
MPI introduction

Alessandro Marani

Segrate, November 2017

Message passing and shared
memory parallelism

memory

message passing shared memory

message

Multiple tasks exchange
data via explicit messages

Program splits into threads
which share data via
variables in shared memory

Task 0

Task 1

Task 2

Message Passing

Unlike the shared memory model, resources are local;

Each process operates in its own environment (logical address space)
and communication occurs via the exchange of messages;

Messages can be instructions, data or synchronisation signals;

The message passing scheme can also be implemented on shared
memory architectures;

Delays are much longer than those due to shared variables in the same
memory space;

Advantages and Drawbacks

• Advantages

– Communications hardware and software are important
components of HPC system and often very highly optimised;

– Portable and scalable;

– Long history (many applications already written for it);

• Drawbacks

– Explicit nature of message-passing is error-prone and
discourages frequent communications;

– Most serial programs need to be completely re-written;

– High memory overheads.

MPI (Message Passing Interface)

MPI origin: 1992, "Workshop on Standards for Message Passing
in a Distributed Memory Environment“

60 experts from more than 40 organisations (IBM T. J. Watson
Research Center, Intel’s NX/2, Express, nCUBE’s Vertex, p4,
PARMACS, Zipcode, Chimp, PVM, Chameleon, PICL, …).

Many of them coming from the most important constructors of
parallel computers or researchers from University, government
and private research centres.

MPI (Message Passing Interface)

MPI development:

• MPI-1.0: June 1994;

• MPI-1.1: June 1995;

• MPI-1.2 e MPI-2: June 1997

• MPI-1.3 e MPI-2.1: May, June 2008

• MPI-2.2 : September 2009

• MPI-3.0 : September 2012

• MPI-3.1 : June 2015

Goals of the MPI standard

MPI’s prime goals are:

• To allow efficient implementation

• To provide source-code portability

MPI also offers:

• A great deal of functionality

• Support for heterogeneous parallel architectures

MPI2 further extends the library power (parallel I/O, Remote
Memory Access, Multi Threads, Object Oriented programming)

MPI3 aims to support exascale by including non-blocking
collectives, improved RMA and neighbourhood collectives.

MPI versions

Some of the public domain most used MPI libraries:

MPICH : Argonne National Laboratory

Open MPI : "open source" implementation of MPI-2

CHIMP/MPI : Edinburgh University

LAM : Ohio Supercomputer Center

To realize a (simple) parallel program only six MPI functions are needed.

But if the program is a complex one and the best performances are sought
for, the whole MPI library may be used, with more than a hundred functions.

http://www-unix.mcs.anl.gov/mpi/mpich/
http://www.anl.gov/
http://www.open-mpi.org/
http://www.epcc.ed.ac.uk/epcc-projects/CHIMP/
http://www.edinburgh.ac.uk/
http://www.osc.edu/

MPI introduction

What we will learn in this lesson on MPI library:

- Compiling and executing MPI programs

- C and Fortran calling syntax

- Environment

- Point to point communications

- Collective communications

- Synchronization

A note about MPI
Implementations

 The MPI standard defines the functionalities and the API, i.e. what the C
or FORTRAN calls should look like.

 The MPI standard does not define how the calls should be performed at
the system level (algorithms, buffers, etc) or how the environment is set
up (env variables, mpirun or mpiexec, libraries, etc). This is left to the
implementation.

 There are various implementations (IntelMPI, OpenMPI, MPICH, HPMPI,
etc) which have different performances, features and standards
compliance.

 On some clusters you may choose which MPI to use, on other systems you
have only the vendor-supplied version.

My first program

Fortran

program first
character(100) :: &
& message="Hello"

write(6,FMT="(A)") message

stop
end program first

C

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{

char message[100]="Hello";

printf("%s\n",message);

return 0;
}

Compiling notes

To compile programs that make use of MPI library:

mpif90/mpicc/mpiCC -o <executable> <file 1> <file 2> … <file n>

Where: <file n> - program source files

<executable> - executable file

To start parallel execution on one node only:

mpirun -np <processor_number> <executable> <exe_params>

To start parallel execution on many nodes:

mpirun -np <processor_number> -machinefile <node_list_file> \

<executable> <exe_params>

Try to compile and run with MPI the example first, either in
Fortran or in C.

My first program

Try to compile and run with MPI the example first, either in
Fortran or in C.

Well, the result is not much useful, but one thing is shown: every
MPI process run the entire program code.

How then do we take advantage of parallel execution?

My first program

My first MPI program

Fortran

program first_mpi
include 'mpif.h'
integer :: my_rank
character(100) :: message="Hello from "
integer :: ierr

call MPI_Init(ierr)
call MPI_Comm_rank(MPI_COMM_WORLD, my_rank, ierr)

write(6,FMT="(A,I3)") TRIM(message),my_rank

call MPI_Finalize(ierr)

stop
end program first_mpi

My first MPI program

C

#include "mpi.h"
#include <stdio.h>
#include <stdlib.h>
int main(int argc, char *argv[]) /* first_mpi */
{

int my_rank;
char message[100]="Hello from ";
int ierr;

ierr = MPI_Init(&argc,&argv);
ierr = MPI_Comm_rank(MPI_COMM_WORLD,&my_rank);

printf("%s %d\n",message,my_rank);

MPI_Finalize();

return 0;
}

Try to compile and run the example first_mpi, either in Fortran or
in C.

The result is more interesting, and can suggest how the program
might be parallelized.

Partitioning the data or program operations on the basis of the
process id can lead to parallel execution.

