
Parallel architectures and
production environment

Introduction to Parallel Computing with MPI and OpenMP

P. Dagna

November 2017

The HPC infrastructure

Cineca HPC infrastructure

CPUs Storage

Interconnection
Network

The HPC infrastructure

GALILEO CHARACTERISTICS

Model: IBM NeXtScale

Architecture: Linux Infiniband Cluster

Processors Type: 8-cores Intel Haswell

2.40 GHz (2 per node)

Number of nodes: 516 Compute

Number of cores: 8256

Accelerators: 2 Intel Phi 7120p per node

on 384 nodes (768 in total)

4 nVIDIA Tesla K40 on 40 nodes (160 in

total)

RAM: 128 GB/node, 8 GB/core

OS: RedHat CentOS release 7.0, 64 bit

The HPC infrastructure
MARCONI – CHARACTERISTICS

 Model: Lenovo NeXtScale
 Architecture: Intel OmniPath Cluster
 Internal Network: Intel OmniPath
 Disk Space: 17PB (raw) of local storage

A1 Section
 Nodes: 1.512
 Processors: 2 x 18-cores Intel Xeon E5-2697 v4

(Broadwell) at 2.3 GHz
 Cores: 36 cores/node, 54.432 cores in total
 RAM: 128 GB/node
 Peak Performance: 2 PFlop/s

A2 Section
 Nodes: 3.600
 Processors: 1 x 64-cores Intel Xeon Phi7250
 (Intel Knights Landing) at 1.4 GHz
 Cores: 64 cores/node, 244.800 cores in total
 RAM: 96 GB/node
 Peak Performance: 11 PFlop/s

A3 Section
 Nodes: 1.512
 Processors: 2 x 24-cores Intel Xeon 8160 (Intel

SkyLake) at 2.1 GHz
 Cores: 48 cores/node, 72.576 cores in total
 RAM: 192 GB/node
 Peak Performance: 5 PFlop/s

Memory hierarchy

Storage organization and speed access can be thought of as a pyramid

In a shared working environment storage access changes depending to the
load of the cluster

Production Environment

Login and working areas

How to login

• Establish a ssh connection : ssh <username>@login.galileo.cineca.it

• Remarks:

 ssh available on all linux distros

 Putty (free) or Tectia ssh on Windows

 secure shell plugin for Google Chrome!

Working Environment

• $HOME:
 Permanent, backed-up, and local to GALILEO.
 50 Gb of quota. For source code or important input files.

• $CINECA_SCRATCH:
 Large, parallel filesystem (GPFS).
 No quota. Run your simulations and calculations here.

Module System

All the optional software on the machine is made available through
the "module" system

• provides a way to rationalize software and its environment variables

Modules are divided in profiles
• profile/core (default - stable and tested modules)
• profile/extra (more recent versions non completely tested)

Profiles are divided in 4 categories
• compilers (GNU, intel, openmpi)
• libraries (e.g. LAPACK, BLAS, FFTW, ...)
• tools (e.g. Scalasca, GNU make, VNC, ...)
• applications (software for chemistry, physics, ...)

Module System

• CINECA’s work environment is organized in modules, a set of installed
libraries, tools and applications available for all users.

• “loading” a module means that a series of (useful) shell environment
variables will be set

• E.g. after a module is loaded, an environment variable of the form
“<MODULENAME>_HOME” is set

Module Commands

Launching Jobs

• As in every HPC cluster, users are allowed to run their own
simulations by submitting “jobs” to the compute nodes.

• The job is then taken in consideration by a scheduler, that adds
it to a queuing line and allows its execution when the
resources required are available.

• The operative scheduler in GALILEO is PBS.

• The scheduler has a proprietary scripting language necessary
to submit jobs

PBS Job script

• The scheme of a PBS job script is as follows:

 #!/bin/bash
 #PBS keywords
 variables environment
 execution line

PBS Job script

• Example of parallel job:

#!/bin/bash
#PBS -N <jobname>
#PBS -o job.out
#PBS -e job.err
#PBS -l walltime=1:00:00
#PBS -l select=2:ncpus=16:mpiprocs=16:mem=10GB
#PBS -q <queuename>
cd $PBS_O_WORKDIR # points to the folder you are actually working
into
module load autoload openmpi
mpirun ./myprogram

PBS Job script

• PBS Keyword Analysis:

#PBS -N myname
• Defines the name of your job

#PBS -o job.out
• Specifies the file where the standard output is directed

(default=jobname.o<jobID>)

#PBS -e job.err
• Specifies the file where the standard error is directed

(default=jobname.e<jobID>)

#PBS -l walltime=00:30:00
• Specifies the maximum duration of the job (queue dependency).

PBS Job script

• PBS Keyword Analysis:

#PBS -l select=2:ncpus=16:mpiprocs=16:mem=10GB
• Specifies the resources needed for the simulation.

 select – number of compute nodes (“chunks”)
 ncpus – number of cpus per node (max. 16)
 mpiprocs – number of MPI tasks per node (max=ncpus)
 mem – memory allocated for each node (default=8GB, max.=120

GB)

#PBS -q <queuename>
• Specifies the queue requested for the job.

PBS Commands

qsub <job_script>
• Your job will be submitted to the PBS scheduler and executed when

there will be nodes available (according to your priority and the queue
you requested)

qstat -u <username>
• Shows the list of all your scheduled jobs, along with their status(idle,

running, closing, …) Also, shows you the job id required for other PBS
commands.

qstat -f <job_id>
• Provides a long list of information for the job requested. In particular, if

your job isn’t running yet, you'll be notified about its estimated start
time or, if you made an error on the job script, you will learn that the
job won’t ever start

qdel <job_id>
• Removes the job from the scheduled jobs by killing it

