
INTRODUCTION TO MPI –
COMMUNICATORS AND VIRTUAL

TOPOLOGIES

Introduction to Parallel Computing with MPI
and OpenMP

24 november 2017

a.marani@cineca.it

Many users are familiar with the mostly used communicator:
MPI_COMM_WORLD

2

WHAT ARE COMMUNICATORS?

A communicator can be thought as a handle to a group.

- a group is a ordered set of processes

- each process is associated with a rank

- ranks are contiguous and start from zero

Groups allow collective operations to be operated on a subset of
processes

Intracommunicators are used for communications within a single group
Intercommunicators are used for communications between two disjoint groups

DEFINITIONS & PROPERTIES

Group management:

- All group operations are local
- Groups are not initially associated with communicators
- Groups can only be used for message passing within a communicator
- We can access groups, construct groups, destroy groups

Group accessors:

MPI_GROUP_SIZE
This routine returns the number of processes in the group

MPI_GROUP_RANK
This routine returns the rank of the calling process inside a given group

Group constructors are used to create new groups from existing
ones (initially from the group associated with

MPI_COMM_WORLD; you can use mpi_comm_group to get this).

4

GROUP CONSTRUCTORS

Group creation is a local operation: no communication is needed

After the creation of a group, no communicator has been
associated to this group, and hence no communication is

possible within the new group

- MPI_COMM_GROUP(comm,group,ierr)

This routine returns the group associated with the communicator comm

- MPI_GROUP_UNION(group_a, group_b, newgroup, ierr)

This returns the ensemble union of group_a and group_b

- MPI_GROUP_INTERSECTION(group_a, group_b, newgroup, ierr)

This returns the ensemble intersection of group_a and group_b

- MPI_GROUP_DIFFERENCE(group_a, group_b, newgroup, ierr)

This returns in newgroup all processes in group_a that rare not in group_b,
ordered as in group_a

5

GROUP CONSTRUCTORS

- MPI_GROUP_INCL(group, n, ranks, newgroup, ierr)

This routine creates a new group that consists of all the n processes with
ranks ranks[0]... ranks[n-1]

Example:
group = {a,b,c,d,e,f,g,h,i,j}
n = 5
ranks = {0,3,8,6,2}
newgroup = {a,d,i,g,c}

GROUP CONSTRUCTORS

- MPI_GROUP_EXCL(group,n,ranks,newgroup,ierr)

This routine returns a newgroup that consists of all the processes in the
group after removing processes with ranks: ranks[0]..ranks[n-1]

Example:
group = {a,b,c,d,e,f,g,h,i,j}
n = 5
ranks = {0,3,8,6,2}
newgroup = {b,e,f,h,j}

Communicator access operations are local, not requiring
interprocess communication

7

COMMUNICATOR MANAGEMENT

Communicator constructors are collective and may require
interprocess communications

We will cover in depth only intracommunicators, giving only some
notions about intercommunicators.

- MPI_COMM_SIZE(comm,size,ierr)
Returns the number of processes in the group associated with the comm

- MPI_COMM_RANK(comm,rank,ierr)
Returns the rank of the calling process within the group associated with the
comm

- MPI_COMM_COMPARE(comm1,comm2,result,ierr)
Returns:

- MPI_IDENT if comm1 and comm2 are the same handle
- MPI_CONGRUENT if comm1 and comm2 have the same group

attribute
- MPI_SIMILAR if the groups associated with comm1 and comm2 have

the same members but in different rank order
- MPI_UNEQUAL otherwise

8

COMMUNICATOR ACCESSORS

- MPI_COMM_DUP(comm, newcomm,ierr)
This returns a communicator newcomm identical to the

communicator comm

9

COMMUNICATOR CONSTRUCTORS

- MPI_COMM_CREATE(comm, group, newcomm,ierr)

This collective routine must be called by all the process
involved in the group associated with comm. It returns a
new communicator that is associated with the group.
MPI_COMM_NULL is returned to processes not in the
group.

Note that the new group must be a subset of the group
associated with comm!

