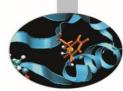
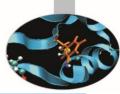


Benchmark results on Knight Landing architecture

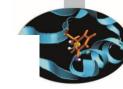

Domenico Guida, CINECA SCAI (Bologna) Giorgio Amati, CINECA SCAI (Roma)

Milano, 21/04/2017

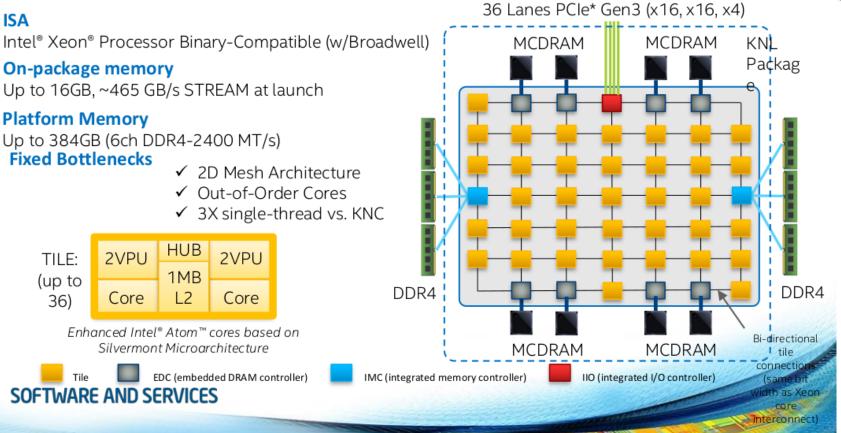
KNL vs BDW


***************************************	****
* Welcome to MARCONI /	*
 MARCONI-fusion @ CINECA - NeXtScale cluster - CentOS 7.2! 	*
*	*
* Broadwell partition - 1512 Compute nodes:	*
 * - 2 18-core Intel(R) Xeon(R) E5-2697 v4 @ 2.30GHz per Compute node 	*
 + 128 GB RAM per Compute node 	*
* KNL partition - 3600 Compute nodes:	*
 * - 1 68-core Intel(R) Knights Landing @ 1.40GHz per Compute node 	*
 * - 16 GB MCDRAM per Compute node 	*
 + 93 GB RAM per Compute node 	*
* Intel OmniPath (100Gb/s) high-performance network	*
* PBSpro 13 batch scheduler	*

	A1 BDW	A2 KNL
cores per node	2 x 18 @2.3 GHz	1 x 68 @1,4 GHz
HYPERTHREADING	No	Yes \rightarrow 272 «core»
MCDRAM		16 GB
RAM per node	128 GB	93 GB

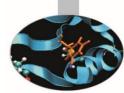


KNL Memory Model



Cache Model Ideal for large data size (>16GB) cache blocking apps	Flat Model Maximum bandwidth for data reuse aware apps	Hybrid Model Maximum flexibility for varied workloads
64B cache lines direct-mapped	Buccaram Bage/ 16GB Up to 384 GB DRAM	Split Options ² : 8 or 12GB MCDRAM or 50/50% 8 or 4 GB MCDRAM DRAM
Hardware automatically manages the MCDRAM as a "L3 cache" between CPU and external DDR memory	Manually manage how the app uses the integrated on-package memory and external DDR for peak perf	Harness the benefits of both Cache and Flat models by segmenting the integrated on- package memory
 App and/or data set is very large and will not fit into MCDRAM Unknown or unstructured memory access behavior 	 App or portion of an app or data set that can be, or is needed to be "locked" into MCDRAM so it doesn't get flushed out 	 Need to "lock" in a relatively small portion of an app or data set via the Flat model Remaining MCDRAM can then be configured as Cache
Code transparent	User should be aware of how his code is using memory	Very advanced

KNL Architecture Overview x4 DMI2 to PCH

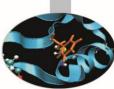


With this number of physical cores, it is important to control how OS assigns MPI jobs and OMP threads to physical cores.

