
Knights Landing Architecture at Cineca
(KNL)

Andrew Emerson, Fabio Affinito

17/03/17 Cineca Winter School 2017 1

17/03/17 Cineca Winter School 2017 2

17/03/17 Cineca Winter School 2017 3

17/03/17 Cineca Winter School 2017 4

17/03/17 Cineca Winter School 2017 5

17/03/17 Cineca Winter School 2017 6

Cannot get much smaller ……

Current solutions for HPC

1. IBM + NVIDIA/GPU (PASCAL)

2. INTEL Xeon/XeonPHI

17/03/17 Cineca Winter School 2017 7

Q: Why use Intel Xeon Phi instead of GPU?
A: No need to write in CUDA: standard FORTRAN or
C/C++ will work (KNL is even binary compatible)

What is Intel Xeon Phi ?

The brand name given to the chips using Intel’s Many Integrated Core
(MIC) technology.

For this reason Xeon Phi’s are confusingly also called MICs.. (mikes?
Micks?).

Different design principle to a standard Xeon → idea to have many
cores (60+) and many threads (e.g. 240+).

Current Xeons (Haswell, Broadwell, etc) do not go beyond 44 threads.

Knight’s Landing (KNL) is the second generation Xeon Phi and is used in
the A2 partition of Marconi (the A1 partition is Intel Broadwell).

17/03/17 Cineca Winter School 2017 8

Features Xeon E5-2600 v3 (Haswell-EP) Xeon E5-2600 v4 (Broadwell-EP)

Cores Per Socket Up to 18 Up to 22

Threads Per Socket Up to 36 threads Up to 44 threads

Last-level Cache (LLC) Up to 45 MB Up to 55 MB

QPI Speed (GT/s) 2x QPI 1.1 channels 6.4, 8.0, 9.6 GT/s

PCIe* Lanes / Speed(GT/s) 40 / 10 / PCIe* 3.0 (2.5, 5, 8 GT/s)

Memory Population 4 channels of up to 3 RDIMMs or 3
LRDIMMs + 3DS LRDIMM†

Memory RAS
ECC, Patrol Scrubbing, Demand

Scrubbing, Sparing, Mirroring,
Lockstep Mode, x4/x8 SDDC

+ DDR4 Write CRC

Max Memory Speed Up to 2133 Up to 2400

TDP (W) 160 (Workstation only), 145, 135, 120, 105, 90, 85, 65, 55

◊ Requires BIOS and firmware update; ^ not available broadly on E5-2600 v3; † Depends on market availability

Intel® Xeon® Processor
E5-2600 v4

Core Core

Core Core

Core Core

Shared Cache

QPI

QPI

2x Intel® QPI
1.1

4 Channels DDR4

40 Lanes PCIe*
3.0

DMI2

DDR4

DDR4

DDR4

DDR4

9

Intel® Xeon® E5-2600 v4 Product Family Overview

New Features:
▪ Broadwell microarchitecture
▪ Built on 14nm process technology

▪ Socket compatible◊ replacement/ upgrade
on Grantley-EP platforms

New Performance Technologies:
▪ Optimized Intel® AVX Turbo mode
▪ Intel TSX instructions^

Other Enhancements:
▪ Virtualization speedup
▪ Orchestration control
▪ Security improvements

17/03/17 Cineca Winter School 2017

22 nm process
Up to 61 Cores
Up to 16GB Memory

2013:
Intel® Xeon Phi™
Coprocessor x100
Product Family

 “Knights Corner”

2016:
Second
Generation Intel®
Xeon Phi™

“Knights Landing”

14 nm
Processor &
Coprocessor
+60 cores
On Package, High-
Bandwidth Memory

Future Knights:
Upcoming Gen of
the Intel® MIC
Architecture
(Knights Hill)

In planning
Continued roadmap
commitment

*Per Intel’s announced products or planning process for future
products

Intel® Xeon Phi™ Product Family
based on Intel® Many Integrated Core (MIC) Architecture

2010
Intel® Xeon Phi
Knights Ferry
prototype
45 nm process
32 cores

17/03/17 Cineca Winter School 2017 10

Xeon PHI architecture (KNC)

17/03/17 Cineca Winter School 2017 11

• 22nm technology
• Up to 61 cores (Pentium-

like), ~1.1 Ghz (dep. model)
• 352 Gb/s memory

bandwidth (fast).
• Upto 244 threads (i.e. 4

threads/core)
• 512 bit SIMD (vector) unit
• 8-16 Gb on board memory,
• ~ 1Tflop peak performance

Includes also sensors for
monitoring temperature and
power consumption.

native
mode

symmetric
mode

offload
mode

Programming for KNC
• Because of low power cores and ring network, MPI-only programs will run slowly on KNC.

