CINECA 5 CAI

- O

Scientific and Technical Computing in C++
Part1 C++-C==7?

Luca Ferraro Mario Tacconi
CINECA Roma - SCAI Department

Rome, November 2016

CINECA

5CAI Outline

Sprcmpl ing Applications and Innovation

@ Introduction
@ A First Taste
©® ABetterC

@ A Different C

@ /0 and Strings

PPeoe
CINECA

$i3t

SCAI C++ History

SuperComputing Applic

1st Taste

A Better C
Overloading
Namespaces
Default Arguments
Templates

Inlining

Memory
Exceptions

A Different C
Miscellanea

Static

Mangling

No VLAs

1/0 and
Strings
Strings
Streams

e C++ is rooted in ‘C with Classes’

¢ A language developed from 1979 to 1983
¢ Added Simula-like object oriented (OO) features to C

First C++ version defined in 1984

New versions released until an official standardization
process begun in 1989

At the same time, C++ compilers started to spread
First Standard released in 1998 (C++ '98)

Revision released in 2003 (C++ '03)

Latest and greatest C++ Standards (C++11 & C++14)

e approved in March 2011 and August 2014 respectively
e they bring significant innovations
e not covered in this course

CINECA

CINECT;5CAI C++ General Philosophy

'g Applicati

1st Taste

e C++ is all about:

A Better C
sy e program structure
Dot et e program modularization
i e program safety
Excepions e code reuse
A Different C
Miscellanea
S ¢ An incredibly rich language, combining, at different levels,
it . ;
No vLs many programming paradigms:
1/0 and
Strings e procedural
= e object oriented
e functional
e declarative

e Anincredibly rich library, providing generic data structures

and algorithms commonly used in all application domains
CINECA

SCAI C++: Good or Bad?

SuperComputing Applicatiol

istleste o They say C++ is bad for scientific & technical computing
A Better C

e — Performance is often inferior to Fortran

Dok Argumnts — It's a complex and difficult language

g — Prone to feature-driven abuses

Excapions — OO programming requires very careful design
AbiterentC o \Why C++ is good for scientific & technical computing
Manging + It's incredibly flexible and powerful

No VLAs

1/0 and
Strings
Strings
Streams

Allows for very high level, domain specific programming style
GUI and DB accesses are best programmed in C++

C++ compilers are getting better at optimizing

there’s a steadily growing number of scientific libraries and
applications written in C++

o + + +

A good language should be able to express what you need

in an easy, robust, efficient way. C++ does it.
CINECA

SCAI Words from the father of C++

SuperComputing Applic

1st Taste

A Better C
Overloading
Namespaces

Defaut Arguments No programming language is perfect. Fortunately, a

Templates

i programming language does not have to be perfect to be a
A;ﬁeremc good tool for building great systems. In fact, a

Wiscelanca general-purpose programming language cannot be perfect
“sfe'mg for all of the many tasks to which it is put. ... Thus, C++ was
0 and designed to be a good tool for building a wide variety of
ke systems and to allow a wide variety of ideas to be

o expressed directly.

(Bjarne Stroustrup)

CINECA

CINE“;SCAI Our Aims

'g Applicati

1st Taste

A Better C
Overloading
Namespaces
Default Arguments
Templates

Inlining

Memory
Exceptions

A Different C
Miscellanea

Static

Mangling

No VLAs

1/0 and
Strings
Strings
Streams

Teach you the fundamentals of the C++ ('03) language

For both reading and writing programs

Showing common patterns of OO design and programming
lllustrating best practices

Enabling you to understand that "yet there is method in’t"
Focusing on scientific and technical use cases

Note: it is impossible to cover all of the language in a few
days course

Study of good books and papers, reference manuals, and
personal practice are paramount in C++

CINECA

5CAI Outline

Sprcmpl ing Applications and Innovation

1st Taste

@ Introduction
@ A First Taste
©® ABetterC
@ A Different C

@ /0 and Strings

PPeoe
CINECA

$i3t

" SCAIl GoodoOrc Style

SuperComputing Applications and Innovation

/* roots of a 2nd degree equation with real coefficients x/
1st Taste #include <math.h>
#include <stdio.h>

int main() {
double a, b, ¢, delta, x1, x2;

printf ("Solving ax”*2+bx+c=0, enter a, b, c: ");
scanf ("%1f ,%1f ,%1f", &a, &b, &c);

delta = bxb - 4.0%axc;

if (delta < 0.0) {
fprintf (stderr, "Sorry, no real roots.\n");
return -1;

}

delta = sqrt (delta);

x1 (-b + delta) / (2.0 * a);
x2 = (-b - delta) / (2.0 * a);

printf ("Real roots: %1f, %1f\n", x1, x2); PP
return 0; CINECA

) $i3t

“ SCAl The C++ Style

SuperComputing Applications and Innovation

/* roots of a 2nd degree equation with real coefficients =*/
1st Taste #include <cmath>
#include <iostream>

using namespace std;

int main() {
double a, b, c;
cout << "Solving ax”*2+bx+c=0, enter a, b, c: ";
cin >> a >> b >> c;

double delta = bxb - 4.0xaxc;

if (delta < 0.0) {
cerr << "Sorry, no real roots.";
return -1;

}

delta = sqrt (delta);

double x1, x2;
x1 = (-b + delta) / (2.0 * a);

x2 = (-b - delta) / (2.0 * a); PPéod
CINECA
cout << "Real roots: " << x1 << ", " << x2 << endl; §;$§§

return O;

" SCAI A Definite Improvement

'g Applicati

Intro

A Better C
Overloading
Namespaces
Default Arguments
Templates

Inlining

Memory
Exceptions

A Different C
Miscellanea

Static

Mangling

No VLAs

1/0 and
Strings
Strings
Streams

I/O is amazingly easier

cout << "Solving ax*2+bx+c=0 ...";

¢ writes the string literal to the standard output stream
std: :cout

cout << "Real roots:" << xl1 << "," << x2 <<

endl;

¢ the inserter << associates left to right
e x1 and x2 are converted and concatenated
e endl is much more intuitive than " \n’

cerr << "Sorry, no real roots.";

¢ writes to the standard error stream std: : cerr
¢ the extractor >> also associates left to right

No format strings and conversion specifiers, at last!

CINECA

" SCAI More Differences

ng Applicatio
Intro

aseterc ® Standard header files lost trailing . h

Overloading H -

e e #include <iostream> provides cout, cin, cerr, as well
wlt Argumen

T as <<, >>, and end1

oy

Exceptions

A Different C

¢ And C standard header files got a beginning ¢

e e #include <cmath> gives access to functions from C
RV math.h

/0 and e use #include <cstdio> if you are really in love with
Strings printf () and scanf ()

sueams e Useful to quickly port C code

e using namespace std; gives access to C++ standard
library facilities (such as cout, cin, ...)

e More on this later
CINECA

T SCAI Hands-on Session #1

'g Applicati
Intro

ABeterC o Write the example in a file with the . cpp extension and

Namespaces H H H
Defut Argumerts compile it using
Templates

Inlining e g++ find_roots.cpp

Memory
Exceptions

A Different C
Miscellanea

Static

Mangling

No VLAs

Play with C++ streams 1/O

sllg:;: e Try commenting out using namespace std; directive
Sveams ¢ And use the std: : specifier where needed
o While getting acquainted with the environment, editor,

compiler

CINECA

 SCAl Not as Complex as You Might Fear

SuperComputing Applications and Innovation

#include <cmath>
#include <iostream>
#include <complex>

1st Taste

using namespace std;

int main () {
double a, b, c;
cout << "Solving ax”*2+bx+c=0, enter a, b, c: ";
cin >> a >> b >> c;

complex<double> delta;
delta = b * b - 4.0 x a * c;
delta = sqgrt (delta);

complex<double> zl, z2;

zl = (-b + delta) / (2.0 * a);

z2 = conj (zl);

cout << "Complex roots: " << zl << ", " << z2 << endl;

return 0; Z Ltt-:

} $i3t

T SCAI complex Numbers

'g Applicati

Intro

#include <complex>

A Better C ¢ Provides complex types, operands and functions

Overloading

Namespaces

e e complex<double> delta

'»En'm:y ¢ Quite stunning beasts at first sight!