My first MPI program

My first MPI program

Fortran - add the tags -stdin all to run this program

program greetings
include 'mpif.h'
integer :: my_rank, ierr
character(100) :: message=", greetings from "
character(100) :: name

call MPI_Init(ierr)
call MPI_Comm_rank(MPI_COMM_WORLD, my_rank, ierr)

write(6,FMT="(A)") "What's your name?"
read(5,"(A)") name

write(6,FMT="(3A,I3)") "Hi ",TRIM(name),TRIM(message),my_rank

call MPI_Finalize(ierr)
end program greetings

My first MPI program

C - add the tags -stdin all to run this program

#include "mpi.h"
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[]) { /* greetings */
int my_rank, ierr;
char name[100], message[100]=", greetings from ";

MPI_Init(&argc,&argv);
MPI_Comm_rank(MPI_COMM_WORLD,&my_rank);

printf("What's your name?\n");
scanf("%s",name);
printf("Hi %s %s %d\n",name,message,my_rank);

MPI_Finalize();
return 0;

}

Compile and run with MPI the example greetings, either in Fortran
or in C.

My first MPI program

Compile and run with MPI the example greetings, either in Fortran
or in C.

Although with the flags '-stdin all' the stdin input is shared among
the processes, the query is written many times.

Some things in a program should be carried out by one process
only, but so how to share data?

My first MPI program

My first MPI program

Fortran

program greetings_comm
include 'mpif.h'
integer :: my_rank, np, sender, recipient, ierr
integer :: status(MPI_STATUS_SIZE)
character(100) :: message=", greetings from "
character(100) :: name=" "

call MPI_Init(ierr)
call MPI_Comm_rank(MPI_COMM_WORLD, my_rank, ierr)
call MPI_Comm_size(MPI_COMM_WORLD, np, ierr)

sender = my_rank - 1; recipient = my_rank + 1
if (my_rank == 0) then

write(6,FMT="(A)") "What's your name?"
read(5,"(A)") name
ln = len_trim(name)

endif
. . .

My first MPI program

Fortran
. . .

if (sender >= 0) then
tag = 1
call MPI_Recv(name, 100, MPI_CHARACTER, sender, tag, &
& MPI_COMM_WORLD, status, ierr)

endif

if (recipient < np) then
tag = 1
call MPI_Send(name, 100, MPI_CHARACTER, recipient, tag, &
& MPI_COMM_WORLD, ierr)

endif

write(6,FMT="(3A,I3)") "Hi ",TRIM(name),TRIM(message),my_rank

call MPI_Finalize(ierr)
end program greetings_comm

My first MPI program

C

#include "mpi.h"
int main(int argc, char *argv[]) /* greetings_comm */
{

int my_rank, np, sender, recipient, tag, ln, ierr;
char name[100], message[100]=", greetings from ";
MPI_Status status;

ierr = MPI_Init(&argc,&argv);
ierr = MPI_Comm_rank(MPI_COMM_WORLD,&my_rank);
ierr = MPI_Comm_size(MPI_COMM_WORLD,&np);

sender = my_rank - 1; recipient = my_rank + 1;
if (my_rank == 0) {
printf("What's your name?\n");
scanf("%s",name);
ln = strlen(name);

}
. . .

My first MPI program

C

. . .

if (sender >= 0) {
tag = 0;
ierr = MPI_Recv(&ln, 1, MPI_INT, sender, tag,

MPI_COMM_WORLD, &status);
tag = 1;
ierr = MPI_Recv(name, ln, MPI_CHAR, sender, tag,

MPI_COMM_WORLD, &status);
}

. . .

My first MPI program

C

. . .

if (recipient < np) {
tag = 0;
ierr = MPI_Send(&ln, 1, MPI_INT, recipient, tag,

MPI_COMM_WORLD);
tag = 1;
ierr = MPI_Send(name, ln, MPI_CHAR, recipient, tag,

MPI_COMM_WORLD);
}
name[ln]='\0';
printf("Hi %s %s %d\n",name,message,my_rank);

MPI_Finalize();

return 0;
}

Compile and run with MPI the example greetings_comm, either in
Fortran or in C.

Now input data is carried out by one process only. Process 0 is
often used as a 'master process' to perform I/O and to manage
data and work distribution.

My first MPI program

Header files

All Subprogram that contains calls to MPI subroutine must include the MPI header file

C:

#include <mpi.h>

Fortran:

include ‘mpif.h‘

Fortran 90:

USE MPI

Fortran 08 (MPI-3):

USE MPI_F08

The header file contains definitions of MPI constants, MPI

types and functions

FORTRAN note:
The FORTRAN include and module forms are
not equivalent: the module can also do type
checking. Some compilers gave problems with
the module but it is now highly recommended
to use the module, particularly for FORTRAN
2008 (most rigorous type-checking)

MPI syntax

Every Fortran subroutine in the MPI library returns, as the last
argument, an INTEGER type error code.

Every MPI C function returns an int value representing the error
code.

Whenever a MPI function has exited without errors, the error
code should have the value MPI_SUCCESS.

The value of MPI_SUCCESS is usually 0.

MPI syntax

include "mpif.h"

integer :: ierror

....

call MPI_send (..., ierror)

if (ierror .ne. MPI_SUCCESS) then

write (*,*)"SEND operation failed"

stop 777

end if

Error code values different from MPI_SUCCESS are
implementation dependent.

MPI syntax

fortran

fortran

fortran

C/C++

C/C++

C/C++

Generally speaking, MPI functions have the following prototype:

call MPI_name (parameter, ..., ierror)

rt = MPI_Name (parameter, ...)

To initialize the MPI environment the MPI_Init function must be called:

call MPI_INIT (ierror)

rt = MPI_Init(int *argc, char ***argv)

On ending parallel computations the MPI_Finalize function should be
called, otherwise processes could remain alive on local or remote
computing units:

call MPI_FINALIZE (ierror)

rt = MPI_Finalize();

Groups of MPI processes

A group is an ordered set of processes.

All MPI processes are organized in groups; each process belongs
to one or more groups.

Processes are sequentially ordered in an unambiguous way. In
each group each process has its own identifying number or rank.

Groups of MPI processes

Process identifying numbers are integer numbers in the range 0 ̵̶
N-1 where N is the group size.

On initializing MPI a default group is created containing all the
processes: this group is associated to the default communicator
MPI_COMM_WORLD.

If the processes are not many the default group is sufficient.
Otherwise it may be convenient to create new groups defined as
subsets, either disjoined or not, of the default group or formerly
created groups.