• Need instead to find programs which can exploit all the cores with OpenMP threads (at
least 120).

• The PCI-Express is slow compared to on-board memory so memory transfers should be
kept to a minimum – reuse data on the card as much as possible.

• To reach the peak performance need also to exploit the 512bit vector registers.

• Note also that Intel MKL has been optimised for MIC.

• Applications modified to offload to GPUs could be good candidates for offloading to
KNCs.

17/03/17 Cineca Winter School 2017 12

KNC experience
• Cineca’s Galileo cluster has 2 Intel Phi 7120p per node

on 384 nodes (768 KNCs in total)

• Do not have hard figures but usage has probably been
quite low.

• Main problem is that the KNC cores are not powerful
so you need to work hard to get performance. MPI
programs can be 10X slower (ring communication
network).

• Also KNC is only a co-processor, so unless you already
have an offload parallelisation model (e.g. for
GPU/CUDA) code needs to be re-worked.

17/03/17 Cineca Winter School 2017 13

0 2 4 6 8 10 12
0

2

4

6

8

10

12

NAMD 2.10 Xeon PHI performance (Galileo)

nodes

ns
/d

ay

17/03/17 Cineca Winter School 2017 14

NB: No L3 cache.

Knights Landing: Next-Generation Intel®
Xeon Phi™

17/03/17 Cineca Winter School 2017 15

KNC →KNL key differences
Feature KNC KNL

Cores <=61 cores Pentium, 1.1 GHz [in-
order]

<=72 Silvermont, 1.4GHz (KNL 7250)
[out-of-order]

Boot-up Co-processor so needs host CPU Standalone, self boot

Internal Network Bi-directional ring 2D Mesh

Connections PCIe PCIe, Intel OmniPath or other vendor.

Memory 8-16GB on board 16 GB MCDRAM (High Bandwidth
Memory) on board
Supports upto 384Gb DDR

Vectorisation 512 bit SIMD/core 2x AVX2 512 units/core

Xeon Compatibility For Native mode recompile with –
mic flag.

Binary compatible, although
recompilation recommended (for
vectorisation)

Peak Performance ~1 Tflops (DP) ~3 Tflops (DP)

Power consumption 300W 215W (KNL 7250)*
17/03/17 Cineca Winter School 2017 16See https://www.nextplatform.com/2016/06/20/intel-

knights-landing-yields-big-bang-buck-jump/

Cache organization in KNL

17/03/17 Cineca Winter School 2017 17
See, for example, https://colfaxresearch.com/knl-numa/

core core
L2

core core
L2

core core
L2

core core
L2

core core
L2

core core
L2

core core
L2

core core
L2

core core
L2

core core
L2

core core
L2

core core
L2

core core
L2

core core
L2

core core
L2

core core
L2

All the caches are kept coherent in the mesh with the MESIF protocol.
Each tile has a directory (tag directory) which together make up the DTD (distributed tag
directory) which identify on the chip the location of any cache line.
If a tile cannot find some data from its local cache then it must query the DTD to find the
data.

Each core has its
own L1 cache
(32K)

Cache Clustering Modes

To reduce latency and maximise bandwidth, try to keep the data as
local as possible to where it is needed.

This can be done by clustering modes. The KNL supports three:
1. All-to-All

2. Quadrant/Hemisphere

3. SNC-4/SNC-2

Clustering is a boot-time decision and can’t be changed without
restarting the KNL.