A Different G e Real and imaginary parts are in double precision

et e complex<float> and complex<long double> also
Vengirg available

1/0 and . .

Strings e Do you want real or imaginary part?

Strings

streams e Use real (z1l) and imag(z1)

No compatibility with C99 complex.h types
e double complex zl; will be rejected

And, again, << beats print £ () hands down CINECA

SCAI Other Things to Know About C++

e e e complex

Intro

All standard operators are defined

e € e Unary operators (+, -)

EZZEF:’ZZZEM e Binary operators (+, —, *, /, +=, —=, *=, /=, ==, 1=)
.

Inlining

Exoprors e And common functions too

LD e abs () and arg () return modulus and argument
sae e norm() returns square of modulus

No VLAs ¢ Trigonometric and hyperbolic functions sin (), cos (),
/0 and tan (), sinh (), cosh(), etc

Strings

Stings e And more such as sqgrt (), exp (), log (), pow ()

Streams

Did you notice something is missing in functions names?
e In C we would have to call esqgrt (), ctan()...

Generic function names, at last!

CINECA

sz 5CAI Outline

S p rC omputing Application:

A Better C

©® ABetterC
Generic Functions
Namespace Grouping
Automatic Code Generation: Default Arguments
Automatic Code Generation: Function Templates
Automatic Code Expansion: Inlining
Dealing with Memory
Structured Exception Handling

PP4éd
CINECA

$i3t

" SCAI Greatest Common Divisor

SuperComputing Applic

Intro

Euclid’s Algorithm

1st Taste

A Better C @ Take two natural numbers aand b
el ® lLetr«— a mod b

o @® Leta—b

o O letb«r

e @ If bis not zero, go back to step 2

Herent € @ ais the GCD

Static
Mangling
No VLAs

/O and o We want to implement it in a function
Strin
~ Generalizing it to standard mathematical conventions

o e gcd(a, b) is non negative, even if a or b is less than zero
e gcd(a,0) is |4
e gcd(0,0)is 0

We want to add a least common multiple function (LCM)

CINECA

And we want it for both int and long integer types

" SCAIl GeD & LCM: Good OF C style

SuperComputing Applications and Innovation

#include "numbertheory.h"

// Greatest Common Divisor
Overloading int ged(int a, int b) {

a
b

abs (a) ;
abs (b) ;

if (a == 0)
return b;
if (b == 0)
return a;

do {

int t = a % b;
a = b;

b =t;

} while (b != 0);

return a;

}

// Least Common Multiple
int lem(int a, int b) {
if (a==0 || b == 0)
return 0;
return ax(b/ged(a,b));
}

PP4éd
CINECA

$i3t

SCAI GCD & LCM for long ints

ing Applicatio

Intro

1st Taste

A Better C

wese ~ © WecoulddoitalaC

Default Arguments

m;tesg e changing type to function arguments and return values
ol e calling 1abs () to compute the absolute value
T ¢ and changing the function names

Miscellanea

Static

e e And it works...

I/q and

ke e But C++ has a better way: function overloading!

Streams

¢ Allows for function generic names to be used for different
argument types
e And is put to good use in the C++ Standard Library

CINECA

ws o C Al GCD & LCM for long ints: C
SuperComputing Applications and Innovation Sty I e

// includes as before...
// ged() and lcm() for ints as before...

! // Greatest Common Divisor for long ints
AL long int lgcd(long int a, long int b) {

labs(a);
labs (b);

a
b

if (a == 0)
return b;
if (b == 0)
return a;

do {
long int t = a % b;
a = b;
b =t;

} while (b != 0);

return a;

}

// Least Common Multiple for long ints
long int llcm(long int a, long int b) {
if (a == Il b == 0)
return O0;
return ax(b/lged(a,b));
}

P44
CINECA

$i3t

w S C Al GCD & LCM for long ints:
SuperComputing Applications and Innovation Ove r | O ad i n g

// includes as before...
// ged() and lcm() for ints as before...

// Greatest Common Divisor
long gcd(long int a, long int b) {

Overloading

= abs(a);
= abs(b);
if (a == 0)

return b;
if (b == 0)
return a;

do {
long int t = a % b;
a = b;
b =t;

} while (b != 0);

return a;

}

// Least Common Multiple
long lcm(long int a, long int b) {
if (a==0 || b == 0)
return 0;
return ax(b/ged(a,b)); ZIII‘Et:

’ $i3t

" SCAI Function Overloading

'g Applicati

Intro

1st Taste

ageterc ® Using the same name for operations on different types is
Namespaces called overloading

Default Arguments

el e function names remain the same

ol e arguments differ in type and/or number

A Different C

Miscalanea e Useful when some functions conceptually perform the same
S'ailﬁ. y

Nowide task on different types

1/0 and

Strings

Strings
Streams

Standard practice for base types operators ...

e there is only one name for addition: +
e yet it can be used to add integers values, floating point
values, etc

. and on Standard Library functions like sgrt or abs

CINECA

SCAI Hands-on Session #2

SuperComputing Applications and Innovation

Intro

. #include "numbertheory.h"

A Better C void test_number theory(int a, int b, long c,
Namespaces long d, short s, unsigned u)
Default Arguments {

Templates

Inlining cout << " ged= " << ged(a,b) << endl;

Erommins cout << " ged= " << ged(c,d) << endl;

A Different C cout << " ged= " << ged(a,d) << endl;

Miscellanea cout << " ged= " << ged(c,0) << endl;

;'::;""g cout << " ged= " << ged(ec,0.0) << endl;

No VLAs cout << " ged= " << ged(a,s) << endl;

1/0 and cout << " ged= " << ged(c,u) << endl;

Strings }

Strings
Streams

e Write a program:

e including the function above:
e and amain () calling it with suitable arguments

e You may want to add some output to each version of the ¢,gca
function to spot which one is called

" SCAI How Overloading Works

'g Applicati

Intro

SEE o The compiler resolves which function is to be invoked by

owrors comparing the types of the actual arguments with those of
Default Arguments the formal parameterS

Templates
Inlining
Memory

et e A number of criteria are tried in order:

A Better C

T o Exact match, using no or only trivial conversions

(T[] to +T, T to const T)

e e Match using promotions and conversions

s",ﬁ:;: (bool,short,char to int, float {0 double, double {0
e long double)

¢ Match using mixed type conversions
(int to double, double {0 int, int t0 unsigned)

e |f two matches are found at the highest level, the call is

rejected as ambiguous
CINECA

" SCAIl Using Overloaded GCD

SuperComputing Applications and Innovation

Intro
1st Taste
#include "numbertheory"
A Better C
void test_number theory(int a, int b, long c, long d, short s, unsigned u)
Namespaces {
Default Arguments . .
Templates cout << " ged= " << ged(a,b) << endl; // calls gecd(int, int)
Inlining cout << " ged= " << ged(c,d) << endl; // calls gcd(long, long)
Memory cout << " ged= " << ged(a,d) << endl; // error: ged(int,int) or gcd(long, long) ???
Exceptions cout << " ged= " << ged(c,0) << endl; // error: gecd(int,int) or ged(long, long) ?°??
A Different C cout << " ged= " << ged(c,0.0) << endl; // conversion: calls gecd(long, long)
e cout << " ged= " << ged(a,s) << endl; // promotion: calls gecd(int, int)
Static cout << " ged= " << ged(c,u) << endl; // conversion: calls gcd(long, long)
Mangling }
No VLAs
1/0 and
Strings
Strings . . g
Seams e We may add an explicit type conversion to resolve a specific

call, like ged (long(a),d)
e ... or write another overloading for mixed argument types,
like long gecd(int, long)

e Let’s address this later on
CINECA

" SCAIl Using Overloaded GCD

SuperComputing Applications and Innovation

Intro
1st Taste
A Better C

Namespaces
Default Arguments
Templates

Inlining

Memory
Exceptions

A Different C

Miscellanea
Static
Mangling
No VLAs

1/0 and
Strings
Strings
Streams

What about overloading functions on return types?

int fibonacci (int n); // for small n values
long fibonacci (int n); // for larger n values
double fibonacci(int n); // for even larger n values, with approximation

No way, man ... compiler will bark!

fibonacci.cpp: In function ’'long fibonacci(int n)’:
fibonacci.cpp:51: error: new declaration ’'long fibonacci(int n)’
fibonacci.cpp:6: error: ambiguates old declaration ’'int fibonacci(int n)’

fibonacci.cpp: In function ’long fibonacci(int n)’:

fibonacci.cpp:95: error: new declaration ’'double fibonacci (int n)’
fibonacci.cpp:6: error: ambiguates old declaration ’'int fibonacci(int n)’

Return types are not taken into account to resolve
overloading!

