
Benchmark results on
Knight Landing (KNL)

architecture

Domenico Guida, CINECA SCAI (Bologna)

Giorgio Amati, CINECA SCAI (Roma)

Roma 23/10/2017

KNL, BDW, SKL

A1 BDW A2 KNL A3 SKL

cores per node 2 x 18 @2.3 GHz 1 x 68 @1,4 GHz 2 x 24@2.1 GHz

HYPERTHREADING No Yes 272 «core» No

MCDRAM -- 16 GB --

RAM per node 128 GB 93 GB 192 GB

Code transparent User should be aware
of how his code is

using memory

Very advanced
programming

KNL Memory Model

With this number of physical cores, it is important to control
how OS assigns MPI jobs and OMP threads to physical cores.

AFFINITY

Processor affinity, or CPU pinning enables binding-unbinding of a
process-thread to a central processing unit (CPU) or a range of CPUs,
so that the process-thread will execute only on the designated CPU or
CPUs rather than any CPU.

export KMP_AFFINITY=…

 none (default): the OS decides how to assign threads looking at

the machine topology. (of course, OS can’t really know how our
code works)

 compact: <n+1>-th thread is assigned to a context as close as

possible to the thread context.

 scatter: threads are distributed as evenly as possible across the

entire system.

More configurations (i.e. balanced, disabled, explicit, logical, physical)
are available…

https://software.intel.com/en-
us/node/522691#KMP_AFFINITY_ENVIRONMENT_VARIABLE

Linpack on KNL

Floating point unit benchmark, OpenMP version, Intel build (mkl
2017)

 5 replicas

 Double precision

 Reference value, not the best

 KMP_AFFINITY=scatter

Threads Size TFlops

SKL 48 45’000 2.0

KNL 64 40’000 1.9

BDW 36 45’000 1.3

Stream on KNL
Memory Bandwidth benchmark:

 64 threads, KMP_AFFINITY=scatter

 MCDRAM+DRAM: numactl –preferred 1

 MCDRAM/DRAM: numactl –membind 1/0

 Cache: no numactl

a

Reference:
BDW: 100’000

MEMORY SIZE Mb/sec

MCDRAM (flat) 9 GB 413712

MCDRAM+DRAM (flat) 23 GB 159672

MCDRAM+DRAM(flat) 90 GB 97866

DRAM (flat) 9 GB 82628

DRAM (flat) 23 GB 82507

DRAM (flat) 90 GB 82685

CACHE (cache) 9 GB 205807

CACHE (cache) 23 GB 92714

CACHE (cache) 90 GB 57882

Technological trends

Some figures about Intel CPU evolution @CINECA (2010-2017)

 No more clock increase

 Total number of core increase x4 SKL, x6 KNL

 Flops/cycle ratio increase x8

CPU (codename) Clock
Frequency

Number of
core

Flops /cycle
(DP)

Peak Perf.
(DP)

Xeon E5645 (Westmere) 2.4 GHz 2x6 4 115 GFlops

Xeon E5-2687W0 (Sandy Bridge) 3.1 GHz 2x8 8 396 GFlops

Xeon E5-2670v2 (Ivy Bridge) 2.5 GHz 2x10 8 400 GFlops

Xeon E5-2630v3 (Hashwell) 2.4 GHz 2x8 16 (AVX-256bit) 614 GFlops

Xeon E5-2697v4 (Broadwell) 2.3 GHz 2x18 16 (AVX-256bit) 1325 GFlops

Xean Phi (Knights Landing) 1.4 Ghz 1x68 32 (AVX-512bit) 3046 GFlops

Xeon Platinum (Skylake) 2.1 GHz 2x24 32 (AVX-512bit) 3225 GFlops

How to exploit performance

 Today single core performance is not an issue

 Multi-core CPU performance is the main issue

 Serial performance tends to be meaningless

 Single node/CPU is a meaningful figure

 To exploit CPU performance it is mandatory

 Parallelism factor 4 in about 10 years

 Vectorization factor 8 in about 10 years

This is the actual HPC evolution: if you are not ready to
implement these issue you’ll never reach the claimed

performance!!!!