17/03/17 Cineca Winter School 2017 18

All –to – All

17/03/17 Cineca Winter School 2017 19

core core

L2

core core

L2

core core

L2

core core

L2

core core

L2

core core

L2

core core

L2

core core

L2

core core

L2

core core

L2

core core

L2

core core

L2

core core

L2

core core

L2

core core

L2

core core

L2

Memory address are uniformly distributed
across the TDs on the chip.
An L2 cache miss typically consists of the
following steps:

1. L2 miss encountered

2. Send request to the distributed directory

3. Miss in the directory. Forward to memory

4. Memory sends the data to the requestor

Result is a low-performance memory
request.

Not normally used

1
2

3

Mesh of Rings

▪ Every row and column is a (half) ring

▪ YX routing: Go in Y → Turn → Go in X

▪ Messages arbitrate at injection and on turn

Cache Coherent Interconnect

▪ MESIF protocol (F = Forward)

▪ Distributed directory to filter snoops

Three Cluster Modes

(1) All-to-All

(2) Quadrant

(3) Sub-NUMA Clustering (SNC)

KNL Mesh Interconnect

17/03/17 Cineca Winter School 2017 20

Address uniformly hashed across all
distributed directories

No affinity between Tile, Directory and
Memory

Lower performance mode, compared to
other modes. Mainly for fall-back

Typical Read L2 miss

1. L2 miss encountered

2. Send request to the distributed directory

3. Miss in the directory. Forward to memory

4. Memory sends the data to the requestor

Cluster Mode: All-to-All

17/03/17 Cineca Winter School 2017 21

Chip divided into four virtual
Quadrants

Address hashed to a Directory in
the same quadrant as the Memory

Affinity between the Directory and
Memory

Lower latency and higher BW than
all-to-all. Software transparent.

1. L2 miss, 2. Directory access, 3. Memory access,
 4. Data return

Cluster Mode: Quadrant

17/03/17 Cineca Winter School 2017 22

Each Quadrant (Cluster) exposed as
a separate NUMA domain to OS

Looks analogous to 4-Socket Xeon

Affinity between Tile, Directory and
Memory

Local communication. Lowest latency
of all modes

Software needs to be NUMA-aware
to get benefit

Cluster Mode: Sub-NUMA Clustering (SNC)

17/03/17 Cineca Winter School 2017 23
1. L2 miss, 2. Directory access, 3. Memory access, 4. Data return

Using MCDRAM (High Bandwidth Memory)

• Multi-Channel Dynamic Random Access (MCDRAM) is a high bandwidth memory
(~ 400 GB/s) roughly 5x faster than standard DDR4 memory (~90 GB/s).

• On the KNL can be used in three ways:

17/03/17 Cineca Winter School 2017 24

CPU

MCDRAM
cache

DDR4
Memory

CPU

DDR4
Memory

Addressable
MCDRAM

CPU

DDR4
Memory

MCDRAM
cache

Addressable
MCDRAM

CACHE MODE FLAT MODE HYBRID MODE

NUMA 0 NUMA 1 NUMA 0 NUMA 1

MCDRAM modes
Cache mode

• The MCDRAM is used as cache so may give performance benefits if DDR
memory accesses are reduced.

• Transparent to users so no modifications required.

• But increases latency if data not found in cache (DDR → MCDRAM → L2).

Flat mode

• High bandwidth, low latency.

• More complicated to use – requires software or environmental changes.

Hybrid

• Benefits of both, but smaller sizes.

17/03/17 Cineca Winter School 2017 25

The MCDRAM mode is normally
at chosen at boot-up of the KNL.
In principle should be possible
in a batch job to choose which
mode but seems more
common to select nodes
already booted in the desired
mode.

Using MCDRAM in flat mode

Even if the KNL has been booted in flat mode, the DDR4 memory is used by default –
MCDRAM needs to be explicitly requested.

This can be done in two ways:

1. By launching the application with the numactl command (if executable <16Gb).

2. Modifying the source code to allocate variables in the MCDRAM using, for
example, the Memkind library.

With the numactl command, first find the numa device number and then launch with that
number.

MCDRAM should be good for for large and often-used arrays.

