
Knights Landing Architecture
at Cineca (KNL)

Andrew Emerson, Fabio Affinito, Isabella Baccarelli

23/10/2017 Introduction to Marconi KNL 2017 1

23/10/2017 2

23/10/2017 4

 RISC and CISC

23/10/2017 5

23/10/2017 6

Moore’s law + Dennard’s law + Amdhal’s law + ….. cannot get much smaller ……

Current solutions for HPC

1. IBM + NVIDIA/GPU (PASCAL)

2. INTEL Xeon/XeonPHI

23/10/2017 7

Q: Why use Intel Xeon Phi instead of GPU?
A: No need to write in CUDA: standard FORTRAN or
C/C++ will work (KNL is even binary compatible)

What is Intel Xeon Phi ?

The brand name given to the chips using Intel’s Many Integrated Core
(MIC) technology.

For this reason Xeon Phi’s are confusingly also called MICs.. (mikes?
Micks?).

Different design principle to a standard Xeon → idea to have many
cores (60+) and many threads (e.g. 240+).

Current Xeons CPUs (Haswell, Broadwell, Skylake, etc) do not go
beyond 48 threads.

Knights Landing (KNL) is the second generation Xeon Phi and is used in
the A2 partition of Marconi (the A1 partition is Intel Broadwell).

23/10/2017 8

Features Xeon E5-2600 v3 (Haswell-EP) Xeon E5-2600 v4 (Broadwell-EP)

Cores Per Socket Up to 18 Up to 22

Threads Per Socket Up to 36 threads Up to 44 threads

Last-level Cache (LLC) Up to 45 MB Up to 55 MB

QPI Speed (GT/s) 2x QPI 1.1 channels 6.4, 8.0, 9.6 GT/s

PCIe* Lanes / Speed(GT/s) 40 / 10 / PCIe* 3.0 (2.5, 5, 8 GT/s)

Memory Population
4 channels of up to 3 RDIMMs or 3

LRDIMMs
+ 3DS LRDIMM†

Memory RAS
ECC, Patrol Scrubbing, Demand
Scrubbing, Sparing, Mirroring,
Lockstep Mode, x4/x8 SDDC

+ DDR4 Write CRC

Max Memory Speed Up to 2133 Mhz Up to 2400 MHz

TDP (W) 160 (Workstation only), 145, 135, 120, 105, 90, 85, 65, 55

◊ Requires BIOS and firmware update; ^ not available broadly on E5-2600 v3; † Depends on market availability

Intel® Xeon® Processor
E5-2600 v4

Core Core

Core Core

Core Core

Shared Cache

QPI

QPI

2x Intel® QPI
1.1

4 Channels DDR4

40 Lanes PCIe*
3.0

DMI2

DDR4

DDR4

DDR4

DDR4

9

Intel® Xeon® E5-2600 v4 Product Family Overview

New Features:
▪ Broadwell microarchitecture
▪ Built on 14nm process technology

▪ Socket compatible◊ replacement/ upgrade
on Grantley-EP platforms

New Performance Technologies:
▪ Optimized Intel® AVX Turbo mode
▪ Intel TSX instructions^

Other Enhancements:
▪ Virtualization speedup
▪ Orchestration control
▪ Security improvements

23/10/2017

23/10/2017 Cineca Winter School 2017 10

Intel® Xeon® Platinum 8160 processor (Skylake): MARCONI-A3

Model: Lenovo Stark

Racks: 21
Nodes: 1.512 + 792
Processors: 2 x 24-cores Intel Xeon
8160 CPU (Skylake) at 2.10 GHz
Max turbo freq: 3.70 GHz

Cores: 48 cores/node 72.576 +
38.016 cores in total

RAM: 192 GB/node of DDR4
Max mem speed: 2600 MHz

Peak Performance: 7.00 PFlop/s

Instruction Set Extentions:
Intel® SSE4.2, Intel® AVX, Intel®
AVX2, Intel® AVX-512

22 nm process

Up to 61 Cores

Up to 16GB Memory

2013:

Intel® Xeon Phi™
Coprocessor x100
Product Family

 “Knights Corner”

2016:

Second
Generation Intel®
Xeon Phi™

“Knights Landing”

14 nm

Processor &
Coprocessor

+60 cores

On Package, High-
Bandwidth Memory

Future Knights:

Upcoming Gen of
the Intel® MIC
Architecture
(Knights Hill)

In planning

Continued roadmap
commitment

*Per Intel’s announced products or planning process for future
products

Intel® Xeon Phi™ Product Family
based on Intel® Many Integrated Core (MIC) Architecture