10

EXAMPLE (C)

#include "mpi.h"
#include <stdio.h>
int main(int argc,char **argv) {
 int rank, new_rank, nprocs, sendbuf, recvbuf, ranks1[4]={0,1,2,3},
ranks2[4]={4,5,6,7};
 MPI_Group orig_group, new_group;
 MPI_Comm new_comm;
 MPI_Init(&argc,&argv);
 MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 sendbuf = rank;
 MPI_Comm_group(MPI_COMM_WORLD, &orig_group);
 if (rank < nprocs/2)
 MPI_Group_incl(orig_group, nprocs/2, ranks1, &new_group);
 else MPI_Group_incl(orig_group, nprocs/2, ranks2, &new_group);
 MPI_Comm_create(MPI_COMM_WORLD, new_group, &new_comm);
 MPI_Allreduce(&sendbuf, &recvbuf, 1, MPI_INT, MPI_SUM, new_comm);
 MPI_Group_rank (new_group, &new_rank);
 printf("rank= %d newrank= %d recvbuf= %d\n",rank,new_rank,recvbuf);
 MPI_Finalize();
 return 0;
}

Hypothesis: nprocs=8 credits: http://static.msi.umn.edu

11

EXAMPLE (C)
RESULTS:

rank= 0 newrank= 0 recvbuf= 6

rank= 1 newrank= 1 recvbuf= 6

rank= 2 newrank= 2 recvbuf= 6

rank= 3 newrank= 3 recvbuf= 6

rank= 4 newrank= 0 recvbuf= 22

rank= 5 newrank= 1 recvbuf= 22

rank= 6 newrank= 2 recvbuf= 22

rank= 7 newrank= 3 recvbuf= 22

Hypothesis: nprocs=8 credits: http://static.msi.umn.edu

MPI_COMM_SPLIT(comm, color, key, newcomm, ierr)

This routine creates as many new groups and communicators as there are
distinct values of color.

MPI COMM SPLIT

- comm is the old communicator

- color is an array of integers specifying on which group should a process
belong to in the new communicator

- key is an array of integer that defines the rank that the process will get in the
new communicator, that will be assigned in increasing order depending on
the associated key value

- newcomm is the new communicator

The rankings in the new groups are determined by the value of the key.

MPI_UNDEFINED is used as a color when the process shouldn’t be included
in any of the new groups

MPI COMM SPLIT

if(myid%2==0){
color=1;

}else{
color=2;

}
MPI_COMM_SPLIT(MPI_COMM_WORLD,color,myid,&subcomm);
MPI_COMM_RANK(subcomm,mynewid);
printf(“rank in MPICOMM_WORLD %d”,myid,”rank in Subcomm %d”,
mynewid);

I am rank 2 in MPI_COMM_WORLD, but 1 in Comm 1.
I am rank 7 in MPI_COMM_WORLD, but 3 in Comm 2.
I am rank 0 in MPI_COMM_WORLD, but 0 in Comm 1.
I am rank 4 in MPI_COMM_WORLD, but 2 in Comm 1.
I am rank 6 in MPI_COMM_WORLD, but 3 in Comm 1.
I am rank 3 in MPI_COMM_WORLD, but 1 in Comm 2.
I am rank 5 in MPI_COMM_WORLD, but 2 in Comm 2.
I am rank 1 in MPI_COMM_WORLD, but 0 in Comm 2.

MPI COMM SPLIT – EXAMPLE (C)

The communicators and groups from a process’ viewpoint are just
handles.

Like all handles, there is a limited number available: you could (in
principle) run out!

MPI_GROUP_FREE(group, ierr)
MPI_COMM_FREE(comm,ierr)

Remember to free your handles after they are no longer needed, it
is always a good practice (like with allocatable arrays)

15

DESTRUCTORS

Intercommunicators are associated with 2 groups of disjoint
processes.

Intercommunicators are associated with a remote group and a
local group

The target process (destination for send, source for receive) is its
rank in the remote group

A communicator is either intra or inter, never both

16

INTERCOMMUNICATORS

Topology:
 extra, optional attribute that can be given to an intra-communicator;

topologies cannot be added to inter-communicators.
 can provide a convenient naming mechanism for the processes of a

group (within a communicator), and additionally, may assist the
runtime system in mapping the processes onto hardware.

VIRTUAL TOPOLOGY

A process group in MPI is a collection of n processes:

- each process in the group is assigned a rank between 0 and n-1.

- in many parallel applications a linear ranking of processes does not

 adequately reflect the logical communication pattern of the processes

 (which is usually determined by the underlying problem geometry and
 the numerical algorithm used).

Virtual topology:
 logical process arrangement in topological patterns such as 2D

or 3D grid; more generally, the logical process arrangement is
described by a graph.

VIRTUAL TOPOLOGY

Virtual process topology .vs. topology of the underlying, physical
hardware:
virtual topology can be exploited by the system in the
assignment of processes to physical processors, if this helps to
improve the communication performance on a given machine.
the description of the virtual topology depends only on the
application, and is machine-independent.