CINECA

" SCAIl The Name Clash Problem

\g Applicati

Intro

1st Taste

A Better C

e e Suppose we want to use our GCD implementation in an
e ™ existing code and:

Inlining

Ca ¢ the code already makes use of an external GCD function

A Different C named ng.

Micalaen e or has a variable named ged

Mangling

m:nd One could be tempted to modify the previously used names
Strings to distinguish from ours

Strings

Steans e An error prone waste of time

e C++ solves the problem with namespaces

CINECA

" SCAIl Namespaces: a Scope for Names

'g Applicati

inite o Namespaces are a mechanism to express logical grouping
1st Taste
ageterc ® Let’s group functions declarations in numbertheory.h into
Overloadin,
. d namespace
Default Arguments
Templates
EE% namespace numbertheory {
Excep!i};ns long gcd(long int a, long int b);
A Different C long lcm(long int a, long int b);

Miscellanea }
Static

Mangling

No VLAs

10 and ¢ And modify function definitions in numbertheory. cpp
Strings
Strings #include "numbertheory.h"

Streams

long numbertheory::gcd(long int a, long int b) {
//. ..
}

long numbertheory::lcm(long int a, long int b) {

} e CINECA

ikt scA| Accessing Names in a Namespace

ing Applicatic

Intro

IstTaste o \We can now access our functions like that:

A Better C .
e #include <numbertheory.h>
Default Argu
T:mpl;te;g mens / / LR
Inlining : — .o .
Memofy int ged = numbertheory::gcd(a, b);
Exceptions
A Different C H .
e ¢ Or, when no name clash is present:
Static
Mangling #include <numbertheory.h>
No VLAs
/0 and using namespace numbertheory;
Strings //
Strings A
Streams int ¢ = ged(a, b);

int d = 1lcm(a, b);

¢ A using directive makes names from a namespace
available as if they had been declared outside their
namespace CINECA

SCAl The Most Important Namespace

ing Applicatic

Intro
1st Taste

A Better C
Overloading

Default Arguments
Templates

Inlining

Memory
Exceptions

A Different C
Miscellanea

Static

Mangling

No VLAs

1/0 and
Strings
Strings
Streams

e The using namespace std directive is a very common

construct to access facilities from C++ Standard Library

#include <iostream>
using namespace std;

int main() {
double a, b, c;
cout << "Solving ax”*2+bx+c=0, enter a, b, c: ";
cin >> a >> b >> c;

// ...

Which is less tedious with respect to:

#include <iostream>

int main() {
double a, b, c;
std::cout << "Solving ax”2+bx+c=0, enter a, b, c: ";

std::cin >> a >> b >> c;
// CINECA

" SCAI Namespaces Are Open

\g Applicati

Intro

1st Taste

R We can wrap existing functions/variables inside a new
etter
Overloading namespace

Default Arguments
Templates

Inlining . . .
o e And add new members into an already existing namespace
Exceptions
_ #include <numbertheory.h>
A Different C
Miscellanea
;‘:‘“‘lm namespace numbertheory {
NoVLAs const long long prime = 2147999999L;
1/0 and
Strings bool test_gcd(long a, long b) {
onse return (gcd(a, b)*lcm(a, b) == axb) &&
(gcd(a, long _prime) == 1lL) &&
(gcd (b, long prime) == 1lL) &&
(gcd(long _prime, a) == 1lL) &&
(gcd (long_prime, b) == 1L) ;

CINECA

" SCAI Namespaces are Composable

'g Applicati

Intro

istTaste | o [f @ namespace clashes (or is too long) we can alias it:

A Better C namespace NT=numbertheory;

Overloading

Default Arguments .

Jmpes e Multiple default namespaces to access names from can be
Exeptons selected

A Different C using namespace numbertheory;

Miscellanea
Static
Mangling
No VLAs

Jond e Other namespaces can be open inside a namespace
mx?s namespace numbertheory {

Streams using namespace prime_numbers;
//. ..
}
but then an:

using namespace numbertheory;

directive will open prime_numbers namespace too CINECA

using namespace prime_numbers;

" SCAIl Gayssian Distribution

S p rC omputing Application:

We want a function to compute the Gaussian distribution:

1 _=p)?
X; = e 252
Default Arguments: p(M, U) V 271'0-2 0

And we also want the ones for the quite common special
cases:

and

Easy! Overload!
CINECA

But C++ has an even easier way... §$§

" SCAIl Dpefault Arguments

ing Applicatio

Intro
1st Taste

A Better C
Overloading
Namespaces

Templates
Inlining
Memory
Exceptions

A Different C
Miscellanea

Static

Mangling

No VLAs

1/0 and
Strings
Strings
Streams

#include <cmath>

double gaussian(double x, double mu=0.0, double sigma=1.0) {
double pi2 = 2.0xacos(-1.0);
double m = x — mu;
return exp (-m*m/ (2.0*sigmaxsigma))/ (sigmaxsqgrt (pi2));

}

e Two additional overloaded versions with only one and two
arguments respectively are automatically generated

e Pay attention: it is position dependent!
¢ If one argument has a default value, all following ones must
have too
e Otherwise said:
gaussian(double x, double mu=0.0, double sigma); CINECA

is forbidden

SCAI Using Templates for ged & 1em

uperComputing Applicatio

Intro
1st Taste

A Better C
Overloading
Namespaces
Default Arguments

Using overloading simply to change type is boring and error
prone

The algorithm is the same, only the type we work with
A Different C Changes

Miscellanea
Static
Mangling
No VLAs

1/0 and
Strings
Strings
Streams

Inlining
Memory
Exceptions

Say something once, why say it again?

Do it with function templates!

o Write the function for a generic type
¢ And have the compiler generate type specific versions on
demand

CINECA

TPed4
CINECA

i

SCAI

SuperComputing Applications and Innovation

Templates

// Greatest Common Divisor
template <typename Type>
Type gcd(Type a, Type b)

{

a = abs(a);
b = abs(b);

if (a == 0)
return b;
if (b == 0)
return a;

do {
Type t = a % b;
a =b;

b =t;

} while (b != 0);

return a;

}

// Least Common Multiple
template <typename Type>
Type lcm(Type a, Type b)
{
if (a == Il b ==0)
return 0;

return ax(b/gcd<Type>(a,b));

}

GCD & LCM as Templates

PP4éd
CINECA

$i3t

" SCAI Generic Programming

SuperComputing Applicatiol

Intro
1st Taste
ABeterc ® template <typename X> specifies this is a template

Overloading
Namespaces

i o typename X declares a template parameter x that

) corresponds to any known type

e e Predefined types (int, double, etc...)

e o And user defined ones

Smeme e X can be used inside a template like a regular type
1/O and e To declare variables

Strings ¢ Or function arguments and return types

Streams

To be used, template definition must be in scope!

e That's why they are frequently put in header files
¢ As we have to do with numbertheory . h, dispensing with
numbertheory.cpp

CINECA

" SCAI Hands-on Session #3

SuperComputing Applic

Intro

Tt Taste Our templates can be called as easy as ged (a, b)

A Botier C e The template type argument will be deduced by the types of
Nemepares aanb

f’j‘f”“"’”"‘e"‘s e Or the type can be explicitly specified as in

zemo?y gcd<long> (a,d)

A Different C e Which could be annoying, but easier to read and write than a
[cast on a function argument