2010
Intel® Xeon Phi
Knights Ferry
prototype
45 nm process
32 cores

23/10/2017 11

Xeon PHI architecture (KNC)

23/10/2017 12

• 22nm technology
• Up to 61 cores (Pentium-

like), ~1.1 Ghz (dep. model)
• 352 Gb/s memory

bandwidth (fast).
• Upto 244 threads (i.e. 4

threads/core)
• 512 bit SIMD (vector) unit
• 8-16 Gb on board memory,
• ~ 1Tflop peak performance

Includes also sensors for
monitoring temperature and
power consumption.

native
mode

symmetric
mode

offload
mode

Programming for KNC

• Because of low power cores and ring network, MPI-only programs will run slowly
on KNC.

• Need instead to find programs which can exploit all the cores with OpenMP
threads (at least 120).

• The PCI-Express is slow compared to on-board memory so memory transfers
should be kept to a minimum – reuse data on the card as much as possible.

• To reach the peak performance need also to exploit the 512bit vector registers.

• Note also that Intel MKL has been optimised for MIC.

• Applications modified to offload to GPUs could be good candidates for offloading
to KNCs.

23/10/2017 13

KNC experience

• Cineca’s Galileo cluster has 2 Intel Phi 7120p per
node on 384 nodes (768 KNCs in total)

• Do not have hard figures but usage has probably
been quite low.

• Main problem is that the KNC cores are not
powerful so you need to work hard to get
performance. MPI programs can be 10X slower
(ring communication network).

• Also KNC is only a co-processor, so unless you
already have an offload parallelisation model (e.g.
for GPU/CUDA) code needs to be re-worked.

23/10/2017 14

0

2

4

6

8

10

12

14

0 5 10 15 20 25 30 35

n
s/

d
ay

nodes

NAMD 2.10 Xeon PHI performance (Galileo)

143K 143K MIC 450K 450K MIC

23/10/2017 15

NB: No L3 cache.

KNC →KNL key differences

Feature KNC KNL

Cores <=61 cores Pentium, 1.1 GHz [in-
order]

<=72 Silvermont, 1.4GHz (KNL
7250)[out-of-order]

Boot-up Co-processor so needs host CPU Standalone, self boot

Internal Network Bi-directional ring 2D Mesh

Connections PCIe PCIe, Intel OmniPath or other vendor.

Memory 8-16GB on board 16 GB MCDRAM (High Bandwidth
Memory) on board
Supports up to 384Gb DDR

Vectorisation 512 bit SIMD/core 2x AVX 512 units/core

Xeon Compatibility For Native mode recompile with –
mic flag.

Binary compatible, although
recompilation recommended (for
vectorisation)

Peak Performance ~1 Tflops (DP) ~3 Tflops (DP)

Power consumption 300W 215W *

23/10/2017
17

* See https://www.nextplatform.com/2016/06/20/intel-knights-landing-yields-big-bang-buck-jump/

Improved Cache organization in KNL

23/10/2017 18
See, for example, https://colfaxresearch.com/knl-numa/

core core
L2

core core
L2

core core
L2

core core
L2

core core
L2

core core
L2

core core
L2

core core
L2

core core
L2

core core
L2

core core
L2

core core
L2

core core
L2

core core
L2

core core
L2

core core
L2

All the caches are kept coherent in the mesh with the MESIF (states of chache lines) protocol. To maintain cache
coherency, KNL has a distributed tag directory (DTD), organized as a set of per-tile tag directories (TDs), which
identify the state and the location on the chip of any cache line. For any memory address, the hardware can
identify with a hash function the TD responsible for that address.
If a tile cannot find some data from its local cache then it must query the DTD to find the data.

Each core has
its own L1 cache
(32K)

KNL Cache Clustering Modes

In 1st generation Intel® Xeon Phi™processors code-named Knights Corner
(KNC), latency-bound applications performed poorly compared to Intel Xeon
processors of comparable power. However, in KNL, significant improvements
in cache organization reduce the impact of latency-bound operations.

These improvements in cache organization in KNL come with increased
complexity of the chip hardware. To manage this complexity and set the
optimal mode of operation for any given computational application, the
programmer has access to cache clustering modes.
The KNL supports three:

1. All-to-All
2. Quadrant/Hemisphere
3. SNC-4/SNC-2

Clustering is a boot-time decision and can’t be changed without restarting
the KNL.

