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Introduction

• The hardware components of modern 
supercomputers are capable providing substantial 
computing power

• To obtain high performing applications we require:

– Efficient programming

– A good understanding of the compilers and how that 
optimize code for the underlying hardware

– Tools such as profilers, debuggers, etc, in order to obtain 
the best performance 

16/05/2017 3Cineca Summer School 2017 - Compilers and optimisation



The compiler

• There are many compilers available and for all 
computer operating systems (e.g. Linux, Windows or 
Macintosh).

• As well as free compilers from the GNU project there 
are also various commercial compilers (e.g. Portland 
or Intel)

• Some compilers are provided with the hardware 

(IBM XL for Fermi)
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Compilers and interpreters

• Interpreted languages
– The code is “translated” statement-by-statement during the 

execution

– Easier on the programmer, modifications can be made quickly 
but optimisations between different statements (almost) 
impossible

– Used for scripting languages (bash, Perl, PHP, ..)

• Compiled languages
– Entire program is translated before execution

– Optimisations between different parts of the program possible.

– HPC languages such as FORTRAN, C and C++ 
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What does the compiler do?

• Translates source code into machine code, if no syntax 
errors found. Warnings for potential semantic 
problems.

• Can attempt to optimise the code. Optimisations can 
be:
– Language  dependent or independent

– Hardware dependent (e.g. CPU, memory, cache)

• Compilers are very sophisticated software tools but 
cannot replace human understanding of what the code 
should do.
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Pre-processing, compiling 
and linking

• “Compiling” a program is actually a three stage process:
1. Pre-processing  to replace MACROs (#define),  code 

insertions (#include), code selections (#ifdef, #if).
Originally C/C++ but also used in FORTRAN.

2. Compilation of the source code into object files – organised 
collections of symbols referring to variables and functions.

3. Linking of the object files, together with any external libraries 
to create the executable (if all referred objects are resolved).

• For large projects usual to separate the compiling and 
linking phases.

• Code optimisations are mainly done during compilation, 
but how a program is linked may also affect performance 
(e.g. BG/Q).
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Which compiler ?

• Common compiler suites include:
– GNU (gcc, gfortran,...)

– Intel (icc, icpc, icc)

– IBM (xlf, xlc, xlC)

– Portland (pgf90, pgcc, pgCC)

– LLVM (Clang)

• If I have a choice, which one ?
– Various things to consider. For performance vendor-

specific (e.g xlf on BG/Q, Intel on Intel CPUs) but many 
tools have been developed with GNU. 
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What does the compiler do?

• The compiler can perform many optimisations 
including:
– Register allocation

– Dead and redundant code removal
– Common subexpression elimination (CSE)
– Strength reduction (e.g. replacing an exponentiation within 

a loop with a multiplication)

– Inlining
– Loop optimisations such as index reordering, loop 

pipelining, unrolling, merging
– Cache blocking
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What the compiler does

• What the compiler cannot do:
– Understand dependencies between data with indirect 

addressing
– Non-integer or complex strength reduction
– Unrolling/Merging/Blocking with 

• Calls to functions or subroutines
• I/O statements or calls within the code

– Function in-lining if not explicitly indicated by the 
programmer

– Optimize variables with values known only at run-time 
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Optimisation options - Intel

• Automatic vectorization (use of packed SIMD instructions)

• Loop interchange (for more efficient memory access)

• Loop unrolling (more instruction level parallelism)

• Prefetching (for patterns not recognized by h/w prefetcher)

• Cache blocking (for more reuse of data in cache)

• Loop peeling (allow for misalignment)

• Loop versioning (for loop count; data alignment; runtime dependency tests)

• Memcpy recognition (call Intel’s fast memcpy, memset)

• Loop splitting (facilitate vectorization)

• Loop fusion (more efficient vectorization)

• Scalar replacement (reduce array accesses by scalar temps)

• Loop rerolling (enable vectorization)

• Loop reversal (handle dependencies)

icc (or ifort) –O3 
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Optimisation options

• Compilers give the possibility of specifying 
optimisation options at compile time, together 
with the other options.