Novine e When deduction is ambiguous, type specification is

s mandatory

Strings
Streams

e Test the new implementation on the test program you wrote
before
e And play with the two forms

e Then try calling ged () without template type specmcatlon nr

on float or double arguments 3

 SCAl Using templates

SuperComputing Applications and Innovation

Templates #include "numbertheory.h"

void test_number theory(int a, int b, long ¢, long d, double 1f)
{

cout << " << ged<int>(a,b) << endl; // calls gcd(int, int)

cout << " << ged(a,b) << endl; // calls gecd(int, int) by automatic argument ¢
cout << " << ged<long>(c,d) << endl; // calls gcd(long, long)

cout << " << ged(c,d) << endl; // calls gcd(long, long) by automatic argument
cout << " << ged<int>(a,c) << endl; // calls gcd(int, int) convert c to int

cout << " ged= " << gecd<long>(b,d) << endl; // calls gcd(long, long) convert b to Ic
// misusage calls

cout << " ged= " << gecd(a,d) << endl; // error: gecd(int,int) or gecd(long, long) ?2??
cout << " ged= " << gecd(1lf,10.0) << endl; // calls gcd(double, double) -> error

PP4éd
CINECA

$i3t

" SCAI using Templates

uperComputing Applicatio

Intro
1st Taste

A Better C
Overloading
Namespaces

ewnimnens ® Our templates can be called as ged<int> (a, b) or
Inlining gcd<10ng> (al d)

Memory

BEEE e Which could be annoying, but easier to read and write than a

A Different cast on a function argument

arang e Or the type can be implictly deduced as in ged (a, b)

,,oo a;d e The template type argument will be deduced by the types of

P aanb

o e When deduction is ambiguous, type specification is
mandatory

CINECA

1 SCAI Templates Issues

SuperComputing Applicatiol

Intro
1st Taste

A Better C
Overloading
Namespaces
Default Arguments

Inlining
Memory
Exceptions

A Different C
Miscellanea

Static

Mangling

No VLAs

1/0 and
Strings
Strings
Streams

A code calling ged (7000.0, 105.0) will not compile

e % operator is not defined for doubles
e We are very lucky! We have been saved from ged () abuse

What if the ged () implementation didn’t make use of %?

o Beware of Frankenstein creations with templates

Moreover, a template will be recompiled for each source file
calling it

e Complex code compilation time may grow by order of

magnitudes

Enough for now. If you're in need of preventing template
instantiation for some type, or cope with mixed type return
value, look for advanced techniques such as traits and
concepts. e

i SCAI Better Than Macros

ing Applicatio

Intro
1st Taste

A Better C
Overloading
Namespaces
Default Arguments
Templates

Memory
Exceptions

A Different C
Miscellanea

Static

Mangling

No VLAs

1/0 and
Strings
Strings
Streams

Let’s imagine we need the Heaviside function
double theta (double x) {
if (x < 0.0)
return 0.0;
return 1.0;

}
The function call costs more than its execution

¢ In C, we would put a macro in a header file:

##define theta(x) ((x) < 0.0 2 0.0 : 1.0)

Trading readability and type checking for speed

In C++, we can have all of them:
inline double theta (double x) {
if (x < 0.0)
return 0.0;
return 1.0;

}
Like macros, inline functions must be put in header files

To really appreciate it, let’s look at a more complicated ciNEca
example

SC Al Efficient C Fibonacci
SuperCompulmg Applications and Innovation I m p | e m e nt at i O n

{

}

#include<errno.h>
#include "fibonacci.h"

const unsigned int FibonacciNumbers[UINT MAX FIB N+1] =

ou, 1u, 1u, 2u, 3U, 5U, 8U, 13U, 21U, 34U, 55U,

89U, 144U, 233U, 377U, 610U, 987U, 1597U, 2584U,

4181U, 6765U, 10946U, 17711U, 28657U, 46368U,

75025U, 121393U, 196418U, 317811U, 514229U,

832040U, 1346269U, 2178309U, 3524578U, 5702887U,

9227465U, 14930352U, 24157817U, 39088169U, 63245986U,
102334155U, 165580141U, 267914296U, 4334944370, 701408733U,
1134903170U, 1836311903U, 2971215073U

unsigned long fibonacci (unsigned int n) {

if (n > UINT_MAX FIB N) {
errno = ERANGE;
return UINT_MAX;

}

return FibonacciNumbers|[n];

PP4éd
CINECA

$i3t

"“E“;SCAI Way Much Better Than Macros!

\g Applicati

Intro
1st Taste

A Better C
Overloading
Namespaces
Default Arguments
Templates

Memory
Exceptions

A Different C
Miscellanea

Static

Mangling

No VLAs

1/0 and
Strings
Strings
Streams

Imagine we don’t want to pay the cost of a function call

o But still, we want as much type checking as possible

y . . .
In C, we'd put in the Fibonacci header:
f#define ONLY POSITIVE N_fib(n) \
((n) > UINT MAX FIB N ? \
(errno = ERANGE , UINT MAX) \
: FibonacciNumbers[(n)])

#define fibonacci(n) ((n)<0 ? (errno = EDOM, 0) : ONLY POSITIVE N fib(n))

Reader friendly, isn’t it?

In C++, instead, we can put in the Fibonacci header:

#include <cerrno>
inline unsigned long fibonacci (unsigned int n) {

if (n > UINT_MAX FIB N) {
errno = ERANGE;
return UINT_MAX;

}

return FibonacciNumbers[n];

}

Much better!

CINECA

" SCAI some Remarks on Inlining

'g Applicati

Intro

1sttaste o An inline function must be:

A Better © e in scope wherever is used
Namespaces ¢ with identical definitions in all the program
efault Arguments
Templates y " .

e That’s why it’s usually put in a header
Memory
Seeens e Again, there is a compile time price to pay
A Diff t C
ZiS§el:an§:en e Code expansion and recompilation take time
Novise e Use inlining only where it makes sense
1/0 and e |.e. for often called, small functions
Strings

Strings
Streams

Templates and inline functions give much more power than
the preprocessor
Preprocessor usage is explicitly discouraged in C++

e Try to restrict its use to header file
e And limit yourself to conditional directives CINECA

" SCAIl References

ng Applicatio

Intro
1st Taste

A Better C
Overloading
Namespaces
Default Arguments
Templates

Inlining

Exceptions

A Different C
Miscellanea

Static

Mangling

No VLAs

1/0 and
Strings
Strings
Streams

Like in C, arguments to functions are passed by value
e |.e. acopy is made

In C, to avoid copying big structures, we’d use pointers

int process(const event xe) {
// use *e and e->member like they were variables

}
In C++, pass by reference is supported

int process(const event& e) {
// use e and e.member as regular variables

}
C++ references come in handy also as shorthands

double& u = grid->block[b]->fields.u[k][j][i];
double& v = grid->block[b]->fields.v[k][j][i];
double& w = grid->block[b]->fields.w[k][j][i];
double& p = grid->block[b]->fields.p[k][j][i];
double& T = grid->block[b]->fields.T[k][]j][i];
// use u, v, w, p, and T as regular variables
Once initialized, C++ references cannot be altered CINECA

¢ All operators and functions act on the variable referred to

SCAI Enter new and delete

ing Applicatio

Intro
1st Taste

A Better C
Overloading
Namespaces
Default Arguments
Templates

Inlining

Exceptions

A Different C
Miscellanea

Static

Mangling

No VLAs

1/0 and
Strings
Strings
Streams

Yet pointers are still of paramount importance in C++

e Particularly for dynamic memory allocation

e |In C we would write:

signal = (data_set *)malloc(sizeof (data_set));
signal->points = n;

signal->data = (data_point x)malloc(n*sizeof (data_point));
and

free (signal->data);
free(signal);

In C++ we shall write:

signal = new data_set;

signal->points = n;

signal->data = new data_point[n];

and

delete[] signal->data;

delete signal; CINECA

Notice the specific syntax to delete an array!

