
Advanced MPI

Andrew Emerson (a.emerson@cineca.it)

Agenda

1. One sided Communications (MPI-2)
2. Dynamic processes (MPI-2)
3. Profiling MPI and tracing
4. MPI-I/O
5. MPI-3

22/02/2017 Advanced MPI 2

One sided communications

• In two-sided (point-to-point) communications there can be a delay if the
sender has to wait to send the data because the receiver is not ready.

• The MPI-2 standard added Remote Memory Access (RMA), also called
one-sided communication, to decouple data transfer from system
synchronisation.

• In RMA only one process carries out the data transfer. The MPI_Get and
MPI_Put calls are non-blocking and don’t require intervention of the
remote process.

• MPI-3 further extended RMA to improve functionality and performance.

• In this course we only describe the simple MPI RMA functionality with MPI
Get/Put and Fence synchronisation.

22/02/2017 Advanced MPI 3

One sided communications

• Advantages of RMA:

– With only one process taking part performance
should be greater (no implicit synchronization, all
data movement routines are non-blocking)

– Some programs are more easily written with RMA

22/02/2017 Advanced MPI 4

Using one sided
communications

1. Define an area of memory to be used for the RMA (“window”).
2. Specify the data to be moved and where to move them.
3. Specify a way to know when the data are available.

22/02/2017 Advanced MPI 5

TARGETORIGIN

PUT

GET

public memory
window

private
memory

private
memory

Using one sided communications –
MPI_Win_Create

int MPI_Win_create(void *base, MPI_Aint size, int

disp_unit, MPI_Info info, MPI_Comm comm, MPI_Win *win)

MPI_Win_Create(base, integer(KIND=MPI_ADDRESS_KIND) size,

Integer disp_unit, integer info, integer comm, integer

win, integer ierr)

base – initial address of the window (IN)

size – size of the window in bytes (IN)

info – info argument (IN)

comm – communicator

win – window object handle (OUT)

ierr – error code for Fortran

22/02/2017 Advanced MPI 6

Using one sided communications –
MPI_Get/MPI_Put

int MPI_Get(void *origin_addr, int origin_count,

MPI_Datatype origin_datatype, int target_rank, MPI_Aint

target_disp, int target_count, MPI_Datatype

target_datatype, MPI_Win *win)

origin_addr – address of the buffer in which to receive data

origin_count –no. of entries in origin buffer

origin_datatype – datatype of each entry in origin buffer

target_rank – rank of target

target_disp- displacement from window start to beginning of target data

target_count- number of entries to transfer

target_datatype – datatype of entries

win – window object handle

ierr – error code for Fortran

22/02/2017 Advanced MPI 7

Similarly for MPI_Put

Using one sided communications
–synchronisation

• The MPI_Get and MPI_Put calls are non-blocking.

• Need to synchronize the data transfer so that one process
knows when it is safe to read the data of another.

• MPI provides various synchronization models, but we will
consider only MPI_Win_Fence.

• This is used to start and end the PUT/GET operations. All
operations complete at the second fence synchronization.

22/02/2017 Advanced MPI 8

Using one sided
communications - template

…
MPI_Win_Create(shared_buffer,….,win);
MPI_Win_Fence(0,win); // start RMA Get/Put

MPI_Get() or MPI_Put();

MPI_Win_Fence(0,win); // end RMA
// Use transferred data
MPI_Win_Free(&win); //
..
MPI_Finalize();

22/02/2017 Advanced MPI 9

create shared
buffer (window)

synchronize

get data from
target

synchronize

put data into
target

synchronize

free window
object

Using one sided
communications -Example

MPI_Win win;

MPI_Win_create(sharedbuffer, NUM_ELEMENT, sizeof(int), MPI_INFO_NULL,

MPI_COMM_WORLD, &win);

.....

MPI_Win_fence(0, win);

if (id != 0)

MPI_Get(&localbuffer[0], NUM_ELEMENT, MPI_INT, id-1, 0, NUM_ELEMENT, MPI_INT,

win);

else

MPI_Get(&localbuffer[0], NUM_ELEMENT, MPI_INT, num_procs-1, 0, NUM_ELEMENT,

MPI_INT, win);

MPI_Win_fence(0, win);

if (id < num_procs-1)

MPI_Put(&localbuffer[0], NUM_ELEMENT, MPI_INT, id+1, 0, NUM_ELEMENT, MPI_INT,

win);

else

MPI_Put(&localbuffer[0], NUM_ELEMENT, MPI_INT, 0, 0, NUM_ELEMENT, MPI_INT,

win);

MPI_Win_fence(0, win);

MPI_Win_free(&win);

MPI_Finalize();

22/02/2017 Advanced MPI 10

target rank

Dynamic processes in MPI

• Normally MPI tasks are fixed (e.g.
by mpirun) at the start of execution.

• But can be useful to add or create
tasks “on the fly”:
– Master – slave type codes, or on

heterogenous architectures (normal
nodes + accelerators).