4
5

26

17
0

3

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

RING 2D-GRID

EXAMPLES

A grid of processes is easily described with a cartesian topology:
 each process can be identified by cartesian coordinates
 periodicity can be selected for each direction
 communications are performed along grid dimensions only

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

20

CARTESIAN TOPOLOGY

P0
(0,0)

P1
(0,1)

P2
(0,2)

P3
(0,3)

P4
(1,0)

P5
(1,1)

P6
(1,2)

P7
(1,3)

P8
(2,0)

P9
(2,1)

P10
(2,2)

P11
(2,3)

DATA

P0 P1 P2 P3

P4 P5 P6 P7

P8 P9 P10 P11

EXAMPLE: 2D DOMAIN
DECOMPOSITION

• Returns a handle to a new communicator to which the Cartesian topology
information is attached.

• Reorder:
• false: the rank of each process in the new group is identical to its rank in the

old group.
• True: the processes may be reordered, possibly so as to choose a good

embedding of the virtual topology onto physical machine.
• If cart has less processes than the starting communicator, leftover processes have

MPI_COMM_NULL as return value

MPI_CART_CREATE(comm_old, ndims, dims, periods, reorder,
comm_cart)

IN comm_old: input communicator (handle)

IN ndims: number of dimensions of Cartesian grid (integer)

IN dims: integer array of size ndims specifying the number of

processes in each dimension

IN periods: logical array of size ndims specifying whether the grid is

periodic (true) or not (false) in each dimension

IN reorder: ranking may be reordered (true) or not (false)

OUT comm_cart: communicator with new Cartesian topology (handle)

CARTESIAN CONSTRUCTOR

#include <mpi.h>

int main(int argc, char *argv[])
{

 MPI_Comm cart_comm;
 int dim[] = {4, 3};
 int period[] = {1, 0};
 int reorder = 0;

 MPI_Init(&argc, &argv);

 MPI_Cart_create(MPI_COMM_WORLD, 2, dim, period, reorder, &cart_comm);
 ...
}

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

EXAMPLE (C)

 MPI_Dims_Create:
 compute optimal balanced distribution of processes per coordinate

direction with respect to:
 a given dimensionality
 the number of processes in a group
 optional constraints

 MPI_Cart_coords:
 given a rank, returns process coordinates

 MPI_Cart_rank:
 given process coordinates, returns the rank

 MPI_Cart_shift:
 get source and destination rank ids (neighbours) for SendRecv

operations

CARTESIAN TOPOLOGY
UTILITIES

• Help user to select a balanced distribution of processes per
coordinate direction, depending on the number of processes in the
group to be balanced and optional constraints that can be specified
by the user

• if dims[i] is set to a positive number, the routine will not modify
the number of nodes in that i dimension

• negative value of dims[i] are erroneous

MPI_DIMS_CREATE(nnodes, ndims, dims)

IN nnodes: number of nodes in a grid (integer)

IN ndims: number of Cartesian dimensions (integer)

IN/OUT dims: integer array of size ndims specifying the number of

nodes in each dimension

MPI DIMS CREATE

dims
before call

Function call dims on
return

(0, 0)
(0, 0)
(0, 3, 0)
(0, 3, 0)

MPI_DIMS_CREATE(6, 2, dims)
MPI_DIMS_CREATE(7, 2, dims)
MPI_DIMS_CREATE(6, 3, dims)
MPI_DIMS_CREATE(7, 2, dims)

(3, 2)
(7, 1)
(2, 3, 1)
erroneous
call

MPI_DIMS_CREATE(nnodes, ndims, dims)

IN nnodes: number of nodes in a grid (integer)

IN ndims: number of Cartesian dimensions (integer)

IN/OUT dims: integer array of size ndims specifying the number of

nodes in each dimension

26

IN/OUT OF “DIMS”

integer :: dim(3), cube_comm, ierr
logical :: period(3),reorder

CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nprocs,ierr)

dim(1) = 0 ! let MPI arrange
dim(2) = 0 ! let MPI arrange
dim(3) = 3 ! I want exactly 3 planes

CALL MPI_DIMS_CREATE(nprocs, 3, dim, ierr)

if (dim(1)*dim(2)*dim(3) .LE. nprocs) then
 print *,"WARNING: some processes are not in use!"
endif

period = (.true., .true., .false.)
reorder = .false.