SCAl The Power of new and delete

ng Applicatio

Intro
1st Taste

A Better C
Overloading
Namespaces
Default Arguments
Templates

Inlining

Exceptions

A Different C
Miscellanea

Static

Mangling

No VLAs

1/0 and
Strings
Strings
Streams

e new and delete are operators defined in <new> header

As usual, malloc () and £ree () are available
But their usage is strongly discouraged

And forgetting them is easy because new and delete are
so much handier

We'll later realize that new and delete have more features
Particularly in OO programming

Addressing all their feature in an introductory course is
impossible

Their power is enough to be the single subject of an

advanced course
CINECA

" SCAI Good Or Exception Handling

'g Applicati

Intro
1st Taste

A Better C
Overloading
Namespaces
Default Arguments
Templates

Inlining

Memory

A Different C
Miscellanea

Static

Mangling

No VLAs

1/0 and
Strings
Strings
Streams

Run-time exceptions may unexpectedly trash hours of
already performed computations

They must be proactively handled

C exception handling traditionally relies on two facilities:
® errno
¢ special return values from Standard Library functions

For example, in C we should write:

data = malloc(n*sizeof (data_point));

if ('data) {
// possibly save already computed results
// exit gracefully

These facilities are still available in C++
But C++ has a better way CINECA

Intro
1st Taste

A Better C
Overloading
Namespaces
Default Arguments
Templates

Inlining

Memory

A Different C
Miscellanea

Static

Mangling

No VLAs

1/0 and
Strings
Strings
Streams

1 SCAIL The C++ Way

Wputing Applications a

e In C++ we shall write:

try {
data = new data_point[n];
} catch (std::bad_alloc) {
// possibly save already computed results
// exit gracefully

}
or, for I/O operations:
try {

config file >> configuration;
} catch (std::ios_base::failure) {
// give error information to user
// use default configuration values or exit gracefully

e Note:

e std::bad alloc defined in new standard header
e std::ios_base: :failure defined in ios standard CINECA
header

| SCAI throw

ing Applicatio

Intro
1st Taste

A Better C
Overloading
Namespaces
Default Arguments
Templates

Inlining

Memory

A Different C
Miscellanea

Static

Mangling

No VLAs

1/0 and
Strings
Strings
Streams

It all works if the code in the try block throws exceptions on
errors

As new does

For example, on reading in the key string variable the
unknown key tempreature, the code for >> operator
could:

throw ios_base::failure ("Unknown configuration key: "+key);

Exceptions are nothing more that specific C++ objects
conveying informations about what happened
¢ You can use the ones from the Standard Library
¢ Or better define new ones according to your need, when
you'll know more C++

CINECA

" SCAI Exception Propagation

SuperComputing Applicatiol

Intro

1stTaste o \WWhen a throw statement is executed:

2 Better @ e the current block is exited

e e and so are the enclosing ones
e e propagating the exception object
e e until a try block is exited

A Different C .
Pt e On exit from the try block:

Static

Novire ¢ the propagating exception type is matched against the

1/O and catch clause

el « if a match is found, the catch block is executed

e ¢ otherwise, the exception is re-thrown to the block enclosing

the try statement and the process restart

e When the exited block ismain () :

e the exception is catched by the default catch handler
e amessage is sent to cerr and the program is terminated:ygca

" SCAI Using types as error code

SuperComputing Applications and Innovation

Intro
1st Taste

A Better C
Overloading
Namespaces
Default Arguments
Templates

Inlining

Memory

A Different C
Miscellanea

Static

Mangling

No VLAs

1/0 and
Strings
Strings
Streams

struct Zero_divide { };
struct Domain_error { };
struct Range_error { };

void compute (const Input &in, const Params &parm, Res &res) {
if (parm.denominator == 0)
throw Zero_divide;
if (parm.upper>in.upper || parm.lower<in.lower)
throw Domain_error;
if (parm.range>in.range || parm.range<in.range)
throw Range_error;

//

try {
compute (inputs, parameters, result);
} catch (Zero_divide) {
// handle zero division
} catch (Domain_error) {
// handle domain problems
} catch (Range_error) ({

// handle range problems CINECA

" SCAI structured Exception Handling

SuperComputing Applicatiol

Intro e With C facilities:
[Stiaste o exceptions must be checked for ASAP
A Better © e and managed right there

Detuun Arpaners e unless you want to use unstructured longjmp () S
g
Memory

With C++ exception propagation:

A Different C e the code is not cluttered

e ¢ exception objects can be inspected

T e and re-thrown to an upper level if appropriate
/0 and e until a try block is exited

Strings
Strings
Streams

This is of crucial importance in OO programs, that heavily
rely on composition

Once again, covering all their features in an introductory
course is impossible

Exception handling would be a very significant part of anc,yeca
advanced OO design course

TPed4

5CAI Outline

S uper rC mp(ing Application:

O A Different C
Miscellaneous Differences
Hiding Variables
Name Mangling
No Variable Length Arrays

PP4éd
CINECA

$i3t

C'NE“;5CA| Recycling C code

'g Applicati

Intro
1st Taste

A Better C
Overloading
Namespaces
Default Arguments
Templates

Inlining

Memory
Exceptions

Miscellanea
Static
Mangling
No VLAs

1/0 and
Strings
Strings
Streams

o With some exceptions, C++ is a superset of C

Well-written C code tends to be also C++ code

Some incompatibilities are deemed poor style or even
obsolete in modern C

Some differences are minor

Some differences are due to misalignment between C and
C++ Standards

Some significant differences arose as a consequence of
C++ important features

Many of them may bite you if you have to import C code in a

C++ program
CINECA

SCAI Identifiers and Functions

SuperComputing Applicatiol

Intro

istTaste | o C++ provides more reserved keywords than C does

A Better C
Overloading

e Like public, new, class, delete, ...

ey e These are allowed as identifiers in C, rejected by C++
Templates .

i e Some C Standard Library preprocessor macros are
B language keywords in C++

A Different C e Like and, or, xor, not, ...
Static

Mangling
No VLAs

Calling a function without a previous declaration is not

1/0 and .\
Strina;s allowed in C++

Rne] e Might be encountered in very old or very bad C code
C++ functions declared without parameters must be called
without arguments
¢ In C they can be called with any number and type of
arguments
¢ Might be encountered in very old or very bad C code

CINECA

CINECA | SCAI Types

ng Applicatio

Intro

stheste o C4++ enum type size is implementation defined

A Better C .

i ¢ And may differ from one enum to another

Dok Argumnts e In C enums are ints in disguise

Templates

Memory e Consistently, int values cannot be assigned to C++ enum
Exceptions .

A Different C Val’lab|eS

Nnging e C variables of any pointer type may be assigned a pointer to
No VLAs void

1/0 and s

Strings ¢ In C++ you'll be forced to cast correctly

Sveams e But good programmers cast them in C too

e A C struct can have the same name of a typedef£ that
refers to a different type
e Notin C++

e Might be encountered in very bad C code
CINECA

i 5CAI Variables

ing Applicatio

Intro
1st Taste

A Better C
Overloading

Rz e C allows for a variable to be declared without a type, and

Default Arguments

Tompletea assumes it’s int

Inlining

e e Ugly practice disallowed in C99 and C++

A Different C e Might be encountered in very old C code

Manging

e e The following is forbidden in C++:

Slltz:;: integer primes[4] = {2, 3, 5, 7, 11, 13, 17, 19};

Strings
Streams

e While legal in a C program, where the last four elements will
be discarded
e But this is a suspect bug, isn’t it?

