
MPI Derived Data Types

Andrew Emerson – a.emerson@cineca.it
SuperComputing Applications and Innovation Department

Derived Data Types

• What are they?

– Data types built from the basic MPI datatypes. Formally, the MPI

Standard defines a general datatype as an object that specifies

two things:

• a sequence of basic datatypes

• a sequence of integer (byte) displacements

– An easy way to represent such an object is as a sequence of

pairs of basic datatypes and displacements. MPI calls this

sequence a typemap.

typemap = {(type 0, displ 0), … (type n-1, displ n-1)}

– But for most situations you do not need to worry about the

typemap.

Derived Data Types

• Why use them?

– Sometimes more convenient and efficient. For example, you

may need to send messages that contain

1. non-contiguous data of a single type (e.g. a sub-block of a matrix)

2. contiguous data of mixed types (e.g., an integer count, followed by

a sequence of real numbers)

3. non-contiguous data of mixed types.

• As well as improving program readability and

portability they may improve performance.

How to use

1. Construct the datatype using a template or

constructor.

2. Allocate the datatype.

3. Use the datatype.

4. Deallocate the datatype.

You must construct and allocate a datatype before using

it. You are not required to use it or deallocate it, but it is

recommended (there may be a limit).

Datatype constructors

• MPI_Type_contiguous

– Simplest constructor. Makes count copies of an existing datatype

• MPI_Type_vector, MPI_Type_hvector
– Like contiguous, but allows for regular gaps (stride) in the

displacements. For MPI_Type_hvector the stride is specified in
bytes.

• MPI_Type_indexed, MPI_Type_hindexed
– An array of displacements of the input data type is provided as the

map for the new data type.MPI_Type_hindexed is identical to
MPI_Type_indexed except that offsets are specified in byte

• MPI_Type_struct
– The most general of all derived datatypes. The new data type is

formed according to completely defined map of the component data
types

Allocating/deallocating and using

datatypes

Allocate and deallocate

• C
– int MPI_Type_commit (MPI_datatype *datatype)

– int MPI_Type_free (MPI_datatype *datatype)

• FORTRAN
– INTEGER DATATYPE, MPIERROR

– MPI_TYPE_COMMIT(DATATYPE, MPIERROR)

– MPI_TYPE_FREE(DATATYPE, MPIERROR)

• C
MPI_Type_vector(count, blocklength, stride, oldtype, &newtype);

MPI_Type_commit (&newtype);

MPI_Send(buffer, 1, newtype, dest, tag, comm);

MPI_TYPE_CONTIGUOUS

• MPI_TYPE_CONTIGUOUS constructs a typemap consisting of the replication of a

datatype into contiguous locations.

• newtype is the datatype obtained by concatenating count copies of oldtype.

MPI_TYPE_CONTIGUOUS (count, oldtype, newtype)
IN count: replication count (non-negative integer)

IN oldtype: old datatype (handle)

OUT newtype: new datatype (handle)

oldtype

newtype

7

MPI_TYPE_VECTOR

• Consists of a number of elements of the same datatype repeated with a certain

stride

MPI_TYPE_VECTOR (count, blocklength, stride, oldtype, newtype)

IN count: Number of blocks (non-negative integer)

IN blocklen: Number of elements in each block

(non-negative integer)

IN stride: Number of elements (NOT bytes) between start of

each block (integer)

IN oldtype: Old datatype (handle)

OUT newtype: New datatype (handle)

oldtype

newtype

blocklength = 3 elements

stride = 5 el.s between block starts

count = 2 blocks
8

Example 1 – A rowtype

9

Example 2 - columntype

10

Other tools

• MPI_GET_COUNT,MPI_GET_ELEMENTS

– Routines which return the number of "copies" of type datatype

and the number of basic elements (often used after a

MPI_RECV).

int MPI_Get_count(const MPI_Status *status, MPI_Datatype datatype, int *count)

int MPI_Get_elements(const MPI_Status *status, MPI_Datatype datatype, int *count)

• MPI_TYPE_GET_EXTENT (Advanced)

– Returns the lower bound and extent of a datatype (i.e. upper

bound + padding to align the datatype). Useful for creating new

datatypes with MPI_TYPE_CREATE_RESIZED, for example.

Derived Datatype Summary

• Provide a portable and elegant way of communicating

non-contiguous or mixed types in a message.

• By optimising how data is stored, should improve

efficiency during MPI send and receive (perhaps

avoiding buffering).

• Derived datatypes are built from basic MPI datatypes,

according to a template. Can be used for many

variables of the same form.

• Remember to commit the datatypes before using them.