CALL MPI_CART_CREATE(MPI_COMM_WORLD, 3, dim, period, reorder, &
cube_comm,ierr)

USING MPI_DIMS_CREATE
(FORTRAN)

• translation of the logical process coordinates to process ranks as
they are used by the point-to-point routines
• if dimension i is periodic, when i-th coordinate is out of range,
it is shifted back to the interval 0<coords(i)<dims(i)
automatically
• out-of-range coordinates are erroneous for non-periodic dimensions

MPI_CART_RANK(comm, coords, rank)

IN comm: communicator with Cartesian structure

IN coords: integer array (of size ndims) specifying the Cartesian

coordinates of a process

OUT rank: rank of specified process

FROM COORDINATE
TO RANK

 For each MPI process in Cartesian communicator, the
coordinate whitin the cartesian topology are returned

MPI_CART_COORDS(comm, rank, maxdim, coords)

IN comm: communicator with Cartesian structure

IN rank: rank of a process within group of comm

IN maxdims: length of vector coords in the calling program

OUT coords: integer array (of size ndims) containing the Cartesain

coordinates of specified process

FROM RANK TO
COORDINATE

int cart_rank;
MPI_Comm_rank(cart_comm, &cart_rank);

int coords[2];
MPI_Cart_coords(cart_comm, cart_rank, 2, coords);

// set linear boundary values on top/left-hand domain
if (coords[0] == 0 || coords[1] == 0) {
 SetBoundary(linear(min, max), domain);
}

// set sinusoidal boundary values along lower domain
if (coords[0] == dim[0]) {
 SetBoundary(sinusoid(), domain);
}

// set polynomial boundary values along right-hand of domain
if (coords[1] == dim[1]) {
 SetBoundary(polynomial(order, params), domain);
} 30

MAPPING OF
COORDINATES (C)

Circular shift is another tipical MPI communication
pattern:

 each process communicate only with its neighbors
along one direction

 periodic boundary conditions can be set for letting
first and last processes partecipate in the
communication

4
5

26

17
0

3

CARTESIAN SHIFT:
A 1D CARTESIAN TOPOLOGY

0 1 7

such a pattern is nothing more than a 1D cartesian grid
topology with optional periodicity

 Depending on the periodicity of the Cartesian group in the specied
coordinate direction, MPI_CART_SHIFT provides the identifiers for a
circular or an end-o shift.

 In the case of an end-o shift, the value MPI_PROC_NULL may be returned
in rank_source or rank_dest, indicating that the source or the destination
for the shift is out of range.

 provides the calling process the ranks of source and destination processes
for an MPI_SENDRECV with respect to a specified coordinate direction and
step size of the shift

MPI_CART_SHIFT(comm, direction, disp, rank_source, rank_dest)

IN comm: communicator with Cartesian structure

IN direction: coordinate dimension of shift

IN disp: displacement (>0: upwards shift; <0: downwards shift

OUT rank_source: rank of source process

OUT rank_dest: rank of destination process

MPI CART SHIFT

...

integer :: dim = nprocs
integer :: period = 1
integer :: source, dest, ring_comm, status(MPI_STATUS_SIZE),ierr

CALL MPI_CART_CREATE(MPI_COMM_WORLD, 1, dim, period, 0,ring_comm,ierr)

CALL MPI_CART_SHIFT(ring_comm, 0, 1, source, dest, ierr)

CALL MPI_SENDRECV(right_boundary, n, MPI_INT, dest, rtag, left_boundary,
n, MPI_INT, source, ltag, ring_comm, status, ierr)

...

EXAMPLE (FORTRAN)

 It is often useful to partition a cartesian communicator into
subgroups that form lower dimensional cartesian subgrids

 new communicators are derived

 lower dimensional communicators cannot communicate
among them (unless inter-communicators are used)

PARTITIONING OF
CARTESIAN STRUCTURES

int dim[] = {2, 3, 4};

int remain_dims[] = {1, 0, 1}; // 3 comm with 2x4 processes 2D
grid
...
int remain_dims[] = {0, 0, 1}; // 6 comm with 4 processes 1D
topology

MPI_CART_SUB(comm, remain_dims, newcomm)

IN comm: communicator with Cartesian structure

IN remain_dims: the i-th entry of remain_dims specifies whether the

i-th dimension is kept in the subgrid (true) or is dropped (false)

(logical vector)

OUT newcomm: communicator containing the subgrid that includes the

calling process

MPI CART SUB

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35