MPI processes

fortran

C/C++

The following function returns the extension of the group associated
to a communicator, i.e. the number of processes belonging to the
group:

call MPI_COMM_SIZE (comm, size, ierr)

ierr = int MPI_Comm_size (MPI_Comm comm, int
*size)

Where:
comm = communicator handle
size = number of processes
ierr = error code

MPI processes

fortran

C/C++

The following function returns the rank of the calling process:

call MPI_COMM_RANK (comm, rank, ierr)

ierr = MPI_Comm_rank (MPI_Comm comm, int
*rank)

Where:
comm = communicator handle
rank = process rank (a number in the range 0 - size-1)
ierr = error code

Communicator Size and Process Rank / 1

P0 P1 P2 P3 P4 P5 P6 P7

RANK = 2

SIZE = 8

size is the number of processes associated to the communicator

rank is the index of the process within a group associated to a
communicator (rank = 0,1,...,N-1). The rank is used to identify
the source and destination process in a communication

How many processes are contained within a communicator?

Communication domains
(communicators)

On MPI initialization the default communicator MPI_COMM_WORLD
is generated. It allows all the activated processes to communicate
each other.

Sometimes it is necessary to generate new communicators either by
duplicating existing ones, or by associating to newly created groups
of processes.

Communication domains
(communicators)

A new communicator should be created every time a new group of
processes is generated. A new group is always generated by choosing
processes from a wider already existing group.

The creation of a group of processes is a local operation, it is realized
at process level. On the contrary, the creation of a new
communicator is a global operation and involves (hidden)
communications among all the processes of the group.

Point to point communications

Point to point communications realize connections between two processes.

From the programmer point of view communications depend on a
communicator and are identified by a handle and a tag.

The communicator defines the processes that can be involved.

The tag is used to differentiate messages.

The handle may be useful whenever it is necessary to control the completion
of the communicating operation.

A communication is said to be locally completed if the process has terminated
the operation.

A communication is said to be globally completed when all the involved
processes have terminated the operation.

MPI Programming Model

process process

Node A

message

Y Y’

send (Y) receive (Y’)

Node B

Processor Memory

Point to point communications

Communication calls may be blocking or nonblocking.

The functions relevant to blocking calls do not return control unless data in
the message can be safely modified without changing the message data.

These functions (MPI_Send, MPI_Recv) are very reliable but the program
execution may be slowed down because the processes are blocked until the
message has been received.

The functions relevant to nonblocking calls are faster but care must be taken
that the sent data are actually received and are not corrupted.

Therefore data sent by nonblocking calls can not be modified unless it is safe
to do so. The functions MPI_Wait or MPI_Test should be called for
checking.

The Message

envelope body
source destination communicator tag buffer datatypecount

Message Structure

• Data is exchanged in the buffer, an array of count

elements of some particular MPI data type

• One argument that usually must be given to MPI routines

is the type of the data being passed.

• This allows MPI programs to run automatically in

heterogeneous environments

• C types are different from Fortran types.

Messages are identified by their envelopes. A message could
be exchanged only if the sender and receiver specify the
correct envelope

Messages

The receiving process may receive messages in random order if
they are sent by different processes.

Care must be taken to insure the correct receiving order of the
messages.

The following rules are always true:

• Messages with the same tag sent by the same process will be
received in the sending sequence.

• Messages sent by nonblocking calls will be received in the
sending order. This is important because otherwise large
messages could be received after smaller ones sent later.

Basic data types

MPI messages are sent as arrays of data homogeneous in type. In sending
and receiving calls only one data type can and shall be specified. The allowed
data types may be either basic or derived. Derived types shall be explicitly
defined in the program and explicitly registered in the MPI system.

Basic types in Fortran Basic types in C

MPI_INTEGER

MPI_REAL

MPI_DOUBLE_PRECISION

MPI_COMPLEX

MPI_DOUBLE_COMPLEX

MPI_LOGICAL

MPI_CHARACTER

MPI_BYTE

MPI_PACKED

MPI_CHAR

MPI_SHORT

MPI_INT

MPI_LONG

MPI_UNSIGNED_CHAR

MPI_UNSIGNED_SHORT

MPI_UNSIGNED

MPI_UNSIGNED_LONG

MPI_FLOAT

MPI_DOUBLE

MPI_LONG_DOUBLE

MPI_BYTE

MPI_PACKED

Sending calls

fortran

C/C++

The prototype of a sending function is:

type :: buf(count)

integer :: count, datatype, dest, tag, comm, ierror

call MPI_send(buf, count, datatype, dest, tag, &

& comm, ierror)

ierror = MPI_Send(void *buf, int count, MPI_Datatype
datatype,int dest, int tag, MPI_Comm comm);

where:
buf = array of data to be sent
count = how many elements are sent
datatype = type of data to be sent
dest = rank of the receiving process
tag = identifier of the message
comm = communicator connecting sending and receiving processes
ierror = error code

The starting position of the array to be sent must be passed to the sending call.

Receiving calls

fortran

C/C++

The prototype of a receiving call is:

integer :: source, status(MPI_STATUS_SIZE)

call MPI_recv(buf, count, datatype, source, &

& tag, comm, status, ierror)

int MPI_Recv(void *buf, int count,

MPI_Datatype datatype, int source, int tag,

MPI_Comm comm, MPI_Status *status);

where:

source = rank of the sending process

status = message info

ierror = error code

Send and Receive - FORTRAN

PROGRAM send_recv

USE mpi

implicit none

INTEGER ierr, myid, nproc

INTEGER status(MPI_STATUS_SIZE)

REAL A(2)

CALL MPI_INIT(ierr)

CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nproc, ierr)

CALL MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)

IF(myid .EQ. 0) THEN

A(1) = 3.0

A(2) = 5.0

CALL MPI_SEND(A, 2, MPI_REAL, 1, 10, MPI_COMM_WORLD, ierr)

ELSE IF(myid .EQ. 1) THEN

CALL MPI_RECV(A, 2, MPI_REAL, 0, 10, MPI_COMM_WORLD, status, ierr)