Hints #1

Always check for vectorization

 KNL FPU 512bit wide 8 DP Flop

No vectorization means:

 a possible decrease of a factor 8 using double precision

 a possible decrease of a factor 16 using single precision

Example (3D CFD code, Higher is better):

 With vectorization on: 850 Mlups

 With vectorization off: 165 Mlups

Always check vectorization level with

 -qopt-report-phase=vec (*.oprpt file are generated)

 -qnovec

Hints #2

KNL is backward compatible with BDW but

 BDW FPU 256bit wide

 KNL FPU 512bit wide

 SKL FPU 512bit wide

If you don’t recompile your code you can loose a factor 2 in
performance (if the code can be vectorized)

Example running on KNL (3D CFD code, Higher is better):

 With KNL-compiled code: 850 MLups

 With BDW-compiled code: 447 MLups

Marconi front-end node are BDW based!!!

Hints #3

Performance (for OpenMP application) are really sensible to affinity.

Example (3D CFD code, Higher is better):

 KMP_AFFINITY=scatter: 850 Mlups

 KMP_AFFINITY=balanced: 761 Mlups

 KMP_AFFINITY=compact: 151 Mlups

Gain/Loss can be really sensible: always play with affinity

Hints #4

Size matters, check which is the best size/problem for your
application…

Example (3D CFD code,2 task, 32threads, scatter):

 128^3 345 Mlups

 192^3 472 Mlups

 256^3 535 Mlups

 384^3 610 Mlups

 512^3 676 Mlups

 768^3 437 Mlups

Hints #5.1

 CFD code

 Writing time (sec.) on disc: formatted vs. unformatted

 BDW vs KNL

 They share the same filesystem

 General issues:

 Always: avoid formatted output

 It is even worst on KNL

size BDW KNL Ratio

formatted 211 MB 58’’ 468’’ 8.0

binary 1200 MB 1.20’’ 1.25’’ -

Hints #5.2

 Another CFD code

 Reading time (sec.) formatted data from disk

 BDW vs KNL

 They share the same filesystem

 General issues:

 Always: avoid formatted output

 Parallel I/O could help (see also Hint #4)

size BDW KNL Ratio

formatted 3.0 GB 292’’ 1597’’ 5.5

Hints #6

exploit MCDRAM effect

Example (3D CFD code):

 Only MCDRAM (<16 GB) : 850 Mlups

 Only DRAM (<16 GB): 372 Mlups

 MCDRAM+DRAM (20 GB): 757 Mlups

 Only DRAM (20 GB): 355 Mlups

 Cache: 523

Results are application/size dependent…

NEMO GLOB16 benchmark

 A very high resolution version of the NEMO ocean model
developed at CMCC

 Fully MPI (scalability)

 Highly vectorized (key_vectopt_loop) preprocessing
keywords to enhance loop-level vectorization

 XIOS2 server for efficient/scalable parallel I/O of huge
files (model’s output, diagnostic,…)

 Parallel efficiency up to 19968 cores

1

0,794117647

1,041044776

0,940485669
0,874352332

0,621995192

0

0,2

0,4

0,6

0,8

1

1,2

2160 4080 8040 10048 12352 19968

SPECFEM3D_GLOBE benchmark/1

 Highly vectorized (FORCE_VECTORIZATION pre-processing
keywords to enhance loop-level vectorization)

 Regional Greece_small benchmark (serial, only 1 thread)

 With vectorization on: 1340 sec. (solver)

 With vectorization off: 1883 sec. (solver)

Comment about vectorization:

 be careful with compiler options, as they may interact with
vectorization: -fpe0 vs simd directive?

remark #15326: simd loop was not vectorized: implied FP exception
model prevents vectorization. Consider changing compiler flags and/or
directives in the source to enable fast FP model and to mask FP
exceptions

remark #15552: loop was not vectorized with "simd"

Always check vectorization level with

-qopt-report-phase=vec (*.oprpt file are generated)

SPECFEM3D_GLOBE benchmark/2

 Multiple threads scaling: Fully OpenMP (1 MPI process)

 Regional_Greece_small benchmark (up to 128 OpenMP
threads)

 Very good scaling up to 64 cores

 KMP_AFFINITY equal to scatter must be used!

threads Solver time Speed-up

1 1340’’ -

2 695’’ 1.92

4 348’’ 3.85

8 177’’ 7.57

16 91’’ 14.7

32 48’’ 27.9

64 28’’ 47.8

128 26’’ 51.5

SPECFEM3D_GLOBE benchmark/3

 Intranode scaling: Fully hybrid (MPI+OpenMP)

 Regional_Greece_small benchmark (varying number of MPI
processes and OpenMP threads)

 Very good intranode scaling

 Best result achieved using both MPI processes and OpenMP threads

 KMP_AFFINITY=scatter must be used!