17/03/17 Cineca Winter School 2017 26

Using MCDRAM in flat mode - numactl
deep70@knl08]:~ > numactl -H

available: 2 nodes (0-1)

node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
247 248 249 250 251 252 253 254 255

node 0 size: 98200 MB

node 0 free: 88704 MB

node 1 cpus:

node 1 size: 16384 MB

node 1 free: 15909 MB

node distances:

node 0 1

 0: 10 31

 1: 31 10

[deep70@knl08]:~ > mpiexec -n 256 numactl -m 1 ./executable 17/03/17 Cineca Winter School 2017 27

Deeper-sdv JSC

Using MCDRAM in flat mode -
numactl

17/03/17 Cineca Winter School 2017 28

numactl -H
available: 4 nodes (0-3)
node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 68 69 70 71 72 73 74 75 76 77
…
node 0 size: 49055 MB
node 0 free: 46228 MB
node 1 cpus: 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 102 103 104 105
…..
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
node 1 size: 49152 MB
node 1 free: 46369 MB
node 2 cpus:
node 2 size: 8192 MB
node 2 free: 7547 MB
node 3 cpus:
node 3 size: 8192 MB
node 3 free: 7538 MB
…..

numactl --membind 2,3 ./executable

Marconi Cineca

MCDRAM and memkind
Allows memory to be allocated on any
NUMA device.

Has two interfaces:

hbwmalloc

memkind

but both use the same “backend”.

man hbwmalloc and man memkind give
more information.

17/03/17 Cineca Winter School 2017 29

// C memkind interface Example
#include <memkind.h>
hbw_str = (char *)memkind_malloc(MEMKIND_HBW,
size);
if (hbw_str == NULL) {
 perror("memkind_malloc()");
 fprintf(stderr, "Unable to allocate
hbw string\n");
 return errno ? -errno : 1;
 }
// use hbw_star
memkind_free(MEMKIND_HBW, default_str);

! Fortran memkind interface Example
Real, allocatable :: a(:), b(:)
! FASTMEM attribute
!DEC$ ATTRIBUTES FASTMEM :: A
! A is allocated in HBM
ALLOCATE (A(1:1024))

! B is allocated in DDR4
ALLOCATE (B(1:1024))

Thread and task affinity (pinning)
With the number of tasks or threads/node increasing it is important to know to which cores they have been
assigned. This is true for all NUMA HPC systems but particularly relevant for KNL. The performance difference
can be significant !

A complicated topic because the pinning is controlled by a variety of options or environment options, many of
which are intel-specific and liable to change. Also the clustering mode of the KNL adds further complexity.

Recommended 2 or 4 threads/core (but never 3).

Documentation for Intel KNL is given here:

https://software.intel.com/en-us/articles/process-and-thread-affinity-for-intel-xeon-phi-processors-x200

17/03/17 Cineca Winter School 2017 30

KMP_AFFINITY=scatter

KMP_AFFINITY=compact

Thread and task pinning – some
variables

17/03/17 Cineca Winter School 2017 31

Variable Example Description
I_MPI_DEBUG=[0-5] export I_MPI_DEBUG=5 Shows the logical cores owned by each

MPI rank (the affinity). Default
affinity=scatter

KMP_AFFINITY=[scatter,co
mpact, proclist={..}]

export KMP_AFFINITY=compact, verbose. Changes the affinity to, e.g compact. The
verbose option shows the result of the
change.

KMP_PLACE_THREADS,
KMP_HW_SUBSET=<t>T
(new)

export KMP_HW_SUBSET=2T threads per core (by default all 4 thds/core
are used)

OMP_NUM_THREADS=n export OMP_NUM_THREADS=4 For an OpenMP program total number of
threads, for hybrid threads/MPI rank.

OMP_PLACES=[cores,threa
ds]

export OMP_PLACES=0,1,2,3,4,…271,272 Specifies hardware resource. Used with
OMP_PROC_BIND

OMP_PROC_BIND=[close,
spread]

export OMP_PROC_BIND=spread,close How OpenMP threads are bound to
resources

Difficult to use
correctly.
Better use
KMP_HW_SUBSET

Pinning MPI tasks and OpenMP
threads in SNC mode
On Marconi default cluster mode is SNC-2, i.e. two numa
nodes each with 34 cores (max 136 threads).