WRITE(6,*) myid,’: a(1)=’,a(1),’ a(2)=’,a(2)

END IF

CALL MPI_FINALIZE(ierr)

END

Send and Receive - C

#include <stdio.h>

#include <mpi.h>

void main (int argc, char * argv[])

{

int err, nproc, myid;

MPI_Status status;

float a[2];

err = MPI_Init(&argc, &argv);

err = MPI_Comm_size(MPI_COMM_WORLD, &nproc);

err = MPI_Comm_rank(MPI_COMM_WORLD, &myid);

if(myid == 0) {

a[0] = 3.0, a[1] = 5.0;

MPI_Send(a, 2, MPI_FLOAT, 1, 10, MPI_COMM_WORLD);

} else if(myid == 1) {

MPI_Recv(a, 2, MPI_FLOAT, 0, 10, MPI_COMM_WORLD, &status);

printf(”%d: a[0]=%f a[1]=%f\n”, myid, a[0], a[1]);

}

err = MPI_Finalize();

}

Point to point communications

There are 4 modes of sending data in MPI:

• Buffered – Data are copied in a memory area explicitly
allocated in the program. Either blocking or nonblocking calls
are available, but non blocking calls may lead to problems if
the buffer is not large enough to keep all the messages waiting
to be sent.

• Synchronous – Send operation is considered completed only if
the receiving operation has been started, i.e. the receiving
processes have provided the memory space needed to copy
the sent data. Therefore memory allocation is not an issue
because memory buffers are always made available by the
sender and the receiver. The problem is that if sending and
receiving processes are not synchronized the execution may be
slowed down.

Point to point communications

• Standard – The operation is automatically managed by the
MPI system. If buffered communications are used, memory
space is automatically allocated. Again this may lead to
memory problems if data sent are too large.

• Ready – This mode should be used with care because when
the sender starts operation the receiving process must be
ready to receive the message. If this is not the case, errors and
undefined results are produced. However, if synchronization is
granted, this may be the fastest communication mode.

Point to point communications

Receiving calls may be blocking or nonblocking only and do not
differentiate sending modes.

Summary table

SEND Blocking Nonblocking

Standard MPI_Send MPI_Isend

Ready MPI_Rsend MPI_Irsend

Synchronous MPI_Ssend MPI_Issend

Buffered MPI_Bsend MPI_Ibsend

RECEIVE Blocking Nonblocking

Standard MPI_Recv MPI_Irecv

Non Blocking communications

– Non-blocking send and receive routines will return almost

immediately. They do not wait for any communication events to

complete

– Non-blocking operations simply "request" the MPI library to perform

the operation when it is possible. The user can not predict when

that will happen.

– It is unsafe to modify the application buffer until you know for a fact

that the requested non-blocking operation was actually performed

by the library. There are "wait" routines used to do this.

– Non-blocking communications are primarily used to overlap

computation with communication.

Non-Blocking Send and Receive

C:

int MPI_Isend(void *buf, int count,

MPI_Datatype type, int dest, int tag,

MPI_Comm comm, MPI_Request *req);

int MPI_Irecv (void *buf, int count,

MPI_Datatype type, int source, int tag,

MPI_Comm comm, MPI_Request *req);

Non-Blocking Send and Receive

FORTRAN:

MPI_ISEND(buf, count, type, dest, tag, comm, req, ierr)

MPI_IRECV(buf, count, type, source, tag, comm, req, ierr)

buf array of type type (see table).

count (INTEGER) number of element of buf to be sent

type (INTEGER) MPI type of buf

dest (INTEGER) rank of the destination process

tag (INTEGER) number identifying the message

comm (INTEGER) communicator of the sender and receiver

req (INTEGER) output, identifier of the communications handle

ierr (INTEGER) output, error code (if ierr=0 no error occurs)

Point to point communications

fortran

C/C++

The following function stops execution until the data have been
safely sent or received:

SUBROUTINE MPI_WAIT(REQ, STATUS, IERR)

INTEGER, INTENT(INOUT) :: REQ

INTEGER, INTENT(OUT) :: STATUS(MPI_STATUS_SIZE)

INTEGER, INTENT(OUT) :: IERR

int MPI_Wait(MPI_Request *req, MPI_Status *status)

Where:
req = iSend or iRecv request
status = communication status
ierr = error code

If req=MPI_REQUEST_NULL nothing is done.

Point to point communications

fortran

C/C++

The following function checks if data have been safely sent or
received:

SUBROUTINE MPI_TEST(REQ, FLAG, STATUS, IERROR))

INTEGER, INTENT(INOUT) :: REQ

LOGICAL, INTENT(OUT) :: FLAG

INTEGER, INTENT(OUT) :: STATUS(MPI_STATUS_SIZE)

INTEGER, INTENT(OUT) :: IERR

int MPI_Test(MPI_Request *req, int *flag,

MPI_Status *status)

Where:
req = iSend or iRecv request
flag = true if communication has been completed
status = communication status
ierr = error code

Notes on communications

• A blocking receiving call returns only when the receiving buffer
has been completed.

• The nonblocking call MPI_Irecv does not return a message
status but a message handle MPI_Request *request. It
can be later used by the function MPI_Test to check for
communication completion or by the function MPI_Wait to
wait for completion.

• Message tags and sending processes may be wildcarded using
the constant values MPI_ANY_TAG and MPI_ANY_SOURCE
respectively. These may be used to enhance parallel efficiency.

Notes on communications

• On exiting the status array will contain useful informations.
The array size is MPI_STATUS_SIZE and two of the most
used infos are:
– status(MPI_SOURCE) = rank of the sender. It may be

particularly useful when the sender id is
MPI_ANY_SOURCE.

– status(MPI_TAG) = message tag. It may be
particularly useful when message tag is MPI_ANY_TAG.