• These are either general optimisation levels or 
specific flags related to the underlying hardware.

• Some options can greatly increase the 
compilation time so one reason for starting with 
a low optimisation level during code 
development.
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Optimisation levels –common to all 
HPC compilers

• -O0 : no optimisation, the code is translated 
literally

• -O1, -O2:  local optimisations, compromise 
between compilation speed, optimisation, code 
accuracy and executable size (usually default)

• -O3: high optimisation, can alter the semantics of 
the program (hence not used for debugging)

• -O4 or higher: Aggressive optimisations, 
depending on hardware.
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Can I just leave it to the 
compiler to optimise my code ?

• Example: matrix-matrix multiplication (1024x1024), 
double precision, FORTRAN.

• Two systems:
– FERMI: (IBM BG/Q Power A2, 1.6Ghz)
– PLX:  (Xeon Westmere CPUs, 2.4 Ghz)

Option Seconds MFlops

-O0 65.78 32.6

-O2 7.13 301

-O3 0.78 2735

-O4 55.52 38.7

-O5 0.65 3311

Option Seconds MFlops

-O0 8.94 240

-O2 1.41 1514

-O3 0.72 2955

-O4 0.33 6392

-O5 0.32 6623

FERMI xlf PLX -ifort
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Can I just leave it to the compiler to 
optimise my code ?

• To find out what is going on can invoke the -qreport option 
of xlf. It tells us what the compiler is actually doing.

• On Fermi, for –O4 the option tells us that the optimiser 
follows a different strategy:
– The compiler recognises the matrix-matrix product and 

substitutes the code with a call to a library routine __xl_dgemm

– This is quite slow, particularly compared to the IBM optimised 
library (ESSL).

– Intel uses a similar strategy, but uses instead the efficient MKL 
library

• Moral? Increasing the optimisation level doesn’t always 
increase performance. Must check each time.
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Optimisation Reports

• Compiler dependent. Intel provides various useful options:

• The GNU suite does not provide exactly equivalent options.

– The best option is to specify: -fdump-tree-all 

– which prints  out alot of stuff (but not exactly in user-friendly form).

-opt-report[n] n=0(none),1(min),2(med),3(max)
-opt-report-file<file>

-vec-report[n] n=0(none),1(min),2,3,4,5,6,7(max)

....
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Optimising Loops

• Many HPC programs consume resources in loops where 
there are array accesses.

• Since main memory accesses are expensive principle goal 
when optimising loops is to maximise data locality so  that 
the cache can be used. Another goal is to aid vectorisation.

• For simple loops the compiler can do this but sometimes it 
needs help. 

• Important to remember differences between FORTRAN and 
C for array storage.

• But should always test the performance. For small arrays, in 
particular, the various optimisations may give worse results.
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Reminder -Storing arrays in 
C and Fortran
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Integer, dimension :: A(N,N)

int A[N][N];

…A(1,1) A(2,1) A(3,1) A(N,1) A(1,2) A(2,2) … A(N,2)

… A(1,N) A(2,N) A(3,N) … A(N,N)

…A[0][0] A[0][1] A[0][2] A[0][N] A[1][0] A[1][1] … A[1][N]

… A[N-1][0] A[N-1][1] A[N-1][2] … A[N-1][N-1]

COLUMN-MAJOR

ROW-MAJOR



Loop optimisations  
• First rule: always use the correct types for loop indices. Otherwise 

the compiler will have to perform real to integer conversions.

• FORTRAN compilers may indicate an error or warning, but usually 
tolerated

real :: i,j,k
....
do j=1,n

do k=1,n
do i=1,n

c(i,j)=c(i,j)+a(i,k)*b(k,j)
enddo

enddo
enddo

Compilation integer real

PLX gfortran –O0 9.96 8.37

PLX gfortran –O3
0.75 2.63

PLX ifort –O0 6.72 8.28

PLX ifort –O3 0.33 1.74

Plx pgif90 4.73 4.85

Plx pgif90 -fast 0.68 2.3

Fermi bglxlf –O3 64.78 104.1

Fermi bgxlf –O3 0.64 12.38
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Loop optimisations: index 
reordering

do i=1,n
do j=1,n
do k=1,n

c(i,j) = c(i,j) + a(i,k)*b(k,j)
end do
end do
end do

For simple loops, the compiler optimises well

Compilation J-k-i i-k-j

Ifort –O0 6.72 21.8

Ifort –fast 0.34 0.33
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Practical session 1 – array indices

• Have a look at the matrix multiplication routines 
in the mult-matrix subdirectory.