AFFINITY

Processor affinity, or CPU pinning enables the binding and unbinding of a process or a thread to a central processing unit (CPU) or a range of CPUs, so that the process or thread will execute only on the designated CPU or CPUs rather than any CPU.

export KMP_AFFINITY= ...


- none (default): the OS decides how to assign threads looking at the machine topology. (of course, OS can't really know how our code works)
- compact: <n+1>-th thread is assigned to a context as close as possible to the thread context.
- scatter: threads are distributed as evenly as possible across the entire system.
- More configurations (i.e. balanced, disabled, explicit, logical, physical) are available...

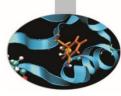
https://software.intel.com/enus/node/522691#KMP_AFFINITY_ENVIRONMENT_VARIABLE

Linpack on KNL

Floating point unit benchmark, OpenMP version, Intel build (mkl 2017)

- ✓ Size = 40.000, 5 replicas
- ✓ Double precision
- ✓ 64 threads
- ✓ KMP_AFFINITY=scatter

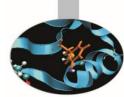
	Size	TFlops
KNL	40′000	1.9
BDW	45′000	1.3



Stream on KNL

Memory Bandwidth benchmark:

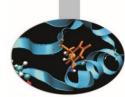
- 64 threads, KMP_AFFINITY=scatter
- ✓ MCDRAM+DRAM: numact1 -preferred 1
- ✓ MCDRAM/DRAM: numactl -membind 0/1
- ✓ Cache: no numactl


MEMORY	SIZE	Mb/sec
MCDRAM (flat)	9 GB	413712
MCDRAM+DRAM (flat)	23 GB	159672
MCDRAM+DRAM (flat)	90 GB	97866
DRAM (flat)	9 GB	82628
DRAM (flat)	23 GB	82507
DRAM (flat)	90 GB	82685
CACHE (cache)	9 GB	205807
CACHE (cache)	23 GB	92714
CACHE (cache)	90 GB	57882

BDW: 100'000

Molecular Dynamics codes

Gromacs


Kir3.1 potassium channel: 365K atoms, 300K, PME, Cut-off=1.2nm

			BDW KNL (64 * 2 threads) (64		lL hreads)
6,19)7 ns/day	5,8	ns/day	5,4 ns	s/day
Amber Cellulose, NVT, Cut-off=0.8 nm, 400K atoms					ns
				IL :hread)	
	4,15 ns/day		5,8 ns	s/day	

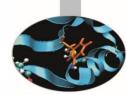
Molecular Dynamics codes

NAMD

Apoa1, NPT ensemble, PME, Cut-off = 1.2 nm, 92K atoms

BDW	KNL (68 *1 thread)
1,33 ns/day	1,54 ns/day

Considerations:


Not all the codes can exploit hyper-threading on KNL (at least in their original versions).

In some cases the use of hyper-threading can improve performances of a code, in some cases it can not.

OpenFoam

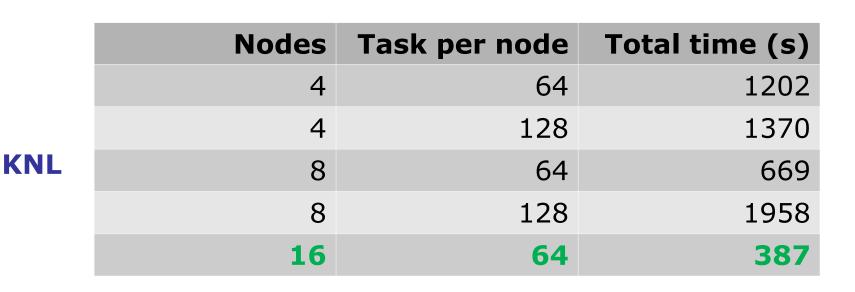
We performed tests on 3 test cases with different sizes.

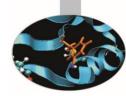
OpenFoam compiled for BRW runs correctly on KNL, **<u>but</u>** is more than 5 times slower.