An example
integer, dimension (2000) :: box

integer :: error_code, msg_tag=5432, sender=2

integer, dimension (MPI_STATUS_SIZE) :: status

....

call MPI_recv (box(1), 1500, mpi_integer, sender, &

& msg_tag, MPI_COMM_WORLD, status, error_code)

....

call MPI_recv (box(1501), 500, mpi_integer, &

& MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &

& status, error_code)

In this example the first 1500 elements of the array box are received
from the process with rank 2; the remaining elements are received
from whichever the sending process is, without even specifying
the message tag.

DEADLOCK

A Deadlock or a Race condition occurs when 2 (or more) processes are
blocked and each is waiting for the other to make progress.

0

terminate

Action A

Proceed

if 1 has taken

action B

1init init

compute compute

Action B

terminate

Proceed

if 0 has taken

action A

Simple DEADLOCK
PROGRAM deadlock

USE mpi

implicit none

INTEGER ierr, myid, nproc

INTEGER status(MPI_STATUS_SIZE)

REAL A(2), B(2)

CALL MPI_INIT(ierr)

CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nproc, ierr)

CALL MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)

IF(myid .EQ. 0) THEN

a(1) = 2.0

a(2) = 4.0

CALL MPI_RECV(b, 2, MPI_REAL, 1, 11, MPI_COMM_WORLD, status, ierr)

CALL MPI_SEND(a, 2, MPI_REAL, 1, 10, MPI_COMM_WORLD, ierr)

ELSE IF(myid .EQ. 1) THEN

a(1) = 3.0

a(2) = 5.0

CALL MPI_RECV(b, 2, MPI_REAL, 0, 10, MPI_COMM_WORLD, status, ierr)

CALL MPI_SEND(a, 2, MPI_REAL, 0, 11, MPI_COMM_WORLD, ierr)

END IF

WRITE(6,*) myid, ’: b(1)=’, b(1), ’ b(2)=’, b(2)

CALL MPI_FINALIZE(ierr)

END

Avoiding DEADLOCK
PROGRAM avoid_lock

USE mpi

Implicit none

INTEGER ierr, myid, nproc

INTEGER status(MPI_STATUS_SIZE)

REAL A(2), B(2)

CALL MPI_INIT(ierr)

CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nproc, ierr)

CALL MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)

IF(myid .EQ. 0) THEN

a(1) = 2.0

a(2) = 4.0

CALL MPI_RECV(b, 2, MPI_REAL, 1, 11, MPI_COMM_WORLD, status, ierr)

CALL MPI_SEND(a, 2, MPI_REAL, 1, 10, MPI_COMM_WORLD, ierr)

ELSE IF(myid .EQ. 1) THEN

a(1) = 3.0

a(2) = 5.0

CALL MPI_SEND(a, 2, MPI_REAL, 0, 11, MPI_COMM_WORLD, ierr)

CALL MPI_RECV(b, 2, MPI_REAL, 0, 10, MPI_COMM_WORLD, status, ierr)

END IF

WRITE(6,*) myid, ’: b(1)=’, b(1), ’ b(2)=’, b(2)

CALL MPI_FINALIZE(ierr)

END

Communications

Sending and receiving may be accomplished by one call only:

type :: SENDBUF, RECVBUF

integer :: SENDCOUNT, SENDTYPE, DEST, SENDTAG, RECVCOUNT, &

& RECVTYPE, SOURCE, RECVTAG, COMM, STATUS, IERROR

call MPI_SENDRECV(SENDBUF, SENDCOUNT, SENDTYPE, &

& DEST, SENDTAG, RECVBUF, RECVCOUNT, RECVTYPE, &

& SOURCE, RECVTAG, COMM, STATUS, IERROR)

ierror = MPI_Sendrecv (void *sendbuf, int sendcount,

MPI_Datatype sendtype,

int dest, int sendtag, void *recvbuf, int recvcount,

MPI_Datatype recvtype, int source, int recvtag,

MPI_Comm comm, MPI_Status *status)

fortran

C/C++

Communications
where:

SENDBUF = data buffer to be sent

SENDCOUNT = how many sent elements

SENDTYPE = sent data type

DEST = rank of the receiving process

SENDTAG = sent message tag

RECVBUF = receiving data buffer

RECVCOUNT = how many receiving elements

RECVTYPE = receiving data type

SOURCE = rank of the sending process

RECVTAG = receiving message tag

COMM = communicator

STATUS = message info

IERROR = error code

SendRecv example

#include <mpi.h>

#include <stdio.h>

int main(int argc, char *argv[])

{

int myid, numprocs, left, right,i;

int buffer[1], buffer2[1];

MPI_Status status;

MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD, &numprocs);

MPI_Comm_rank(MPI_COMM_WORLD, &myid);

right = (myid + 1) % numprocs;

left = myid - 1;

if (left < 0)

left = numprocs - 1;

buffer[0]=myid;

MPI_Sendrecv(buffer, 1, MPI_INT, right, 123, buffer2, 1, MPI_INT, left, 123,

MPI_COMM_WORLD, &status);

printf(“I am processor rank %d and I received the rank of processor
%d\n”,myid,buffer2[0]);

MPI_Finalize();

}

0 1 2 3

Useful for cyclic
communication patterns

C/C++

fortran

Communications

The following function returns how many elements have been received. The
number of bytes received is dependent on the received data type.

call MPI_get_count (status, datatype, count, ierr)

ierror = MPI_get_count (MPI_Status *status,

MPI_Datatype datatype, int *count)

fortran

C/C++

Communications
Whenever is necessary to control completion of a lot of communication
operations, the following functions may be used instead.

MPI_Waitall does block execution until the operations in LIST_REQUEST are
all completed.

MPI_Testall checks if all the operations in LIST_REQUEST are completed
(FLAG=.TRUE.).

call MPI_waitall(count, list_requests, list_status,

ierr)

call MPI_testall(count, list_requests, flag, list_status,

ierr)

ierr = MPI_Waitall (int count, MPI_Request

list_requests[], MPI_Status list_status[])

ierr = MPI_Testall (int count, MPI_Request

list_requests[], int *flag, MPI_Status

list_status[])

fortran

C/C++

Communications
The function MPI_WAITANY blocks execution until at least one of the operations in
LIST_REQUEST is locally completed.