• Have a look at the three variants, which should 
be the fastest?

• Compile with –O0 to prevent the compiler 
optimising the execution and time the 
executions. 
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ifort –O0 mult_matrix.f90
time ./mult_matrix



Loop optimisations – index reordering

• For more complex, nested loops optimised performances 
may differ.

• Important to understand the cache mechanism!

do jj = 1, n, step
do kk = 1, n, step

do ii = 1, n, step
do j = jj, jj+step-1

do k = kk, kk+step-1
do i = ii, ii+step-1

c(i,j) = c(i,j) + a(i,k)*b(k,j)
enddo

enddo
enddo

enddo
enddo

enddo

Compilation j-k-i i-k-j
(PLX) ifort -O0 10 11.5
(PLX) ifort -fast 1. 2.4
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Loop optimisations -cache blocking

If the a,b,c, arrays fit into the cache, performance is fast

for (i = 0; i < N; i = i+1) 
for (j = 0; j < N; j = j+1) { 

r = 0; 
for (k = 0; k < N; k = k+1){ 

r = r + y[i][k]*z[k][j];
} 

x[i][j] = r; 
};

for (jj = 0; jj < N; jj = jj+B) 
for (kk = 0; kk < N; kk = kk+B) 

for (i = 0; i < N; i = i+1) 
for (j = jj; j < min(jj+B-1,N); j = j+1)  {

r = 0; 
for (k = kk; k < min(kk+B-1,N); k = k+1) { 

r = r + y[i][k]*z[k][j];
} 
x[i][j] = x[i][j] + r; 

};
If not then performance 
is slow. By adding loops, 
can reduce data held such 
that it fits into cache. B=blocking factor
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Loop optimisations – unrolling (or 
unwinding)

• Aim to reduce loop overhead (e.g. loop control instructions)  by 
reducing iterations. Can also reduce memory accesses, and aid 
vectorisation.

• Can be done by replicating the code inside the loop. 

• Most effective when the computations in the loop can be simulated 
by the compiler (e.g. stepping sequentially through an array) . 
Clearly, the no. of iterations should be known before execution. 

or(int i=0;i<1000;i++)

a[i] = b[i] + c[i];

or(int i=0;i<1000;i++)

a[i] = b[i] + c[i];

for(int 

i=0;i<1000;i++)

a[i] = b[i] + c[i];

for(int i=0;i<1000;i+=4) {

a[i] = b[i] + c[i];

a[i+1] = b[i+1] + c[i+1];

a[i+2] = b[i+2] + c[i+2];

a[i+3] = b[i+3] + c[i+3];

}

in some cases can 
eliminate a loop 
altogether
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Loop optimisations – loop fusion

• A loop transformation which replaces multiple loops with a single one (to 
avoid loop overheads and aid cache use).

• Possible when two loops iterate over the same range and do not reference 
each other’s data. (unless “loop peeling” is used)

• Doesn’t always improve performance – sometimes cache is better used in 
two loops (Loop fission)

/* Unoptimized */

for (i = 0; i < N; i = i + 1)

for (j = 0; j < N; j = j + 1)

a[i][j] = 2 * b[i][j];

for (i = 0; i < N; i = i + 1)

for (j = 0; j < N; j = j + 1)

c[i][j] = K*b[i][j]+ d[i][j]/2

/* Optimized */

for (i = 0; i < N; i = i + 1)

for (j = 0; j < N; j = j + 1)

a[i][j] = 2 * b[i][j];

c[i][j] = K*b[i][j]+d[i][j]/2
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Loop optimisations - fission

• The opposite of Loop fusion, i.e. splitting a single loop into multiple 
loops.