CINECA

" SCAI Program Global Variables

'g Applicati

Intro
1st Taste

A Better C
Overloading
Namespaces
Default Arguments
Templates

Inlining

Memory
Exceptions

A Different C

Static
Mangling
No VLAs

1/0 and
Strings
Strings
Streams

The same C file scope variable can be defined multiple
times:

e in the same source file
e or in different source files
e compiler and linker will sort it out

In C++ a file scope variable can be defined only once in the
program
¢ |.e. you'll have to put the extern specifier to good use

Define your variable once in a source file:
double tabulated_function[no_of points];

Then publish it wherever needed with a header containing
the declaration:

extern double tabulated_ function[no_of points]; GINSCA

| SCAI static

ng Applicatio

Intro
1st Taste

A Better C
Overloading
Namespaces
Default Arguments
Templates

Inlining

Memory
Exceptions

A Different C

Miscellanea

Mangling
No VLAs

1/0 and
Strings
Strings
Streams

In C, a declaration like this at file scope:
static double table[1000];

makes the variable invisible to other program units

e Ditto for functions, and same in C++

However static got richer semantics in C++
Notably, all instances of a structure declared like this:

struct atom {

static int count;

int atomic_number;

/...
}i
will share a single copy of count member, if defined (and
possibly initialized) in a source file:
int atom::count = 0;
And it will be accessible to all units where the structure
definition is in scope
As a consequence, the traditional static usage is SoEss
deprecated

T SCAI Hiding Variables in C++

'g Applicati

Intro
1st Taste

A Better C
Overloading
Namespaces
Default Arguments
Templates

Inlining

Memory
Exceptions

A Different C

Miscellanea

Mangling
No VLAs

1/0 and
Strings
Strings
Streams

The polite way to hide variables in C++ is an unnamed
namespace:

namespace {
double table[1000];
}

You can put in an unnamed namespace as many variables
and functions as you need

Each unnamed namespace has an implicit using directive,
so all content is in scope in the immediataly following code

As an unnamed namespace as no hame, it is impossible to
access its content in other program units

CINECA

c.m;sc AI The Price of Overloading

'g Applicati

Intro
1st Taste]

A Better C
Overloading
Namespaces
Default Arguments
Templates

Inlining

Memory L]
Exceptions

A Different C
Miscellanea

Static o
No VLAs

1/0 and

Strings

Strings °

Streams

Function overloading and templates come at a price

e To implement it, the compiler changes function names to

include argument type descriptions

So that, bottom line, each overloaded function has a unique
name to the linker

This process, termed name mangling, can be system or
compiler dependent

For instance, compiling with g++ version 4.7.3:
e int ged(int, int) is mangled into _zZ3gedii
e long gcd(long, long) is mangled into _Z3gedll

This implies that functions written in different languages, like
C, cannot be managed like C++ ones CINECA

" SCAI The way Around

'g Applicati

Intro
1st Taste

A Better C
Overloading
Namespaces
Default Arguments
Templates

Inlining

Memory
Exceptions

A Different C

Miscellanea
Static

No VLAs

1/0 and
Strings
Strings
Streams

In order to use C external functions an extern "C"
declaration must be used

e [t inhibits name mangling on affected function names

For a single function:

extern "C" int init_som(som *m, vector *v);

e For more functions at once:

extern "C" {
int init_som(som *m, vector *v);
double train som(som *m, vector *v, double alpha);

// ...

Using C linkage on a function entails obvious limitations:
e it cannot be overloaded
e it has to be globally visible to the linker
e namespace control only affects C++ source compilation CINECa
and has no effects to the linker

A;SCA! extern "C" Common Practices

'g Applicati

Intro ¢ Need to include use a C library in a hurry?
1st Taste ° Use.

ABet_terC extern "C" {

] #include "multigrid.h"

Default Arguments }

Templates
Inlining
Memory

Sispions e Plan to use a C library in both C and C++ programs?

AbifferentC o Ny |ike in standard C header files!

i ¢ Add to header file, before all function declarations:
#ifdef cplusplus

No VLAs

I/O, and extern "C" {
Strings .
Strings #end:l. f

Streams

and after all function declarations a matching:
#ifdef _ cplusplus

}

#endif

e _ cplusplus is a preprocessor macro predefined by CINECA
the C++ compiler

= SCA Table Columns Averages in C83

SuperComputing Applications and Innovation

/* Use like:
double table[N] [M];
double averages[M];

avg (N, M, table, averages); */

int i,3;

for (3j=0; Jj<m; ++3j)
results[j] = O;

for (i=0; i<n; ++i)
for (3=0; j<m; ++3j)
results[j] += a[i*mt+j];

for (3j=0; j<m; ++3j)
results[j] /= n;

void avg(int n, int m, const double *a, double *results) {

PP4éd
CINECA

$i3t

TPed4

" SCAI Taple Columns Averages in C99

SuperComputing Applications and Innovation

// Use like:

// double table[N] [M];

// double averages|[M];

// ...

// avg(N, M, table, averages);

void avg(int n, int m, const double a[n][m], double b[m]) {
int i,3;

for (3j=0; Jj<m; ++3j)
b[j] = 0;

for (i=0; i<n; ++i)
for (3=0; j<m; ++3j)
b[j]l += alil[]];

for (3j=0; Jj<m; ++3j)

bI31 /= »; *riie
} CINECA

$i3t

T SCAL No VLAs in Ces

\g Applicati

Intro
1st Taste
A Better C

Overloading
Namespaces

e ® C99 introduced Variable Length Arrays (VLAs)

Inlining

Exeptons ¢ A feature Fortran had from ~30 years

AbiferentC o That makes function operating on arrays of arrays (of
Manging arrays...) much more natural to write and read

1/0 and . o e

Strings e C++ has no VLA (and neither will in the future)

Strings

steans ¢ One has to step back to the C83 version: it works
e Or use more powerful C++ facilities

CINECA

m SCAI Enter C++ valarrays

SuperComputing Applications and Innovation

#include<valarray>
using namespace std;

void avg(int n, int m, const valarray< valarray<double> >& a,
valarray<double>& results) {

results = 0.0; // all elements are zeroed

for (int i=0; i<n; i++)
results += a[i]; // memberwise sum

results /= n; // memberwise division by scalar

PP4éd
CINECA

$i3t

| SCAI valarrays

ing Applicatio

Intro

1st Taste

ASeterC . o STL valarrays are template array types
EE,,."?"““S e Designed for numeric computations

g e Supporting arithmetic on arrays as a whole
Excoptions e Much like with Fortran array syntax

A Different C

Miscellanea

s Assignment and other operators can be applied to the whole

Mangling arl’ay at once
Joand In C tradition, one dimensional, but easily composable
rings
Strings
Streams

Did you get it?
e They are templates
e And complex<float> is too
e C++ types can be templates as well

CINECA

" SCAI More valarray Features

'g Applicati

Intro
1st Taste

A Better C
Overloading
Namespaces
Default Arguments
Templates

Inlining

Memory
Exceptions

A Different C

Miscellanea
Static
Mangling

1/0 and
Strings
Strings
Streams

Sizing and initialization are easy

valarray<float> v0(1000); // 1000 floats == 0.0F
valarray<int> v1l(-1,1000); // 1000 ints == -1
valarray<int> v2 = -2xvl; // 1000 ints == 2
const double vd[] = {0.0, 1.0, 2.0, 3.0, 4.0};
valarray<double> v3(vd,4); // 4 elements: 0,1,2,3

int integers[]={1,2,3,4,5,6,7,8,9,10};
valarray<int> v4 (integers, 10);

Can be sliced, pretty much like Fortran array sections

valarray<double> even_numbers = v4[slice(l,v4.size()/2,2)];

Functions of the base type can be mapped elementwise

valarray<double> v5 = v3.apply(cos); // applies cos()
// to each element

CINECA
vl.size()? v3.apply (cos)? That’s class!

 SCAl Dispensing With n and m

SuperComputing Applications and Innovation

#include<valarray>
using namespace std;

void avg(const valarray< valarray<double> >& a,
valarray<double>& results) {

results = 0.0; // all elements are zeroed
int size = a.size(); // return number of elements

for (int i=0; i<size; i++)
results += a[i]; // memberwise sum

results /= size; // memberwise division by scalar

PP4éd
CINECA

$i3t

w C Al Making avg () as Generic as
SuperComputing Applications and Innovation P 0 S S i bI e

#include<valarray>
using namespace std;
template <typename T>
void avg(const valarray< valarray<T> >& a,
valarray<T>& results) {
results = 0.0; // all elements are zeroed

int size = a.size(); // return number of elements

for (int i=0; i<size; i++)
results += a[i]; // memberwise sum

results /= size; // memberwise division by scalar

PP4éd
CINECA

$i3t

TPed4

"t SCAIL Enough for now

S uper rC omputing Application:

e Our C++ implementation of avg () is:
e more readable than the C83 version
e more compact than the C99 version
e more generic than both of them
¢ as fast as one should expect

e Let’s move on to more C++ features ...