The function MPI_TESTANY checks if at least one of the operations in
LIST_REQUEST is locally completed. On output INDEX is the position in
LIST_REQUESTS of the completed operation and RETURN_STATUS contains infos
about it.

call MPI_waitany(count, list_requests, index,

return_status, ierr)

call MPI_testany(count, list_requests, index, flag,

return_status, ierr)

ierr = MPI_Waitany (int count, MPI_Request

list_requests[], int *index, MPI_Status

*return_status)

ierr = MPI_Testany(int count, MPI_Request

list_requests[], int *index, int *flag, MPI_Status

*return_status)

Exercises

http://www.hpc.cineca.it/content/training-mpi

Here you will find some exercises of gradual difficulty, with hints
about the functions/routines to be used, solutions in C and

Fortran and Q/A in some cases

BE SMART! Exercises are for you to learn. Peeking at solutions
shouldn’t be the easy way to solve the exercises, but rather a

way to compare your ideas with the ones provided by the
teachers. Your solution may be better than ours!

For Point-to-point communications, you can do exercises
from 1 to 6

When programming with MPI, remember to…think in parallel!

http://www.hpc.cineca.it/content/training-mpi

Collective communications

Communications is a very important issue in MPI programs,
therefore their optimization is a mandatory effort.

In many cases communications involve a lot of processors and
realizing them by point-to-point communications become
inefficient and an error prone exertion.

For this reason MPI library contains functions optimized to
accomplish collective communications. Therefore using collective
communications in such cases is much more effective (and easier)
than using point-to-point communications.

Collective communications

Collective communications do not need tags for messages.

All collective communications are blocking.

Collective communication calls carry out both sending and
receiving operations.

The calls to collective communication functions should be issued
by all the processes of a given communicator.

Collective communications

Collective communications may be of two types: data transfer
and global computations.

Data transfer functions can be:

•broadcast - data are shared among all the processes

•gather - data are collected from every process

•scatter - data are distributed to the processes

Global computation functions can be:

•reduction - the result is a computed value

•scanning – partial reduction results

Collective communications example
subroutine GetData (a, b, n, my_rank, num_procs)

! Point-to-point version

real :: a, b

integer :: n, p, my_rank, num_procs, ierr, tag_a, tag_b, tag_n

include ‘mpif.h’

tag_a=1; tag_b=2; tag_n=3;

if (my_rank == 0) then

print *, ‘Enter a, b, and n’

read *, a, b, n

do p=1, num_procs-1

call MPI_Send(a, 1, MPI_REAL, p, tag_a, MPI_COMM_WORLD, ierr)

call MPI_Send(b, 1, MPI_REAL, p, tag_b, MPI_COMM_WORLD, ierr)

call MPI_Send(n, 1, MPI_INTEGER, p, tag_n, MPI_COMM_WORLD, ierr)

enddo

Collective communications example

else

call MPI_Recv(a, 1, MPI_REAL, 0, tag_a, MPI_COMM_WORLD, &

& status, ierr)

call MPI_Recv(b, 1, MPI_REAL, 0, tag_b, MPI_COMM_WORLD, &

& status, ierr)

call MPI_Recv(n, 1, MPI_INTEGER, 0, tag_n, MPI_COMM_WORLD, &

& status, ierr)

endif

return

end subroutine GetData

6 x (num_procs-1) calls issued for sending 3 scalars

Collective communications

The following function may be used to send the same data to all the processes
belonging to a communicator. A loop performing point-to-point communications
to all the processes gives the same results but is much less efficient.

type :: array

integer :: count, datatype, root, comm, ierror

call MPI_BCAST(array, count, datatype, root, comm, ierror)

ierror = MPI_Bcast(void *buffer, int count, MPI_Datatype
datatype, int root, MPI_Comm comm)

where: array = data to be sent
count = how many elements
datatype = data type of the elements
root = process owing data to be sent
comm = communicator
ierror = error code

fortran

C/C++

Collective communications example
subroutine GetData (a, b, n, my_rank)

! Collective version

real :: a, b

integer :: n, my_rank, ierr

include ‘mpif.h’

if (my_rank == 0) then

print *, ‘Enter a, b, and n’

read *, a, b, n

endif

call MPI_BCAST (a, 1, MPI_REAL , 0, MPI_COMM_WORLD, ierr)

call MPI_BCAST (b, 1, MPI_REAL , 0, MPI_COMM_WORLD, ierr)

call MPI_BCAST (n, 1, MPI_INTEGER, 0, MPI_COMM_WORLD, ierr)

end subroutine GetData

Collective communications

Gather: Every process in the communicator send the content of send_buf
to the root process that receives data and orders them in the recv_buf
array according to the rank of the sending processes.

ua td m

md a t u

ua t md

Collective communications example
subroutine GatherData (my_a, vector_a, my_rank, num_procs)

! Point-to-point version

integer :: p, my_rank, num_procs, ierr, tag_a

real :: my_a, vector_a(num_procs)

include ‘mpif.h’

integer :: status(MPI_STATUS_SIZE)

tag_a=1

if (my_rank == 0) then

vector_a(1)=my_a

do p=1, num_procs-1

call MPI_Recv(vector_a(p+1), 1, MPI_REAL, p, tag_a, &

& MPI_COMM_WORLD, status, ierr)

enddo

else

call MPI_Send(my_a, 1, MPI_REAL, 0, tag_a, MPI_COMM_WORLD, ierr)

endif; end subroutine GatherData

fortran

C/C++

Collective communications

The following function may be used whenever data dispersed among the processes have to
be collected in one ROOT process

where:

SEND_COUNT - how many elements are sent

RECV_COUNT - how many elements have to be received

type :: SEND_BUF(*), RECV_BUF(*)

integer :: SEND_COUNT, SEND_TYPE, RECV_COUNT, RECV_TYPE, ROOT, &

& COMM, IERROR, DISP(comm_size)

call MPI_Gather (SEND_BUF, SEND_COUNT, SEND_TYPE, RECV_BUF, &

& RECV_COUNT, RECV_TYPE, ROOT, COMM, IERROR)

ierror = MPI_Gather (void *send_buf, int send_count, MPI_Datatype

sendtype, void *recv_buf, int recv_count, MPI_Datatype

recv_type, int root, MPI_Comm comm)

Collective communications example

subroutine GatherData (my_a, vector_a, num_procs)

! Collective version

integer :: num_procs, ierr

real :: my_a, vector_a(num_procs)

include "mpif.h"

call MPI_Gather(my_a, 1, MPI_REAL, vector_a, 1, MPI_REAL, &

& 0, MPI_COMM_WORLD, ierr)

end subroutine GatherData

fortran

C/C++

Collective communications

The following function may be used to collect data dispersed among the
processes if each process owns a different number of elements.