• Often used when:
1. computations in single loop become too many(which can lead to 

“register spills”).

2. If the loop contains a conditional: create 2 loops, one without 
conditional for vectorisation.

3. Improve memory locality. 

for (j=0; j<n; j++) {

for (i=0; i<n; i++) { 

b[i][j] = a[i][j]; 

} 

for (i=0; i<n; i++) { 

c[i][j] = b[i+m][j]; 

} 

} 

for (i=0; i<n; i++) {

for (j=0; j<n; j++) { 

b[i][j] = a[i][j]; 

} 

} 

for (i=0; i<n; i++) { 

for (j=0; j<n; j++) { 

c[i][j] = b[i+m][j]; 

} 

} 
non local access
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Array of Structures (AoS) vs Structure of 
Arrays (SoA)

• Depends on access patterns, but for vectorised C/C++ usually 
preferable to have SoA rather than  AoS since array elements are 
contiguous in memory.

• SoA also usually uses less memory because of data alignment.

// AoS

struct node {

float x,y,z;

// other data

};

struct node NODES[N];

// SoA

struct node {

float x[N];

float y[N];

float z[N];

//other data

};

struct node NODES;
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Example

// Array of structures

struct node {

float x,y,z;

int n;

};

struct node NODES[N];

for (i=0;i<N;i++) {

NODES[i].x=1;

NODES[i].y=1;

NODES[i].z=1;

}

for (i=0; i<N; i++) {

x=NODES[i].x;

y=NODES[i].y;

z=NODES[i].z;

sum+=sqrtf(x*x+y*y+z*z);

}

// Struct of Arrays

struct node {

float x[N];

float y[N];

float z[N];

int n[N];

};

struct node NODES;

for (i=0;i<N;i++) {

NODES.x[i]=1;

NODES.y[i]=1;

NODES.z[i]=1;

}

for (i=0; i<N; i++) {

x=NODES.x[i];

y=NODES.y[i];

z=NODES.z[i];

sum+=sqrtf(x*x+y*y+z*z);

}

icc -O2 -opt-report 2 -o soa soa.c -lm

soa.c(22:1-22:1):VEC:main:  LOOP WAS VECTORIZED

soa.c(29:1-29:1):VEC:main:  LOOP WAS VECTORIZED

icc -O2 -opt-report 2 -o aos aos.c -lm

aos.c(18:1-18:1):VEC:main:  loop was not vectorized: not inner loop

aos.c(19:4-19:4):VEC:main:  loop was not vectorized: low trip count

aos.c(25:1-25:1):VEC:main:  LOOP WAS VECTORIZED
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Practical session 2 – loop 
optimisations

In the optimisations/loops directory you will find some 
examples of different types of loops. We suggest:

– Compile the example programs, switching off for the moment 
the automatic vectorisation to see what non-vector 
optimisations are performed by the Intel compiler.

– Check the optimisations performed with the –qopt-report 
option of icc/ifort.

– Try also varying the amount of information the compiler has by 
removing explicit definition of the array sizes (e.g. loop4.c)

16/05/2017 Cineca Summer School 2017 - Compilers and optimisation 29

module load intel

icc –qopt-report –no-vec –c loop.c

less loop.optrpt



Vectorisation

• Modern processors have dedicated circuits and SIMD 
instructions for operating on blocks of data (“vectors”) 
rather than single data items.

non vectorised vectorised

c(0) = a(0) + b(0)

c(1) = a(1) + b(1)

c(2) = a(2) + b(2)

c(3) = a(3) + b(3)
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Vectorisation evolution

• SSE: 128 bit registers (intel Core - AMD Opteron)
– 4  floating/integer operations in single precision

– 2  floating/integer operations in double precision

• AVX: 256 bit registers (intel Sandy Bridge - AMD 
Bulldozer)
– 8 floating/integer operations in single precision
– 4 floating/integer operations in double precision

• MIC: 512 bit registers (Intel Knights Corner - 2013)
– 16 floating/integer operations in single precision
– 8 floating/integer operations in double precision
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Vectorisation

• Loop vectorisation can increase dramatically the 
performance.