– client-server or peer-to-peer

• Handling faults failures

22/02/2017 Advanced MPI 11

MPI_COMM_SPAWN

22/02/2017 Advanced MPI 12

• MPI-2 provides “spawn functionality”

– MPI_COMM_SPAWN

• starts a new set of processes with the same command
lines (SPMD model)

– MPI_COMM_SPAWN_MULTIPLE

• starts a new set of processes with potentially different
command lines (i.e. different executables and
arguments = MPMD)

Spawn semantics

• Group of parents collectively call spawn

– Launches a new set of child processes

– Child processes become an MPI job

– An intercommunicator is created between parents
and children.

• Parents and children can then use MPI
functions to communicate.

22/02/2017 Advanced MPI 13

MPI_Comm_Spawn example

22/02/2017 Advanced MPI 14

#define NUM_SPAWNS 2

int main(int argc, char* argv[])

{

int np=NUM_SPAWNS;

MPI_Comm parentcomm, intercomm;

int errcodes[NUM_SPAWNS];

MPI_Init(&argc, &argv);

MPI_Comm_get_parent(&parentcomm);

if (parentcomm == MPI_COMM_NULL)

{

// Create 2 more processes- example must be called spawn_example.exe for this to work

MPI_Comm_spawn("./spawnexample", MPI_ARGV_NULL, np, MPI_INFO_NULL, 0, MPI_COMM_WORLD,

&intercomm, errcodes);

printf("I'm the parent.\n");

}

else

{

printf("I'm the spawned.\n");

}

MPI_Finalize();

return 0;

}

MPI_COMM_SPAWN

• Not all MPI implementations support MPI spawning (e.g. IBM
BG/Q).

• The MPI implementation may require particular runtime options.

• Remember that if working in a batch environment you should
allocate resources to cover the spawned processes as well.

– MPI_UNIVERSE_SIZE is often used to set the total number of processes
available (i.e. including spawned processes)

• Not commonly used in HPC environments. May be used in
heterogenous (i.e. with accelerators), although OpenMP task
creation is more likely.

22/02/2017 Advanced MPI 15

Debugging and profiling MPI
with PMPI

• MPI implementations also provide a profiling interface called PMPI.

• In PMPI each standard MPI function (MPI_) has an equivalent
function with prefix PMPI_ (e.g. PMPI_Send, PMI_RECV, etc).

• With PMPI it is possible to customize normal MPI commands to
provide extra information useful for profiling or debugging.

• Not necessary to modify source code since the customized MPI
commands can be linked as a separate library during debugging. For
production the extra library is not linked and the standard MPI
behaviour is used.

22/02/2017 16Advanced MPI

PMPI Examples

// profiling example
static int send_count=0;

int MPI_Send(void*start,int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm)

{

send_count++;

return PMPI_Send(start, count, datatype, dest, tag, comm);
}

! Unsafe uses of MPI_Send

! MPI_Send can be implemented as MPI_Ssend (synchronous send)

subroutine MPI_Send(start, count, datatype, dest,

tag, comm, ierr)

integer start(*), count, datatype, dest, tag, comm

call PMPI_Ssend(start, count, datatype,

dest, tag, comm, ierr)

end

Profiling

Debugging

Advanced MPI

MPI-3

• MPI 3.0 was approved in 2012. MPI 3.1 was
approved in 2015.

• Features include
– Non-blocking collectives

– Neighbourhood collectives

– New one sided communications

– Fortran 2008 bindings

– plus enhancements for many other features of
MPI-2 (e.g. Remote Memory Access).

22/02/2017 Advanced MPI 18

New collective calls in MPI-3

• Collective calls (MPI_Bcast, MPI_Reduce, etc) are
very often performance bottlenecks in MPI
codes. For Exascale, with potentially millions of
process, their impact could be serious.

• MPI-3 has introduced several enhancements to
minimise performance loss due to collectives.
These include:

1. Non-blocking collectives

2. Neighbourhood collectives.

22/02/2017 Advanced MPI 19

Non-blocking collectives

• Work in the same way to the usual blocking collectives,
except that they return almost immediately after being
called, i.e. a task does not wait for other tasks to make
the call.

• Naming convention just like non-blocking point-to-
point calls: MPI_Iallreduce, MPI_Ibarrier, MPI_Ibcast ..

• Used with MPI_Test or MPI_Wait to increase overlap of
calculation and computation.

22/02/2017 Advanced MPI 20

Neighbourhood collectives

• A special type of collective call for sparse communication patterns,
i.e where communications occur between a few processes in a
communicator.

• In a neighbourhood call each process makes the call but
communication only occurs between nearest neighbours.

• Example:
MPI_Neighbor_allgather(void* sendbuf, int sendcount,

MPI_Datatype sendtype, void* recvbuf, int recvcount,

MPI_Datatype recvtype, MPI_Comm comm)

This sends the same data element to all neighbor processes and
receives a distinct data element from each of the neighbors.

22/02/2017 Advanced MPI 21

MPI -4 ?

• Under discussion but resiliency and fault tolerance
likely to be important.

• Current MPI implementations kill all other processes if
one process fails.

• Future implementations may allow the program to
continue in case of failure of one or more processes.

• Other subjects under discussion include more support
for MPI+X (where X is OpenMP, CUDA, OpenACC,
OpenCL, etc) and persistent collectives.

22/02/2017 Advanced MPI 22