PP4éd
CINECA

$i3t

SCAI Outline

SprCmp«gApplca« and Innovation

@ Introduction
@ A First Taste
@ A Better C

ISV @ A Different C

@® 1/0 and Strings
A Taste of C++ Strings
C++ Streams Basics

P44
CINECA

$i3t

" SCAI Nl Terminated Strings

'g Applicati

Intro

istTaste | o G uses null terminated strings

2 Better @ e Represented as array of chars

e e e End marked by a " \0’ terminating characters
Templates

Inlining

penen ¢ They have both pros and cons

A Different C + Very efficient for some operations

S + Map very well to hardware architectures

Mangling
No VLAs

1/0 and
Strings

Very slow for others (notably strlen())
Support of non-US character sets is cumbersome
Arrays fixed size is a common source of buffer overflows

Streams

C++ still supports them
¢ All related functions accessible through estring header

But offers a much more usable, if slightly less efficient,
alternative CINECA

T SCAIl EasytoUse

'g Applicati

Intro
1st Taste

A Better C
Overloading
Namespaces
Default Arguments
Templates

Inlining

Memory
Exceptions

A Different C
Miscellanea

Static

Mangling

No VLAs

1/0 and
Strings

Streams

Declaration and initialization

string s = "C++ strings"; // initialized string of chars
string star (20, ’"*’); // 20 copies of ’x*’ character
string r; // an empty string

Assigment and concatenation

r = "resize";

s += " automatically";

star = s + ' ' + r; // mixing strings with chars

I/0

cout << star << ", no more hassles!" << endl
cin >> r;

Did you get it? They automatically resize!
e Thus slightly slower than array if chars
e But way much easier and safer!

Want to know the length?

e r.length() orr.size () willdo CINECA
¢ In constant time!

C'NE“;5CA| Porting C Style Code

'g Applicati

Intro
1st Taste

A Better C
Overloading
Namespaces
Default Arguments
Templates

Inlining

Memory
Exceptions

A Different C
Miscellanea

Static

Mangling

No VLAs

1/0 and
Strings

Streams

Single characters in a string can be indexed by an integer of

size_type type, ranging from 0 10 s.length () -1

Have to port a C code in a hurry? Easily done:

if (isalpha(c = s[i])) // build an histogram of chars
++histo[s[i]]; // in a string

but should you go out of bounds, you’ll be on your own

The following is safer

if (isalpha(c = s.at(i))) // throws std::out_of_ range
++histo[s.at(i)]; // on out-of-bounds access

Need to convert to a C string? Easily done:

test = strcmp(s.c_str(), star.c_str());
But it's easy to switch to C++ style:
test = s.compare (star);
And you might really like ==, !'=, >, <, >=, and <=
e Which also compare strings against arrays of chars

CINECA

CINECA SCAI

SuperComputing Applications and Innovation

Intro
1st Taste

A Better C
Overloading
Namespaces
Default Arguments
Templates

Inlining

Memory
Exceptions

A Different C
Miscellanea

Static

Mangling

No VLAs

1/0 and
Strings

Streams

More string Methods

Method

Does

string substr(size_type b,

size type e) const;

returns substring going from
position b to position e

string insert (size_type pos,

const stringé& s);

inserts s before pos,
probably changing length

size_type

find(const stringé& s,
size_type pos=0) const;

finds first occurrence of s
starting at pos

size_type

rfind(const string& s,
size_type pos=0) const;

finds first occurrence of s
going backward from pos

size_type

find first of (const string& s,
size_type pos=0) const;

finds first occurrence
of any character in s

size_type

find last_of (const string& s,
size_type pos) const;

finds last occurrence
of any character in s

size_type

find first not_of (const strings& s,
size_type pos=0) const;

finds first occurrence
of any character notin s

size_type

find last_not_of (const stringé& s,
size_type pos) const;

finds last occurrence
of any character not in s

string replace (size_type pos,

size_type n,
const stringé& s);

replaces n characters
starting from pos with s,
possibly changing length

Call them on an object like star.find (r)
const after function definition means the object is not modified

For exact behavior and default arguments, browse a C++ reference
For even more variations, browse a C++ reference

CINECA

T SCAI More Strings

'g Applicati

Intro
1st Taste
A Better C

Overloading
Namespaces

wstring is a string of wide characters

ot e Good to cope with most languages on Earth

i e Supporting the same functionalities of string

Exceptions.

AbifierentC o As usual, these are typedefed template types

Manging e The underlying template is std: :basic_string
T/g:nd e Somewhat complex

Strings e But may be used to create even more powerful strings

Streams

If you process textual data in local languages, dates, ...

e You'll better learn about the helpful std: : locale class
e But we don’t cover in this course

CINECA

| SCAI iostream

ng Applicatio

Intro
1st Taste

A Better C
Overloading
Namespaces
Default Arguments
Templates

Inlining

Memory
Exceptions

A Different C
Miscellanea

Static

Mangling

No VLAs

1/0 and
Strings
Strings

Streams are meant to convert internal binary data formats
into/from human readable sequences of characters
Accessible through <iostream> header

A using namespace std; directive will make their usage
more natural

ostream is the type used for output streams
o Like predefined cout and cerr

istream is the type used for input streams
o Like predefined cin

Most I/O is performed using << and >>

e Formally termed inserter and extractor
e Put to and get from among friends CINECA

| SCAI fstream

ng Applicatio

Intro

et e fstream header is used to access files
st laste
apeterc = ® ifstream and ofstream are used for input and output

Namespaces respectively

Default Arguments

Jmpies e fstream type can be both read from and written to

Memory
Exceptions

AbiiferentC o [iles are opened as easily as:

Miscellanea

z‘::;ﬁng string Tprobes_out = "temperature_ probes.dat";

No VLAs ifstream input("../config.dat");

1/0 and ofstream output ("results.dat");

Strings ofstream *Tprobes = new ofstream(Tprobes_out.c_str());

Strings

e Files are closed when the object goes out of scope or, if
dynamically allocated, deleted

e But you can close them earlier, if you prefer, like:
input.close();

CINECA
e Everithing else is the same

Wputing Applications a

Intro
1st Taste

A Better C o
Overloading

Namespaces

Default Arguments
Templates

Inlining

Memory °
Exceptions

A Different C
Miscellanea

Static

Mangling

No VLAs

1/0 and
Strings
Strings

1 SCAI Binary /0|

To open files in binary mode 1/0O manipulator must be used
fstream binary file
bin_file.open("data.bin",ios::in|ios::out|ios::binary);

and moving around

istream& seekg(streampos pos);
ostream& seekp (streampos pos);
streampos ostream::tellp();
streampos istream::tellg();

// moving at the beginning of file
bin file.seekg (0, ios::beg);

reading and writing interfaces are pretty simple

e data handle must be of type char =, i.e. one byte pointer
arithmetic

bin_file.write(reinterpret_cast<char *>(&my_struct), sizeof(my_struct));
bin_file.read(reinterpret_cast<char x> (&my_struct), sizeof (my_struct));

CINECA

T SCAIL - Binary ol

'g Applicati

Intro

e USe reinterpret_cast sparingly, it could be dangerous!

1steste « it forces the exchange between completely unrelated types

A Better C

i e their use is necessary in very few cases, e.g. very low level
Do wmerts data handling such as binary I/O

L,“:'g: e Ccastcan act as reinterpret_cast in some cases, SO
Exceptions don’t use it

A Different C
Miscellanea

Static

Mangling

Margin Use good ol’ C binary file 1/0 library functions

/0 and e Accessible through estdio header

Strings
Strings

Or more sophisticated alternatives

¢ Like HDF5, with its nice, object oriented C++ API
e Or more general purpose databases

To dump and retirieve objects and complex data structures
use the boost serilization library CINECA

il SCAI Stream State

ng Applicatio

Intro
1st Taste

A Better C
Overloading
Namespaces
Default Arguments
Templates

Inlining

Memory
Exceptions

A Different C
Miscellanea

Static

Mangling

No VLAs

1/0 and
Strings
Strings

Every stream has logical states

¢ Which can be queried using some bool methods

If the last 1/O operation on stream data succeeded:
e data.good () returns true
¢ and next operation might succeed too
If the last I/O operation failed:
e data.fail () returns true
e and (data) is zero, i.e. false
¢ next operation will fail too
¢ characters may have lost but the stream is otherwise
uncorrupted
When the stream got corrupted:
e data.bad () returns true
When end of file was reached:
e data.eof () returns true

Remember: each << or >> in a chain is a separate 1/0
operation!