• But to be vectorisable a loop must obey certain criteria, in 
particular the absence of dependencies between separate 
iterations.

• Other criteria include:
– Countable (constant number of iterations)

– Single entry/exit points (no branches, unless implemented as 
masks)

– Only the internal loop of a nested loop

– No function calls (unless inlined or using a vector version of the 
function)

• Note that AVX can give different numerical results (e.g. 
Fused Multiply Addition)  
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Vectorisation can be difficult..

subroutine vec

integer, parameter ::n=1000

integer :: i

real :: a(n),b(n),c(n)

do i=2,n

a(i-1)=a(i)+1

enddo

end subroutine

subroutine vec

integer, parameter ::n=1000

integer :: i

real :: a(n),b(n),c(n)

do i=2,n

a(i) = a(i-1) + 1

end do

end subroutine
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One of the following code snippets vectorises, the other one doesn’t



Vectorisation Algorithms

• Different algorithms performing the same task can behave 
differently wrt vectorisation.
– Gauss-Seidel: dependency between iterations, not vectorisable.

for( i = 1; i < n-1; ++i )

for( j = 1; j < m-1; ++j )

a[i][j] = w0 * a[i][j] +

w1*(a[i-1][j] + a[i+1][j] + a[i][j-1] + a[i][j+1]);

for( i = 1; i < n-1; ++i )

for( j = 1; j < m-1; ++j )

b[i][j] = w0*a[i][j] +

w1*(a[i-1][j] + a[i][j-1] + a[i+1][j] + a[i][j+1]);

for( i = 1; i < n-1; ++i )

for( j = 1; j < m-1; ++j )

a[i][j] = b[i][j];
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Helping the vectoriser

• Some “coding tricks” can block vectorisation:
– vectorisable

for( i = 0; i < n-1; ++i ){

b[i] = a[i] + a[i+1];

}

– non vectorisable  because x is needed for the next iteration.

x = a[0];

for( i = 0; i < n-1; ++i ){

y = a[i+1];

b[i] = x + y;

x = y;

}

• If the code hasn’t vectorised then you can help the compiler by:

• modifying the code to make it vectorisable

• inserting compiler directives to force the vectorisation

16/05/2017 35Cineca Summer School 2017 - Compilers and optimisation



Helping the vectoriser

for (i=0; i<N;i++) {

a[i]=b[i]+c[i];

a[i+1]=a[i]+2*d[i]

}

for (i=0; i<N;i++) {

temp[i]=b[i]+c[i];

a[i+1]=temp[i]+2*d[i]

;

a[i]=temp[i];

}
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Remove output dependency with a new temporary variable.



Helping the vectoriser
• If the programmer knows that a dependency indicated by the programmer 

is only apparent then the vectorisation can be forced with compiler-
dependent directives. 
– Intel FOTRAN: !DIR$ simd

– Intel C:#pragma simd

• so if we know that inow ≠ inew then there is in fact no dependency

do k = 1,n

!DIR$ simd

do i = 1,l

...

x02 = a02(i-1,k+1,inow)

x04 = a04(i-1,k-1,inow)

x05 = a05(i-1,k ,inow)

x06 = a06(i, k-1, inow)

x19 = a19(i ,k ,inow)

rho =+x02+x04+x05+x06+x11+x13+x14+x15+x19

a05(i,k,inew) = x05 - omega*(x05-e05) + force

a06(i,k,inew) = x06 - omega*(x06-e06)
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Inlining

• A manual or compiler optimisation which replaces a call to the 
function with the body of the function itself.
 eliminates the cost of the function call and can improve instruction 

cache performance

 makes inter-procedure optimisation easier

• In C/C++ the keyword inline is a “suggestion”

• Not every function is “inlineable” – depends on the compiler. 

• Can cause increase in code size, particularly for large functions.