23/10/2017 19

Mesh of Rings

▪ Every row and column is a (half) ring

▪ YX routing: Go in Y → Turn → Go in X

▪ Messages arbitrate at injection and on turn

Cache Coherent Interconnect

▪ MESIF protocol (F = Forward)

▪ Distributed directory to filter snoops

Three Cluster Modes

(1) All-to-All

(2) Quadrant

(3) Sub-NUMA Clustering (SNC)

KNL Mesh Interconnect

23/10/2017 21

Addresses uniformly hashed across all
distributed directories

No affinity between Tile, Directory and
Memory

Lower performance mode, compared to
other modes. Mainly for fall-back

Typical Read L2 miss

1. L2 miss encountered

2. Send request to the distributed directory

3. Miss in the directory. Forward to memory

4. Memory sends the data to the requestor

Cluster Mode: All-to-All

23/10/2017 22

In the quadrant clustering mode, the
tiles are divided into four parts called
quadrants, which are spatially local to
four groups of memory controllers.

Address hashed to a Directory in the
same quadrant as the Memory

Affinity between the Directory and
Memory

Lower latency and higher BW than all-
to-all. Software transparent.

1. L2 miss, 2. Directory access, 3. Memory access,
4. Data return

Cluster Mode: Quadrant

23/10/2017 23

Each Quadrant (Cluster) exposed as a

separate NUMA domain to OS

The sub-NUMA cluster modes SNC-4 and SNC-2 partition the

chip into four quadrants or two hemispeheres, and, in addition,

expose these quadrants (hemispheres) as NUMA nodes. In this

mode, NUMA-aware software can pin software threads to the

same quadrant (hemisphere) that contains the TD and accesses

NUMA-local memory.

Affinity between Tile, Directory and
Memory

Local communication. Lowest latency of
all modes

Software needs to be NUMA-aware to
get benefit

Cluster Mode: Sub-NUMA Clustering (SNC)

23/10/2017 24

1. L2 miss, 2. Directory access, 3. Memory access, 4. Data return

Using MCDRAM (High Bandwidth Memory)
• Multi-Channel Dynamic Random Access (MCDRAM) is an on-package high bandwidth

memory (~ 400 GB/s) roughly 5x faster than standard on-platform DDR4 memory (~90
GB/s).

• On the KNL can be used in three ways:

23/10/2017 25

CPU

MCDRAM
cache

DDR4
Memory

CPU

DDR4
Memory

Addressable
MCDRAM

CPU

DDR4
Memory

MCDRAM
cache

Addressable
MCDRAM

CACHE MODE FLAT MODE HYBRID MODE

NUMA 0 NUMA 1 NUMA 0 NUMA 1

KNL MCDRAM modes

Cache mode
‐ The MCDRAM is used as cache so may give performance

benefits if DDR memory accesses are reduced.

‐ Transparent to users so no modifications required.

‐ But increases latency if data not found in cache (DDR →
MCDRAM → L2).

Flat mode
‐ High bandwidth, low latency.

‐ More complicated to use – requires software or
environmental changes.

Hybrid
‐ Benefits of both, but smaller sizes.

 23/10/2017 26

The MCDRAM mode is normally
chosen at boot-up of the KNL.
In principle should be possible
in a batch job to choose which
mode but seems more
common to select nodes
already booted in the desired
mode.

Using MCDRAM in flat mode (knltest!!)

Even if the KNL has been booted in flat mode, the DDR4 memory is used by

default – MCDRAM needs to be explicitly requested.

This can be done in two ways:

1. By launching the application with the numactl command (if executable <16Gb).

2. Modifying the source code to allocate variables in the MCDRAM using, for

example, the Memkind library.

With the numactl command, first find the numa device number and then

launch with that number.

MCDRAM should be good for for large and often-used arrays.

Note: only a few nodes are available in flat mode

23/10/2017 27

Using MCDRAM in flat mode - numactl
deep70@knl08]:~ > numactl -H

available: 2 nodes (0-1)

node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255

node 0 size: 98200 MB

node 0 free: 88704 MB

node 1 cpus:

node 1 size: 16384 MB

node 1 free: 15909 MB

node distances:

node 0 1

 0: 10 31

 1: 31 10

[deep70@knl08]:~ > mpiexec -n 256 numactl -m 1 ./executable

23/10/2017 28

Deeper-sdv JSC

MCDRAM and memkind

Allows memory to be allocated on any
NUMA device.

Has two interfaces:

hbwmalloc

memkind

but both use the same “backend”.

man hbwmalloc and man memkind give
more information.