We will present only results for <u>KMP_AFFINITY=compact</u>: it gave ~ 10% faster results than others.

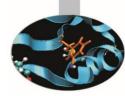
OpenFoam

3D Lid Driven Cavity Flow, size: 200^3


	Nodes	Task per node	Total time (s)
	1	64	853
	1	128	777
KNL	2	64	489
	2	128	462
	4	64	267
	4	128	386
	8	64	161
	1	32	1433
BDW			
DDW	2	32	654
	4	32	279

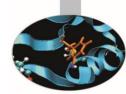


3D Lid Driven Cavity Flow, size: 300^3

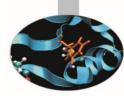

BDW	4	32	1875
	8	32	837
	16	32	384

Cartesian simulation of acoustic, elastic, coupled acoustic/elastic, poroelastic or seismic wave propagation in any type of conforming mesh of hexahedra). SpecFem3D is an hybrid code (MPI+OpenMP).

✓ test case: SPECFEM_GLOBE regional_MiddleEast


✓ quadrant/cache nodes

of threads



							$\overline{}$
		8	16	32	64	128	256
# of	4	833	412	220	121	74	76
	8	811	416	214	113	63	64
	16		425	219	112	60	59
cores	32			219	113	58	56
	64				113	59	49
	128					65	

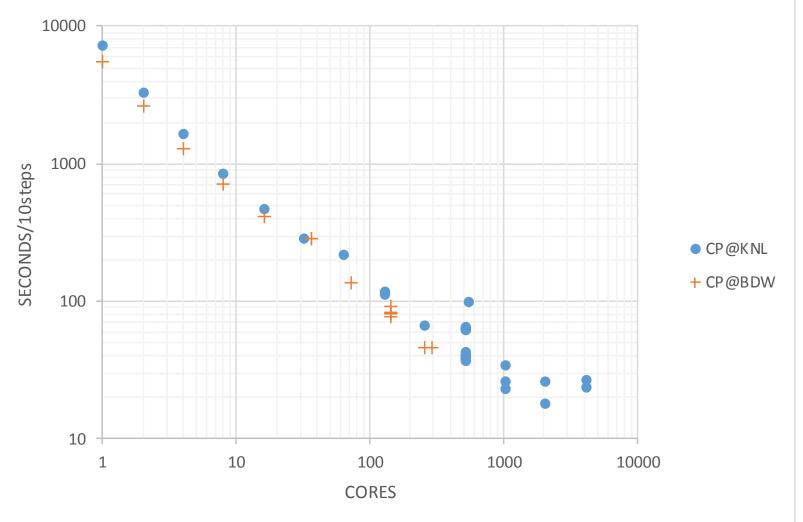
It looks as SpecFem3D reaches the best performances using a 1 MPI to 4 OpenMP ratio. **KMP_AFFINITY=scatter** has been used

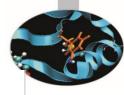
QuantumEspresso

Tests performed to verify strong scaling. QE is a hybrid code, using MPI as well as OpenMP threads. For all tests, <u>KMP_AFFINITY=scatter</u> has been used.

Next slides focus on computing performance vs:

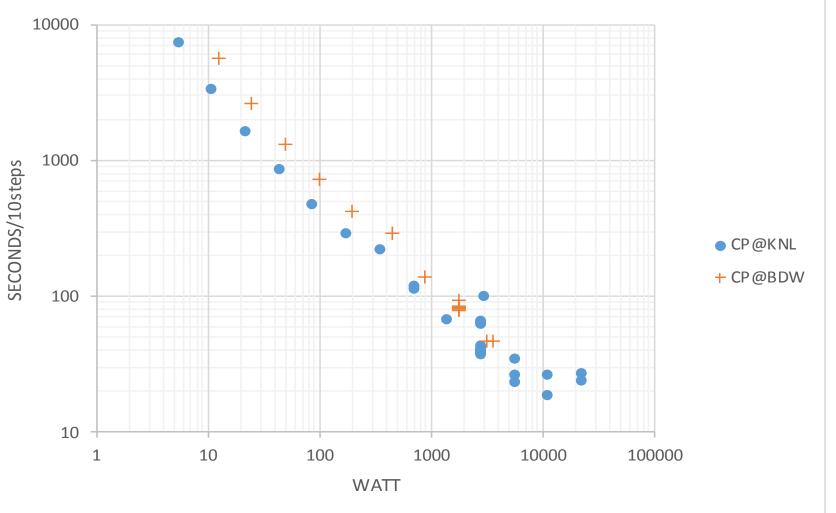
- ✓ Number of cores
- ✓ Power consumption