• Intel: -inline=n (0=disable, 1=keyword, 2=compiler decides)

• GNU: -finline-functions, -finline-limit=n

• In some compilers activated at high optimisation levels
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Common Subexpression
Elimination (CSE)

• Sometimes identical expressions are calculated more than once. 
When this happens may be useful to replace them with a variable 
holding the value.

• This 

A = B+C+D

E = B+F+C

requires 4 sums. But the following

A =(B+C)+D

E =(B+C)+D

requires 3 sums.

• Careful: the floating point result may not be identical

• Another use is to replace an array element with a scalar to avoid 
multiple array lookups.
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CSE  and function calls

• By altering the order of the calls the compiler doesn’t know if 
the result is affected (possible side-effects)

• 5 function calls, 5 products 

• 4 function calls, 4 products (1 temporary variable)

x=r*sin(a)*cos(b);

y=r*sin(a)*sin(b);

z=r*cos(a);

temp=r*sin(a)

x=temp*cos(b);

y=temp*sin(b);

z=r*cos(a);
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CSE: Limitations

• Loops which are too big:
– The compiler works with limited window sizes: it may not detect 

which quantity to re-use

• Functions:
– If I change the order of the functions do I still get the same 

result?

• Order and evaluations:
– Only at high levels of optimisation does the compiler change the 

order of operations (usually –O3 and above).

– In some expressions it is possible to inhibit the mechanism with 
parantheses (the programmer is always right!).

• Since intermediate values are used will increase use of 
registers (risk of “register spilling”).
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Static and dynamic allocation

• Static allocation in principle can help the compiler 
optimise by providing more information. But
– the code becomes more rigid
– in parallel computing dynamic allocation is very useful 

integer :: n

parameter(n=1024)

real a(1:n,1:n)

real b(1:n,1:n)

real c(1:n,1:n)

real, allocatable, dimension(:,:) :: a

real, allocatable, dimension(:,:) :: b

real, allocatable, dimension(:,:) :: c

print*,’Enter matrix size’

read(*,*) n

allocate(a(n,n),b(n,n),c(n,n))
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Static and Dynamic Allocation

• For recent compilers, performances are often similar for 
static and dynamic allocations.
– e.g. matrix-matrix multiplication

• Note that static allocations use the “stack”, which is 
generally limited.

• In the bash shell you can use the ulimit command to see 
and (possibly) set the stack.

Compiler Static Dynamic

PLX ifort –O0 6.72 18.26

PLX ifort –fast 0.34 0.35

ulimit –a

ulimit –s unlimited
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Dynamic allocation in C

• C doesn’t have a native 2-d array (unlike FORTRAN) but instead uses 
arrays of arrays.

• Static allocation guarantees all the values are contiguous in memory

• Dynamic allocation can be inefficient, if not done carefully

/* Inefficient array allocation */

/* Allocate a double matrix with many malloc */

double** allocate_matrix(int nrows, int ncols) {

double **A;

/* Allocate space for row pointers */

A = (double**) malloc(nrows*sizeof(double*) );

/* Allocate space for each row */

for (int ii=1; ii<nrows; ++ii) {

A[ii] = (double*) malloc(ncols*sizeof(double));

}

return A;

}

double A[nrows][ncols];
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Dynamic array allocation in C/2

• Better to allocate a linear (1D array) and use it as matrix (index 
linearisation).

• If necessary can add a matrix of pointers pointing to the allocated array

/* Allocate a double matrix with one malloc */

double* allocate_matrix_as_array(int nrows, int ncols) {

double *arr_A;

/* Allocate enough raw space */

arr_A = (double*) malloc(nrows*ncols*sizeof(double));

return arr_A;

}

..

arr_A[i+ncols+j]

/* Allocate a double matrix with one malloc */

double** allocate_matrix(int nrows, int ncols, double* arr_A) {

double **A;

/* Prepare pointers for each matrix row */

A = new double*[nrows];

/* Initialize the pointers */

for (int ii=0; ii<nrows; ++ii) {

A[ii] = &(arr_A[ii*ncols]);

}

return A;

}
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Aliasing and restrict

• In C aliasing occurs if two pointers point to the same area of 
memory.