For a pure OpenMP program, one possibility is to use
nested OpenMP, creating two teams of 136 threads.

17/03/17 Cineca Winter School 2017 32

$export OMP_NESTED=1
$export OMP_NUM_THREADS=2,136
$export OMP_PLACES=0,1,2,3,…33,68,..237,
34,35,67,102,135,170, 171,..203,238,271
$export OMP_PROC_BIND=spread,close

numa 0 thds
numa 1 thds

Threads in each team will be close to each other.

Node 0

Node 1

(But OpenMP rarely scales up to 136 threads so need to try different variants)

Pinning MPI tasks and OpenMP
threads in SNC mode
The MPI task pinning can be queried by setting

I_MPI_DEBUG=5

For NUMA-aware MPI (e.g. Intel) the default affinity
should be “sensible”, e.g. for SNC-2 the ranks should
be spread evenly between the nodes.

Finer control (e.g at the tile level) can be controlled
with variables such as I_MPI_PIN_PROCESSOR_LIST
or I_MPI_PIN_DOMAIN.

For multi-nodes, the –perhost option indicates how
many tasks/knl.

17/03/17 Cineca Winter School 2017 33

$ export I_MPI_DEBUG=5
$ mpirun -np 2 ./simple
…
[0] MPI startup(): Rank Pid Node name
 Pin cpu
[0] MPI startup(): 0 698092 r086c15s03

{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,1
8
30,31,32,33,68,69,70,71,72,73,74,75,76,77,78,7
9,80,81,82,83,84,85,86,87,88,89,90

221,222,223,224,225,226,227,228,229,230,231,23
2,233,234,235,236,237}
[0] MPI startup(): 1 698093 r086c15s03

{34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,
49,50,51,52,53,54,55,56,57,58,59,60
 ,
61,62,63,64,65,66,67,102,103,104,105,106,107,1
08,109,110,…,265,266,267,268,269,270,271}

Binding memory to NUMA nodes
Once the thread or task has been pinned to
a sub-NUMA cluster it makes sense also to
bind the memory objects.

As with any NUMA device the default
allocation policy in Linux is “first touch”,
when a thread first writes into a newly
allocated array (touches it) the memory page
is allocated on the thread’s NUMA node.

For this reason also array initialisation
should be done in the parallel region:
otherwise the array is allocated on the numa
mode of the master thread. [assuming the
shared array is large]

17/03/17 Cineca Winter School 2017 34

// C++ version
int main() {
 float *A = new float[N];
#pragma parallel for
 for (int i=0; i < N; i++)
 A[i] = 0.0f;
}
..
! FORTRAN
program numa

real, allocatable :: a(:)
allocate(a(N))
!$omp parallel do
do i=1,N
 a(i)=0.0
end do
!$omp end parallel do
..

physical memory
allocation occurs here

Binding memory to numa nodes -
Example integer :: n=1000000000

allocate(a(n),b(n),c(n))

!!$omp parallel do
 do i=1,n
 a(i)=10.0
 b(i)=2.0
 c(i)=1.0
 enddo

!!$omp end parallel do
 t=mysecond()
 do j=1,10
!$OMP parallel do

 do i=1,n
 a(i)=b(i)+d*c(i)
 enddo
!$OMP end parallel do

17/03/17 Cineca Winter School 2017 35

First touch for KNL/SNC2 (cache mode)

OpenMP threads

tim
e/

s

KNP_AFFINITY=compact

KNP_AFFINITY=scattered

KNLs and I/O

Little hard data but likely to be slow:
• Relatively slow cores.

• Many threads and processes.

• Kernel I/O (e.g. C/Fortran or POSIX I/O) in
parallel to single files is not threadsafe.
Need to use HDF5, MPI-I/O or other
parallel library

• GPFS and other parallel filesystems do not
scale well for task-local files.