23/10/2017 30

// C memkind interface Example

#include <memkind.h>

hbw_str = (char *)memkind_malloc(MEMKIND_HBW,

size);

if (hbw_str == NULL) {

 perror("memkind_malloc()");

 fprintf(stderr, "Unable to allocate

hbw string\n");

 return errno ? -errno : 1;

 }

// use hbw_star

memkind_free(MEMKIND_HBW, default_str);

! Fortran memkind interface Example

Real, allocatable :: a(:), b(:)

! FASTMEM attribute

!DEC$ ATTRIBUTES FASTMEM :: A

! A is allocated in HBM

ALLOCATE (A(1:1024))

! B is allocated in DDR4

ALLOCATE (B(1:1024))

Thread and task affinity (pinning)
With the number of tasks or threads/node increasing it is important to know to which cores they have been
assigned. This is true for all NUMA HPC systems but particularly relevant for KNL. The performance difference
can be significant !

A complicated topic because the pinning is controlled by a variety of options or environment options, many of
which are intel-specific and liable to change. Also the clustering mode of the KNL adds further complexity.

Recommended 2 or 4 threads/core (but never 3).

Documentation for Intel KNL is given here:

https://software.intel.com/en-us/articles/process-and-thread-affinity-for-intel-xeon-phi-processors-x200

23/10/2017 31

KMP_AFFINITY=scatter

KMP_AFFINITY=compact

Thread and task pinning – some variables

23/10/2017 32

Variable Example Description

I_MPI_DEBUG=[0-5] export I_MPI_DEBUG=5 Shows the logical cores owned by each
MPI rank (the affinity). Default
affinity=scatter

KMP_AFFINITY=[scatter,c
ompact, proclist={..}]

export KMP_AFFINITY=compact, verbose. Changes the affinity to, e.g compact. The
verbose option shows the result of the
change.

KMP_PLACE_THREADS,
KMP_HW_SUBSET=<t>T
(new)

export KMP_HW_SUBSET=2T

threads per core (by default all 4
thds/core are used)

OMP_NUM_THREADS=n export OMP_NUM_THREADS=4 For an OpenMP program total
 number of threads, for hybrid
threads/MPI rank.

OMP_PLACES=[cores,thre
ads]

export OMP_PLACES=0,1,2,3,4,…271,272 Specifies hardware resource. Used with
OMP_PROC_BIND

OMP_PROC_BIND=[close,
spread]

export OMP_PROC_BIND=spread,close How OpenMP threads are bound to
resources

Difficult to use correctly.
Better use
KMP_HW_SUBSET

KNLs and I/O

Little hard data but likely to be slow:
‐ Relatively slow cores.

‐ Many threads and processes.

‐ Kernel I/O (e.g. C/Fortran or POSIX I/O) in
parallel to single files is not threadsafe.
Need to use HDF5, MPI-I/O or other
parallel library

‐ GPFS and other parallel filesystems do not
scale well for task-local files.

23/10/2017 37

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60

ch
ec

kp
o

in
t

ti
m

e/
s

nodes

TurboRVB checkpoint time (MARCONI)

KNL Broadwell

each MPI rank writes its own checkpoint file

Using KNLs

23/10/2017 38

Although very different to KNCs the trends are the same…

Data parallelism
• Lots of threads, spent on MPI ranks or OpenMP/TBB/pthreads
• Improving support for both peak throughput and modest/single thread

Bigger, better, faster memory
• High capacity, high bandwidth, low latency DRAM
• Effective caching and paging
• Increasing support for irregular memory refs, modest tuning

Vectorisation
• Increasing support for vectorisation

Using KNLs

Even for non-developers, a number of options need to be considered in order to
optimise performance for KNL:

‐ How many MPI ranks and/or OpenMP threads per node (at least 2 per core to hide hardware
latency). With higher DRAM we can use more MPI ranks and perhaps < OpenMP threads.

‐ Quadrant, hemisphere, SNC2 or SNC4

‐ MCDRAM: Flat mode or Cache mode?

‐ Thread or task pinning? (IMPORTANT)

‐ If linked with MKL, how many threads for MKL ? (MKL_NUM_THREADS)

For developers the first step is to re-compile with –xMIC-AVX512 but a further
analysis with e.g. Vtune would be a good idea.

Intel advises cache/quadrant as the preferred configuration for KNLs but should be
possible to test other configurations

23/10/2017 39

Which applications are good for KNL?

Not an easy question to answer because also depends on input.

But “KNL-friendly” application+input combinations should have the
following features:

‐ Highly parallel, many ranks and threads.

‐ Low memory/thread

‐ Highly vectorised

‐ Low I/O overheads

Improvements/more stability after a few months of
experience/tuning/reconfiguration + Intel advise + users’ feedback

23/10/2017 40