• Aliasing can severely limit compiler optimisations:

– difficult to invert the order of the operations, particularly if passed to 
a function

• The C99 standard introduced the restrict keyword to 
indicate that aliasing is not possible:

void saxpy(int n, float a, float *x, float* restrict y)

• In C++ it is assumed that aliasing cannot occur between 
pointers to different types (strict aliasing).
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Aliasing and Restrict /2

• FORTRAN assumes that the arguments of a procedure cannot point 
to the same area of memory

– except for arrays where in any case the indices allow a correct 
behaviour 

– or for pointers which are used anyway as arguments

– one reason why FORTRAN optimises better than C!

• It is possible to configure the aliasing options at compile time

– GNU (solo strict-aliasing): -fstrict-aliasing

– Intel (complete elimination): -fno-alias

– IBM (no overlap per array): -qalias=noaryovrlp
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Practical session 3 - vectorisation

• Repeat practical session 2 but this time switch on 
the vectorisation.

• Some hints
– For testing vectorisation use subroutines or functions 

rather than whole programs. The optimiser may 
decide not to use vectorisation if it knows the 
problem size is small.

– If testing on KNL, remember to use the KNL 
vectorisation flag:

ifort –xMIC-AVX512 –c myprog.f90
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Optimizing parallel programs

• A complicated subject which needs to be done in 
conjunction with profiling and tracing tools.

• After profiling, two major starting points for 
optimizing parallel programs:

1. Modifying the program to reduce synchronisations and 
overlap calculation with communication as much as 
possible

2. Match the parallel processes (MPI, OpenMP) to the 
underlying hardware.

• In the next few slides we will look only at point 2.
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Thread and task affinity (pinning)

With the number of tasks or threads/node increasing it is important to know to which cores 
they have been assigned. This is true for all NUMA HPC systems but particularly relevant for, 
e.g. KNL, with it high number of cores. The performance difference can be significant !

A complicated topic because the pinning is controlled by a variety of options or environment 
options, many of which are intel-specific and liable to change. 

For KNL, see for example,

https://software.intel.com/en-us/articles/process-and-thread-affinity-for-intel-xeon-phi-
processors-x200
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KMP_AFFINITY=scatter

KMP_AFFINITY=compact



Thread and task pinning – some 
variables
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Variable Example Description

I_MPI_DEBUG=[0-5] export I_MPI_DEBUG=5 Shows the logical cores owned by 
each MPI rank (the affinity). Default 
affinity=scatter

KMP_AFFINITY=[scatter
,compact, proclist={..}]

export KMP_AFFINITY=compact, 
verbose.

Changes the affinity to, e.g compact. 
The verbose option shows the result 
of the change.

KMP_PLACE_THREADS,
KMP_HW_SUBSET=<t>
T
(new)

export KMP_HW_SUBSET=2T threads per core (by default all 4 
thds/core are used)

OMP_NUM_THREADS=
n

export OMP_NUM_THREADS=4 For an OpenMP program total 
number of threads, for hybrid 
threads/MPI rank.

OMP_PLACES=[cores,th
reads]

export 
OMP_PLACES=0,1,2,3,4,…271,272

Specifies hardware resource. Used 
with OMP_PROC_BIND

OMP_PROC_BIND=[clo
se, spread]

export 
OMP_PROC_BIND=spread,close

How OpenMP threads are bound to 
resources

Difficult to use correctly.
Better use 
KMP_HW_SUBSET



Pinning MPI tasks

The MPI task pinning can be queried 

by setting

I_MPI_DEBUG=5

For NUMA-aware MPI (e.g. Intel) the 

default affinity should be “sensible”, 

e.g. the ranks should be spread evenly 

between the sockets in a node.

Finer control (e.g at the KNL tile level) 

can be controlled with variables such 

as I_MPI_PIN_PROCESSOR_LIST or 

I_MPI_PIN_DOMAIN.