17/03/17 Cineca Winter School 2017 36

TurboRVB checkpoint time (MARCONI)

nodes

ch
ec

kp
oi

nt
 ti

m
e/

s

each MPI rank writes its own checkpoint file

Using KNLs

17/03/17 Cineca Winter School 2017 37

Although very different to KNCs the trends are the same…

Data parallelism

• Lots of threads, spent on MPI ranks or OpenMP/TBB/pthreads

• Improving support for both peak throughput and modest/single thread

Bigger, better, faster memory

• High capacity, high bandwidth, low latency DRAM

• Effective caching and paging

• Increasing support for irregular memory refs, modest tuning

Vectorisation

• Increasing support for vectorisation

Using KNLs

Even for non-developers, a number of options need to be considered in order to optimise performance for KNL:

• How many MPI ranks and/or OpenMP threads per node (at least 2 per core to hide hardware latency).
With higher DRAM we can use more MPI ranks and perhaps < OpenMP threads.

• Quandrant, hemisphere, SNC2 or SNC4

• MCDRAM: Flat mode or Cache mode?

• Thread or task pinning? (IMPORTANT)

• If linked with MKL, how many threads for MKL ? (MKL_NUM_THREADS)

For developers the first step is to re-compile with –xMIC-AVX512 but a further analysis with e.g. Vtune would
be a good idea.

Intel advises cache/quadrant as the preferred configuration for KNLs but should be possible to test other
configurations

17/03/17 Cineca Winter School 2017 38

Which applications are good for KNL?

Not an easy question to answer because also depends on input.

But “KNL-friendly” application+input combinations should have the
following features:

• Highly parallel, many ranks and threads.

• Low memory/thread

• Highly vectorised

• Low I/O overheads

KNLs are new, Marconi is new, so help us find out what works best!
17/03/17 Cineca Winter School 2017 39

MARCONI experiences so far

17/03/17 Cineca Winter School 2017 40

First touch for KNL/SNC2 (cache mode)

OpenMP threads

tim
e/

s

integer :: n=1000000000
allocate(a(n),b(n),c(n))

!!$omp parallel do
 do i=1,n
 a(i)=10.0
 b(i)=2.0
 c(i)=1.0
 enddo
!!$omp end parallel do

 t=mysecond()
 do j=1,10
!$OMP parallel do
 do i=1,n
 a(i)=b(i)+d*c(i)
 enddo
!$OMP end parallel do

• KNL
• -xMIC-AVX512
• Function Rate (MB/s) Avg time Min time Max time
• Copy: 19044.1886 0.0169 0.0168 0.0169
• Scale: 13998.8035 0.0230 0.0229 0.0231
• Add: 15505.8643 0.0311 0.0310 0.0312
• Triad: 15681.7174 0.0307 0.0306 0.0308

17/03/17 Cineca Winter School 2017 41

Function Rate (MB/s) Avg time Min time Max time
Copy: 18974.1900 0.0196 0.0169 0.0229
Scale: 8648.6625 0.0407 0.0370 0.0454
Add: 9712.8780 0.0516 0.0494 0.0551
Triad: 9478.8762 0.0535 0.0506 0.0600

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Current solutions for HPC
	What is Intel Xeon Phi ?
	Intel® Xeon® E5-2600 v4 Product Family Overview
	Diapositiva 10
	Xeon PHI architecture (KNC)
	Programming for KNC
	KNC experience
	Diapositiva 14
	Diapositiva 15
	KNC →KNL key differences
	Cache organization in KNL
	Cache Clustering Modes
	All –to – All
	KNL Mesh Interconnect
	Cluster Mode: All-to-All
	Cluster Mode: Quadrant
	Cluster Mode: Sub-NUMA Clustering (SNC)
	Using MCDRAM (High Bandwidth Memory)
	MCDRAM modes
	Using MCDRAM in flat mode
	Using MCDRAM in flat mode - numactl
	Using MCDRAM in flat mode - numactl
	MCDRAM and memkind
	Thread and task affinity (pinning)
	Thread and task pinning – some variables
	Pinning MPI tasks and OpenMP threads in SNC mode
	Pinning MPI tasks and OpenMP threads in SNC mode
	Binding memory to NUMA nodes
	Binding memory to numa nodes - Example
	KNLs and I/O
	Using KNLs
	Using KNLs
	Which applications are good for KNL?
	MARCONI experiences so far
	Diapositiva 41

