int i = 0; i<k; ++i)

s >> hstr[i];
}
if (s) {

g.k = k;
g.l = l;
g.imk = imk;
g.iml = iml;
memcpy(g.hstr, hstr, k*sizeof(unsigned));

}
delete[] hstr;
return s;

}
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Managing Input Failures

• We first read in the lags

• By design, the object is alredy initialized so the lags must
match

• If they don’t, we fail
• By setting the stream fail state bit and returning
• s.clear() actually sets the state, very intuitive name!

• Otherwise, we read in the generator recent history in
temporary areas

• Eventually, we get rid of temporary storage



Objects
RNGs
Class
Using Classes
More Class
Polishing
Wrap Up

Inheritance
Coins
FP RNGs
Heritage

Class I/O
Basics
Inheriting I/O

In Real Life

• We are not managing new exceptions, we’d better:
try {

hstr = new unsigned[k];
} catch (...) { // catch any exception

s.clear(std::ios_base::failbit);
throw; // re-throw the catched exception

}

• It is improbable for a rng to be input by keyboard
• But a file could be changed by mistake
• We’d better:

• add a prolog and epilog string like "LFRNG::rng" in output
• and check for both on input
• and output a good checksum too
• to be verified on input
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Hands-on Session #6

• Get back at the xyz-format exercise

• Define a class for data of a single atom

• And overload I/O operators for it

• Once again, check you correctly managed exceptions using:

• file names that do not exist
• files in the wrong format
• files with missing data

• Homework assignment: building on the above class,
• define a class to hold all data from an xyz-format file
• independently of the number of atoms
• and write consistent I/O operators for them
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I/O for rng Derived Classes

• For coin, nothing to do
• A derived class can be implicitly converted to its base class
• rng overloaded I/O operators will match it
• They are ok, as coin doesn’t define new data members

• Things are different if we add or redefine data members

• Let’s imagine that for a really insane reason, we don’t want
to get the first random number again

• Let’s derive a nofirst class from rng
• throwing an exception if the first one is drawn again
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nofirst Class

class nofirst : public rng {
unsigned first;
bool takeit;

public:
struct first_twice : public std::runtime_error {

first_twice(const first_twice& e) : std::runtime_error(e) {}
first_twice(const char *s) : std::runtime_error(s) {}

};

explicit nofirst(unsigned n=98) : rng(n), takeit(true) {}
nofirst(unsigned n, const unsigned *a) : rng(n,a), takeit(true) {}

unsigned operator() () {
unsigned next = rng::draw();
if (takeit) {

first = next;
takeit = false;

} else if (next == first)
throw first_twice("first one occurred again");

return next;
}

friend std::ostream& operator<< (std::ostream& s, const nofirst& g);
friend std::istream& operator>> (std::istream& s, nofirst& g);

};
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nofirst Remarks

• Exceptions are classes
• If an exception is very specific, it’s better to define a specific

class
• Inheriting from standard ones makes it easy, but not

mandatory
• We can now catch LFRNG::nofirst::wrap

• We added data members
• Thus we have to specialize I/O operators

• They’ll invoke the base class one
• Then care of nofirst specific stuff
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nofirst I/O Operators

std::ostream& operator<< (std::ostream& s, const nofirst& g) {

return s << static_cast<const rng&>(g)
<< g.takeit << ’ ’ << g.first << std::endl;

}

std::istream& operator>> (std::istream& s, nofirst& g) {
nofirst temp(g);

s >> static_cast<rng&>(temp);
if (s)

s >> temp.takeit >> temp.first;
if (s)

g = temp;
return s;

}
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Safety First

• To invoke base class operators, we must cast to base class
references

• Otherwise, the operator would recursively call itself

• Cast of pointers and references is dangerous
• And should be limited to controlled places

• Like member and friend functions

• C casts do not allow safety checks: strongly discouraged!
• C++ static_cast<> allows for some compiler checks

• Like forbid casting const references to non-const ones

• We have to use a temporary to change the object only when
all I/O succeded

• Our protected copy constructor and assignment found a
proper use
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Hands-on Session #7

• Easy: test that I/O operators work on rng and its
descendants
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I/O for frng Inheritance Tree

• Easy, if you don’t support runtime polymorphism in I/O
• Add to frng and descendants the protected copy

constructors and assignments we dispensed with for
simplicity

• Write friend overloaded I/O operators for frng
• They simply read/write its rng member, intgen
• And will also work for furng, ferng, frejrng, and
ftrianglerng

• Then overload them for descendants adding data members

• If you need polymorphic I/O in a function accepting any
frng descendant, it’s a different story

• Make frng class a friend of rng class
• Add to frng two virtual methods: read() and write()
• Make frng I/O operators defer all actual I/O to them
• Then simply override read() and write() for descendants

adding data members
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Polymorphic I/O

void frng::write(std::ostream& s) const {

s << intgen;
}

void frng::read(std::istream& s) {
LFRNG::rng temp(this->intgen);

s >> temp;
if (s)

this->intgen = temp;
}

std::ostream& operator<< (std::ostream& s, const frng& g) {

g.write(s);
return s;

}

std::istream& operator>> (std::istream& s, frng& g) {

g.read(s);
return s;

}
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Homework Assignment

• Override read() and write() virtual methods in
• fsurng class
• fnrng class

• Their overridden versions must be modeled on nofirst I/O
operators

• But you have to use dynamic_cast<> for casting
• Much like static_cast<>
• But adds runtime safety checks

• No need to overload frng I/O operators
• That’s the beauty of runtime polymorphism!
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Strict Formatting Requirements

• frng descendants add floating point data members
• Exact translation requires a minimum precision

• Like 9 digits for floats
• And 19 digits for doubles
• Default precision (6 digits) is a bad mistake

• You must enforce it inside overridden I/O functions
• surrounding I/O operations might need a different one
• deferring issue to users is error prone and annoying

• Beware! formatting state is stateful on streams
• You’d better save it beforehand:

ios_base::fmtflags savefmt = s.flags();

to restore it when you are done:
s.flags(savefmt);
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the Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)
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