In the function variants with an ending "v" the array RECV_COUNT(:) specify
how many elements are stored in each process.

The array DISP(:) specifies the position in the receiving buffer where data
coming from ith process must be copied. Positions start from 0 even in Fortran.

call MPI_Gatherv (SEND_BUF, SEND_COUNT, SEND_TYPE, RECV_BUF, &

& RECV_COUNT, DISP, RECV_TYPE, ROOT, COMM, IERROR)

ierro = MPI_Gatherv (void *send_buf, int send_count, MPI_Datatype

send_type, void *recv_buf, int *recv_count,

int *disp, MPI_Datatype recv_type, int root, MPI_Comm comm)

Collective communications

Gathering a dispersed vector when its portions do not have a fixed length is
easier (and faster) using MPI_Gatherv.

Of course the length of each portion of the dispersed vector and the position in
the global vector should still be known by the gathering process.

subroutine GatherVdata (my_a, l_a, vector_a, l_v, pos, num_proc)

! collective version

integer :: l_a, l_v

integer :: p, num_proc, ierr

real :: my_a(l_a), vector_a(l_v)

integer :: pos(num_proc), n_a(num_proc)

include "mpif.h"

Collective communications example

! A vector with the length of each portion is needed

do p = 0, num_proc-2

n_a(p+1) = pos(p+2)-pos(p+1)

enddo

n_a(num_proc) = l_v-pos(num_proc)+1

call MPI_Gatherv (my_a, l_a, MPI_REAL, vector_a, &

& n_a, pos, MPI_REAL, 0, MPI_COMM_WORLD, ierr)

end subroutine GatherVdata

Remark: the vector pos(:) in this code version must contain the positions of each
my_a in vector_a(:) beginning from 0

Collective communications

Scatter: the root process disperses the content of send_buf array to the
other processes of the communicator group.

Data are scattered according to the order of the processes.

u

md a t u

md a t u

a td m

Collective communications

Dispersing a vector from one process to the others requires at least (num_proc -
1) * 2 calls.

subroutine ScatterData (vector_a, l_v, a, l_a, my_rank, num_proc)

! Point to point version

integer :: l_v, l_a, my_rank, num_proc, tag_a, p, ierr

real :: vector_a(l_v), a(l_a)

include "mpif.h"

integer :: status(MPI_STATUS_SIZE)

Collective communications example

tag_a=1

if (my_rank == 0) then

do p = 1, num_proc-1

call MPI_Send(vector_a(l_a*p+1), l_a, MPI_REAL, p, tag_a, &

& MPI_COMM_WORLD, ierr)

enddo

a(1:l_a)=vector_a(1:l_a)

else

call MPI_Recv(a, l_a, MPI_REAL, 0, tag_a, &

& MPI_COMM_WORLD, status, ierr)

endif

end subroutine ScatterData

fortran

C/C++

Collective communications

type :: SEND_BUF(*), RECV_BUF(*)

integer :: SEND_COUNT, SEND_TYPE, RECV_COUNT, &

& RECV_TYPE, ROOT, COMM, IERROR

call MPI_Scatter (SEND_BUF, SEND_COUNT, SEND_TYPE, &

RECV_BUF, RECV_COUNT, RECV_TYPE, &

ROOT, COMM, IERROR)

ierror = MPI_Scatter (void *send_buf, int send_count,

MPI_Datatype send_type,

void *recv_buf, int recv_count, MPI_Datatype

recv_type, int root, MPI_Comm comm)

Collective communications example

subroutine ScatterData (vector_a, l_v, a, l_a)

! Collective version

integer :: l_v, l_a

real :: vector_a(l_v), a(l_a)

integer :: ierr

include "mpif.h"

call MPI_Scatter (vector_a, l_a, MPI_REAL, &

& a, l_a, MPI_REAL, 0, MPI_COMM_WORLD, ierr)

end subroutine ScatterData

Collective communications

Allgather: Every process in the communicator send the content of
send_buf to all the other processes that receive data and order them in the
recv_buf array according to the rank of the sender.

d

md a t u

a t u m

d a t u m

md a t u md a t u md a t u md a t u

C/C++

fortran

Collective communications

type :: SEND_BUF(*), RECV_BUF(*)

integer :: SEND_COUNT, SEND_TYPE, RECV_COUNT, RECV_TYPE,

COMM, IERROR

call MPI_Allgather (SEND_BUF, SEND_COUNT, SEND_TYPE,

RECV_BUF, RECV_COUNT, RECV_TYPE, COMM, IERROR)

ierror = MPI_Allgather (void *send_buf, int send_count,

MPI_Datatype send_type,

void *recv_buf, int recv_count, MPI_Datatype recv_type,

MPI_Comm comm)

The above function may be used to collect data from all the processes to all the
processes. It is equivalent to a sequence of calls to MPI_Gather in which each
call identifies a different process as root.

Collective communications

Collective communications include global computations, of a
reduction type.

The result of the computations may be:

• stored in one process only

• broadcasted to all the processes

• scattered to all the processes

Three functions are available:

• MPI_Reduce

• MPI_Allreduce

• MPI_Reduce_scatter

Collective communications

In the following example the quadrature of a function is computed between two
extremes.

program integral

! Point to point version

. . .