For multi-nodes, the –perhost option 

indicates how many tasks/knl.
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$ export I_MPI_DEBUG=5
$ mpirun -np 2 ./simple
…
[0] MPI startup(): Rank Pid Node name

Pin cpu

[0] MPI startup(): 0 698092   r086c15s03  

{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18                                  

30,31,32,33,68,69,70,71,72,73,74,75,76,77,78,79,

80,81,82,83,84,85,86,87,88,89,90                                  

221,222,223,224,225,226,227,228,229,230,231,232,

233,234,235,236,237}

[0] MPI startup(): 1 698093   r086c15s03  

{34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49

,50,51,52,53,54,55,56,57,58,59,60                                  

,61,62,63,64,65,66,67,102,103,104,105,106,107,10

8,109,110,…,265,266,267,268,269,270,271}

KNL example (68 physical 
cores, 272 virtual cores)



Binding memory to NUMA nodes
Once the thread or task has been 

pinned to a sub-NUMA cluster it makes 

sense also to bind the memory objects. 

As with any NUMA device the default 

allocation policy in Linux is “first touch”,  

when a thread first writes into a newly 

allocated array (touches it) the memory 

page is allocated on the thread’s NUMA 

node.

For this reason also array initialisation 

should be done in the parallel region: 

otherwise the array is allocated on the 

numa mode of the master thread. 

[assuming the shared array is large]
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// C++ version

int main() {

float *A = new float[N];

#pragma parallel for

for (int i=0; i < N; i++)

A[i] = 0.0f;

}

..

! FORTRAN

program numa

real, allocatable :: a(:)

allocate(a(N))

!$omp parallel do

do i=1,N

a(i)=0.0

end do

!$omp end parallel do

..

physical memory 
allocation occurs here



Binding memory to numa nodes - Example

integer :: n=1000000000

allocate(a(n),b(n),c(n))

!!$omp parallel do

do i=1,n

a(i)=10.0

b(i)=2.0

c(i)=1.0

enddo

!!$omp end parallel do

t=mysecond()

do j=1,10

!$OMP parallel do

do i=1,n

a(i)=b(i)+d*c(i)

enddo

!$OMP end parallel do
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Input/Output

• I/O is performed by the operating system and:
– results in a system call

– empties the pipeline

– destroys the coherence of data in the cache

– is very slow

• Rule 1: Do not mix intensive computing with I/O

• Rule 2: read/write data in blocks, not a few bytes 
at a time (the optimum block size depends on 
filesystem)
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Fortran  I/O examples

do k=1,n ; do j=1,n ; do i=1,n

write(69,*) a(i,j,k) ! formattated

enddo ; enddo ; enddo

do k=1,n ; do j=1,n ; do i=1,n

write(69) a(i,j,k) ! binary

enddo ; enddo ; enddo

do k=1,n ; do j=1,n

write(69) (a(i,j,k),i=1,n) ! columns

enddo ; enddo

do k=1,n

write(69) ((a(i,j,k),i=1),n,j=1,n) ! matrices

enddo

write(69) (((a(i,j,k),i=1,n),j=1,n),k=1,n) ! block

write(69) a ! dump
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FORTRAN I/O performances

Option Seconds Kbytes

Formatted 81.6 419430

Binary 81.1 419430

Columns 60.1 268435

Matrix 0.66 134742

Block 0.94 134219

Dump 0.66 134217
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I/O Summary

• Reading/writing formatted data is slow.

• Better to read/write binary data.

• Read/write in blocks.

• Choose the most efficient filesystem available.

• Note that although writing is generally buffered, the 
impact on performance can be significant.

• For parallel programs:
– avoid having every task perform read/writes

– use instead MPI I/O, NetCDF or HDF5, etc.
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Summary

• Most programmers optimise their codes by simply 
increasing the optimisation level during the compilation 
but with complex programs the compiler normally needs 
help.

• Many serial optimisations, regardless of language (C, 
Fortran,..), work towards optimal cache and vector 
performance – particularly essential for hybrid HPC 
architectures (e.g. GPU, KNL).  

• Parallel optimisation is an advanced topic, greatly 
assisted by profilers and performance tools. With many 
core technologies such as KNL important to take into 
account MPI task and OpenMP thread affinities. 
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