Task/Threads Solver time

4x1 342’’

4x2 180’’

4x4 91’’

4x8 48’’

4x16 25’’

4x32 22’’

Task/Threads Solver time

16x1 95’’

16x2 49’’

16x4 26’’

16x8 24’’

Task/Threads Solver time

64x1 30’’

64x2 22’’

Molecular Dynamics codes

Gromacs
Kir3.1 potassium channel:

365K atoms, 300K, PME, Cut-off=1.2nm

Amber
Cellulose, NVT, Cut-off=0.8 nm, 400K atoms

BDW KNL
(64 * 2 threads)

KNL
(64 * 4 threads)

6,197 ns/day 5,8 ns/day 5,4 ns/day

BDW KNL
(68 *1 thread)

4,15 ns/day 5,8 ns/day

Molecular Dynamics codes

NAMD
Apoa1, NPT ensemble, PME, Cut-off = 1.2 nm, 92K atoms

Considerations:
Not all the codes can exploit hyper-threading on KNL (at least in
their original versions).

In some cases the use of hyper-threading can improve
performances of a code, in some cases it can not.

BDW
(36 task*1 thread)

KNL
(68 task *1 thread)

1,33 ns/day 1,54 ns/day

OpenFoam
3D Lid Driven Cavity Flow, size: 200^3 pure MPI

KNL

BDW

Nodes Task per node Total time (s)

1 64 853

1 128 777

2 64 489

2 128 462

4 64 267

4 128 386

8 64 161

Nodes Task per node Total time (s)

1 32 1433

2 32 654

4 32 279

OpenFoam

3D Lid Driven Cavity Flow, size: 300^3, pure MPI

KNL

BDW

Nodes Task per node Total time (s)

4 64 1202

4 128 1370

8 64 669

8 128 1958

16 64 387

Nodes Task per node Total time (s)

4 32 1875

8 32 837

16 32 384

QuantumEspresso

Tests performed to verify strong scaling.

QE is a hybrid code, using MPI as well as OpenMP threads.

For all tests, KMP_AFFINITY=scatter has been used.

Next slides focus on computing performance vs:

 Number of cores

 Power consumption

For each of the three cases, results are compared to BDW

QuantumEspresso

10

100

1000

10000

1 10 100 1000 10000

SE
C

O
N

D
S/

1
0

st
ep

s

CORES

W256 QE-CP Benchmark

CP@KNL

CP@BDW

QuantumEspresso

10

100

1000

10000

1 10 100 1000 10000 100000

SE
CO

N
D

S/
10

st
ep

s

WATT

W256 QE-CP Benchmark

CP@KNL

CP@BDW

Scalability: speed-up

CFD Kinetic code (Lattice Boltzmann)

Scalability for 1200*600*200 grid

Scalability: scale-up

CFD Kinetic code (Lattice Boltzmann) scalability

 From 36’000’000 (1 node) to 7’760’000’000 (216 nodes) grid-points

Useful links

 MARCONI User Guide: https://wiki.u-
gov.it/confluence/display/SCAIUS/UG3.1%3A+MARCONI+UserGuide

 Intel Xeon-Phi Guide (and benchmarks):
https://www.aspsys.com/images/solutions/linux-cluster-
solutions/knights-landing-clusters/xeon-phi-knl-marketing-guide.pdf

 Guide to vectorization:

 https://wiki.u-
gov.it/confluence/display/SCAIUS/How+to+Improve+Code+Vecto
rization

 https://hpc-
forge.cineca.it/files/ScuolaCalcoloParallelo_WebDAV/public/anno-
2017/26th_Summer_School_on_Parallel_Computing/Roma/VECT

ORIZATION-slides.pdf

For any kind of support, please refer to superc@cineca.it : your
request will be assigned to someone who can understand your
problem and give you support.

mailto:superc@cineca.it

Acknowledgments

 The User Support team (superc@cineca.it)

 Vittorio Ruggiero

 Piero Lanucara

 Mariella Ippolito

mailto:superc@cineca.it