! Domain decomposition and computation

x_intrvl = (x1-x0)/num_procs

my_x0 = my_rank*x_intrvl; my_x1 = my_x0+x_intrvl

my_n = 0; x = my_x0; my_s = 0.0

do while (x < my_x1)

my_s = my_s + f(x)

my_n = my_n + 1

x = x + dx

enddo

! Gather results and sum them up

tag_s=10; tag_n=20

if (my_rank == 0) then

s = my_s; n = my_n

do p = 1, num_procs-1

call MPI_Recv(my_s, 1, MPI_DOUBLE_PRECISION, p, tag_s, &

& MPI_COMM_WORLD, status, ierr); s = s + my_s

enddo

else

call MPI_Send(my_s, 1, MPI_DOUBLE_PRECISION, 0, tag_s, &

& MPI_COMM_WORLD, ierr)

endif

if (my_rank==0) write(6,*)"After ",n," steps result=",s/dble(n)

end program integral

Collective communications

fortran

C/C++

Collective communications

The following function may be used to compute reduction operations such as
sum, product, logical, min/max and others. It must be called by all the
processes of the communicator comm. The result is stored in the process
identified as root. If count>1 then send_buf and recv_buf are arrays
and the computation is executed element by element.

type :: send_buf, recv_buf

integer :: count, datatype, op, root, comm, ierror

call MPI_REDUCE (send_buf, recv_buf, count, &

datatype, op, root, comm, ierror)

ierror = MPI_Reduce (void *send_buf, void *recv_buf,

int count, MPI_Datatype datatype,

MPI_Op op, int root, MPI_Comm comm)

Collective communications
send_buf = data to be used for computation, operands

recv_buf = result buffer (received by root process only)

count = buffer size

datatype = type of the elements

op = reduction operation (es.: MPI_SUM, MPI_MAX, …)

root = which process stores the results

comm = communicator

ierror = error code

As an example, if count=3 and op=MPI_SUM, then:

Recv_buf(0) = send_bufproc0(0) + … + send_bufprocN-1(0)

Recv_buf(1) = send_bufproc0(1) + … + send_bufprocN-1(1)

Recv_buf(2) = send_bufproc0(2) + … + send_bufprocN-1(2)

Collective communications

The available operations are:

MPI_MAX maximum

MPI_MIN minimum

MPI_SUM sum

MPI_PROD product

MPI_LAND logical AND

MPI_BAND bit-wise AND

MPI_LOR logical OR

MPI_BOR bit-wise OR

MPI_LXOR logical XOR

MPI_BXOR bit-wise XOR

MPI_MAXLOC maximum value and location

MPI_MINLOC minimum value and location

program integral_c

! Collective version

. . .

! Domain decomposition and computation

x_intrvl = (x1-x0)/num_procs

my_x0 = my_rank*x_intrvl; my_x1 = my_x0+x_intrvl

my_n = 0; x = my_x0; my_s = 0.0

do while (x < my_x1)

my_s = my_s + f(x)

my_n = my_n + 1

x = x + dx

enddo

call MPI_REDUCE (my_s, s, 1, MPI_DOUBLE_PRECISION, &

& MPI_SUM, 0, MPI_COMM_WORLD, ierr)

if (my_rank==0) write(6,*)"After ",n," steps result=",s/dble(n)

end program integral_c

Collective communications

C/C++

fortran

Collective communications

type :: OPERAND(*), RESULT(*)

integer :: COUNT, DATATYPE, OP ,COMM, IERROR

call MPI_AllReduce (OPERAND, RESULT, COUNT, DATATYPE, OP,

COMM, IERROR)

ierror = MPI_Allreduce (void *operand, void *result, int

count, MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)

This function differs from the previous one because the operation
result is stored in all the processes of the communicator comm.

Mpi_AllReduce = MPI_Reduce + MPI_Bcast

C/C++

fortran

Collective communications
<type>, IN :: SENDBUF(*)

<type>, OUT :: RECVBUF(*)

INTEGER RECVCOUNTS(*), DATATYPE, OP, COMM, IERROR

call MPI_REDUCE_SCATTER (SENDBUF, RECVBUF, RECVCOUNTS,

DATATYPE, OP, COMM, IERROR)

ierror = MPI_Reduce_scatter (void *sendbuf, void *recvbuf,

int *recvcounts, MPI_Datatype datatype, MPI_Op op,

MPI_Comm comm)

Using the function MPI_Reduce_scatter, the reduction result is first computed
element by element, then the obtained vector is split into disjoined segments and
dispersed to all the processes. The array recvcounts(:) is used to specify how
many elements each process will store.

C/C++

fortran

Process synchronization

Whenever it is necessary that all the processes come to a determined point at the
same time, then synchronization barriers must be used. To avoid heavy loss of
performances barriers should be used with care and only if it is unavoidable, i.e.
the implemented algorithm requires it.

The following function can be used to define a synchronising point:

integer :: comm, ierror

call MPI_BARRIER (comm, ierror)

ierror = MPI_Barrier (MPI_Comm comm)

Where: comm – communicator whose processes must be synchronized

ierror – error code.

This function returns only after all the processes have called it.

C/C++

fortran

Performance evaluation

It is often useful to measure computing time of portions of the program. The
following functions may be used. Both functions return a double floating point
value.

REAL(8) :: t1, t2, elapsed

t1 = MPI_WTIME ()

…

t2 = MPI_WTIME ()

elapsed = t2 – t1

double t1, dt

t1 = MPI_Wtime() /* elapsed time in seconds */

dt = MPI_Wtick() /* time resolution in seconds */

Time values are process dependent unless MPI_WTIME_IS_GLOBAL is defined
and its value is .TRUE..

Exercises

http://www.hpc.cineca.it/content/training-mpi

After having learned about collective communications, you have
«unlocked» exercises from 7 to 9

If you have not finished the point-to-point yet, you are free to
keep working on them. Teacher’s suggestion is to try to do some

collective exercises in any case, just to fix the concepts.

When programming with MPI, remember to…think in parallel!

http://www.hpc.cineca.it/content/training-mpi