For each of the three cases, results are compared to BDW

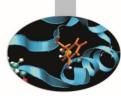


QuantumEspresso

W256 QE-CP Benchmark



CINECA


QuantumEspresso

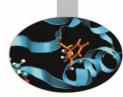
W256 QE-CP Benchmark

Hints #1

- Always check vectorization
- ✓ KNL FPU → 512bit wide → 8 DP Flop
- With no vectorization:
- $\checkmark\,$ A decrease of 8 using double precision
- $\checkmark\,$ A decrease of 16 using single precision

Example (3D CFD code):

- With vectorization on: 850 Mlups
- With vectorization off: 165 Mlups


Always check vectorization level with

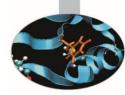
-qopt-report-phase=vec (*.oprpt file are generated)

Hints #2

KNL is backward compatible with BDW but

- ✓ BDW FPU \rightarrow 256bit wide...
- ✓ KNL FPU \rightarrow 512bit wide

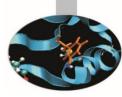
If you don't recompile your code you can loose a factor 2 in performance (if the code is vectorizable)


Example (3D CFD code):

- KNL compiled code: 850 MLups
- BDW compiled code: 447 MLups

Performance (especially for OpenMP application) are really concerned to affinity.

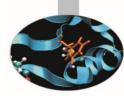
Example (3D CFD code):


- KMP_AFFINITY=scatter: 850 Mlups
- KMP_AFFINITY=balanced: 761 Mlups
- KMP_AFFINITY=compact: 151 Mlups

Gain/Loss can be really sensitive: always play with affinity

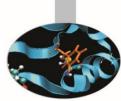
Always try to exploit MCDRAM effect

Example (3D CFD code):


- Only MCDRAM (<16 GB) : 850 Mlups
- Only DRAM (<16 GB): 372 Mlups
- MCDRAM+DRAM (20 GB): 757 Mlups
- Only DRAM (20 GB): 355 Mlups
- Cache: 523

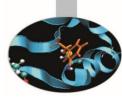
Results are application dependent...

Size matters, check which is the best size-problem for your applicati!


Example (3D CFD code, 2 task, 32threads, scatter):

- 128^3 → 345 Mlups
- 192^3 → 472 Mlups
- 256^3 → 535 Mlups
- 384^3 → 610 Mlups
- 512^3 → 676 Mlups
- 768^3 → 437 Mlups

Useful links


- MARCONI User Guide: <u>https://wiki.u-</u> gov.it/confluence/display/SCAIUS/UG3.1%3A+MARCONI+UserGuide
- <u>Intel Xeon-Phi Guide (and benchmarks):</u> <u>https://www.aspsys.com/images/solutions/linux-cluster-</u> <u>solutions/knights-landing-clusters/xeon-phi-knl-marketing-guide.pdf</u>
- <u>Guide to vectorization: https://wiki.u-</u> gov.it/confluence/display/SCAIUS/How+to+Improve+Code+Vectorization
 n

For any kind of support, please refer to <u>superc@cineca.it</u> : your request will be assigned to someone who can understand your problem and give you support.

Aknwoldgments

- The User Support team (<u>superc@cineca.it</u>)
- ✓ Piero Lanucara
- ✓ Alessandro Grottesi
- ✓ Mariella Ippolito