CINECA

T SCAIL o Manipulators

'g Applicati

Intro

1st Taste

e The most frequently used:

A Better C

Overloading cout << endl;

Namespaces

Default Arguments

Templates

i e Another one good to know:
Exceptions cout << flush;

A Different C

e e Forces emission of buffered text
R o Not needed on cerr

1/0 and

Strings

Strings

e Most manipulators are accesible through the <ios> and
<iomanip> headers

¢ WARNING: formatting state of a stream is stateful!

e which means we are free from abstruse format strings

e but also implies you must not forget you set it elsewhere
CINECA

" SCAIl output Formatting Manipulators

SuperComputing Applications and Innovation

fntro e All types:

1st Taste cout << setw(1l2); // NEXT output emits exactly 12 characters

A Better C cout << left; // left justified output

mﬂ;ﬁ; cout << right; // right justified output, default

Default Arguments .

Jmpies e All numeric types:

ﬁgﬁﬂ cout << showpos; // do emit + sign for positive numbers
cout << noshowpos; // do not, default

A Different C

Miscellanea

stsc e Integer types:

Novias cout << dec; // base 10 output, default

/0 and cout << hex; // base 16 output

Strings cout << bin; // base 2 output

Strings
e Floating point types:
cout << setprecision(9); // 9 significant digits
cout << setprecision(6); // 6 digits, bad default

cout << fixed; // dd.dddd format

cout << scientific; // d.dddddEdd format

cout << uppercase; // uppercase E in scientific fmt

cout << nouppercase; // lowercase e, default CINECA
cout << showpoint; // do print trailing Os

cout << noshowpoint; // do not, default

CINECA;SCAI Input

'g Applicati

Intro
1st Taste

A Better C
Overloading
Namespaces
Default Arguments
Templates

Inlining

Memory
Exceptions

A Different C
Miscellanea

Static

Mangling

No VLAs

1/0 and
Strings
Strings

Like in C scanf (), input is very simple:

@ whitespace is skipped, by default
@® then characters are swallowed until an incompatible one or
whitespace is encountered

Manipulators:

cin >> setw(l2); // NEXT input no more than 12 characters
// or 11 for array of chars

cin >> noskipws; // don’t skip whitespace

cin >> skipws; // skip it, default

If input fails, the variable stays unchanged!
e Check stream state, if you care

Like with C scanf (), keyboard input can be troublesome

e Read in a whole line with getline (cin, string var)
e Then parse it CINECA

- SCAI /O on strings

ing Applicatio

Intro
1st Taste

A Better C
Overloading
Namespaces
Default Arguments
Templates

Inlining

Memory
Exceptions

A Different C
Miscellanea

Static

Mangling

No VLAs

1/0 and
Strings
Strings

It is sometimes very useful to convert binary data into a
string

Or convert to binary data from a string, as we said

the <sstream> header file provides:

e istringstream to convert from a string
e ostringstream to convert to a string
e stringstream for both conversions

Declaration:
string x_axis_caption;

ostringstream x caption(x_axis_caption);

All stream functionalities will work as usual

CINECA

i SCA I/O on strings

SuperComputing Applications and Innovation

Intro

e The purposes of stringstreams family is to provide

1st Taste . . R .
functionality of good ’ld C sprintf and sscanf functions

A Better C

ﬁ::ii‘:ﬂ:s string filename = "restart";

Default Arguments int index;

Templates

Inlining

Memor)

e /1

A Different C

Miscellanea // composing filename as name.NNN.txt

3ﬂ;w ostringstream osfilename;

No VLAs osfilename << filename << "." << setfill('0’)

1/0 and << index << ".txt";

Strings

Sl write_restart_file(osfilename.str (), program status);

¢ which is equivalent to the following C code

// composing filename as name-NNN.txt in C
char filename [FILENAME_MAX LEN];
sprintf (filename, "%s-%03d.txt", name, index);
CINECA
write_restart file(filename, program_ status);

C'NE“;SCAI Want to Know More?

'g Applicati

Intro

¢ You can write your own |/O operators:
o We’'ll address this later

1st Taste

A Better C
Overloading
Namespaces
Default Arguments

i Streams are also available for 'wide characters’
Memory

Exceptions e Stream state can be set and cleared

e ™€ o More manipulators are available

Static
N e And you may want to write your own
1/0 and i i
Strings e Or exploit /O exceptions
Srean e Or define a new flavor of stream
e To seamlessly manage data acquisition from HEP detectors
in your lab

e We cannot go to this level of detalil

e But it's perfectly feasible CINECA
e If you learn more about streams

CINECA SCAI

SuperComputing Applications and Innovation

Intro
1st Taste

A Better C
Overloading
Namespaces
Default Arguments
Templates

Inlining

Memory
Exceptions

A Different C
Miscellanea

Static

Mangling

No VLAs

1/0 and
Strings
Strings

SR NNV

U1 00 0 U1 &Y

oN

xyzinput.dat

.71868624e-04
.70788718e+00
.71216726e+00
.78106353e-03
.32708325e+00
.07630077e+00

.10471301e+00
.81357402e+00
.45459589e+00
.14016849e+00
.17440081e+00
.45231871e+00

.72549970e+01
.00000000e+00

0.00000000e+00

BRNDBDNDW

HRrRRRRR

N O

.06242577e-03
.71177311e+00
.25709686e-03
.70830095e+00
.32608649e+00
.07937686e+00

.22806988e+01
.49903747e+01
.09054856e+01
.36656210e+01
.09127968e+01
.36305778e+01

.00000000e+00
.72549970e+01
.00000000e+00

P RPRNMNDRJ

[R

o o

.12290507e-03
.97612206e-03
.70758408e+00
.71046762e+00
.32612953e+00
.36488865e+00

.53474911e+00
.53953861e+00
.08985422e+01
.08642081e+01
.36189883e+01
.36234531e+01

.00000000e+00
.00000000e+00
.72549970e+01

CINECA

" SCAIl Hands-on Session #5

\g Applicati

Intro

sttaste | © Write a program that:

A Better C e asks for an xyz-format file name
Namespacs e reads it with standard input operator
Default Arguments . .

Templates [] than Wl’lteS |t tO Cout

Inlining
Memory
Exceptions

AbifierentC @ YOU may Use scalar variables
Or arrays
1/0 and

Manging
Or define a struct to represent each atom and make an
S array thereof

No VLAs

The important things to try are:
manipulators to control output format
file names that do not exist

files in the wrong format

[]
[]
[]
e files with missing data GINSCA

7 SCAI Rights & Credits

'g Applicati

Intro

Tt Taste These slides are ©)CINECA 2014 and are released under
A Botier C the Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

etosans. Creative Commons license, version 3.0.

Default Arguments

g Uses not allowed by the above license need explicit, written
Memory
Excoptons permission from the copyright owner. For more information
Aslee see:

Static

Novise http://creativecommons.org/licenses/by-nc-nd/3.0/
1/0 and

Strings

Strings

Slides and examples were authored by:

Michela Botti

Federico Massaioli

Luca Ferraro

Stefano Tagliaventi giNECA

	C++ - C == ?
	Introduction
	A First Taste
	A Better C
	Generic Functions
	Namespace Grouping
	Automatic Code Generation: Default Arguments
	Automatic Code Generation: Function Templates
	Automatic Code Expansion: Inlining
	Dealing with Memory
	Structured Exception Handling

	A Different C
	Miscellaneous Differences
	Hiding Variables
	Name Mangling
	No Variable Length Arrays

	I/O and Strings
	A Taste of C++ Strings
	C++ Streams Basics

