

MD on HPC architectures: GPU (Kepler-Pascal), Intel Xeon (KNL-SKL)

Alessandro Grottesi
Cineca

Today's lecture

You will learn:

- Gromacs @ CINECA: set up and launch of simulations
- Launch MD code (GROMACS, NAMD, Amber)
- Optimize performance and benchmarking
- Tutorial (later this afternoon...)

Pico

Architecture: Linux Infiniband Cluster

Processors Type: Intel Xeon (Ten-Core) E5-2670v2 2.50

GHz (Compute)

Number of nodes: 54 Compute + 4 visualization + 2 Login +

14 other

Number of cores: 1080 (compute)

Number of accelerators: 4 + 2 (only on viz nodes)

RAM: 128 GB/Compute node (2 viz nodes with 512GB)

Galileo

Model: IBM NeXtScale

Architecture: Linux Infiniband Cluster

Nodes: 516

Processors: 8-cores Intel Haswell 2.40 GHz (2 per node)

Cores: 16 cores/node, 8256 cores in total

Accelerators: 2 Intel Phi 7120p per node on 384 nodes

(768 in total)

RAM: 128 GB/node, 8 GB/core

Internal Network: Infiniband with 4x QDR switches

Disk Space:2,500 TB of local storage

Peak Performance: ~1 Pflop/s (69th on TOP500)

Marconi A1

Model: Lenovo NeXtScale

Racks: 21

Nodes: 1.512

Processors: 2 x 18-cores Intel Xeon E5-2697

v4 (Broadwell) at 2.30 GHz

Cores: 36 cores/node, 54.432 cores in total

RAM: 128 GB/node, 3.5 GB/core

Peak Performance: 2 PFlop/s

Marconi A2

Model: Lenovo Adam Pass

Racks: 50

Nodes: 3.600

Processors: 1 x 68-cores Intel Xeon Phi 7250

CPU (Knights Landing) at 1.40 GHz

Cores: 68 cores/node (272 with

HyperThreading), 244.800 cores in total

RAM: 16 GB/node of MCDRAM and 96

GB/node of DDR4

Peak Performance: 11 PFlop/s

Marconi A3

Model: Lenovo Stark

Racks: 21

Nodes: 1.512 + 792

Processors: 2 x 24-cores Intel Xeon 8160

CPU (Skylake) at 2.10 GHz

Cores: 48 cores/node 72.576 + 38.016 cores

in total

RAM: 192 GB/node of DDR4

Peak Performance: 7.00 PFlop/s

Compute nodes (Galileo)

Molecular Dynamics and accelerators

- GROMACS

 Under development, currently (Jan 2015) only nativemode version available.

- NAMD

 Pre-release version of NAMD 2.10 has Xeon PHI support but still under development. Speed-ups < 2 for ApoA1 and STMV benchmarks.

- I AMMPS

 Xeon PHI support available in current downloads for non-bonded calculations. Reported speed-ups of about 1.78x compared to non-accelerated code (one coprocessor/node) for Rhodopsin benchmark. Higher speed-ups obtained with materials simulations.

-AMBER

Xeon PHI-enabled version released 6 Aug 2014.
 Waiting for benchmarks.

Intel Xeon PHI overview

- Intel product line based on Intel's Many Integrated Core (MIC) technology where many low, power cores (>50) are packed on a single chip.
- Currently available device (Knight's Corner or KNC) can be seen as a co-processor, in direct competition to NVIDIA GPU for HPC.
 - connection to host CPU via PCI-eXpress link.
- But unlike GPU technology is not too dissimilar from host CPU → not essential to rewrite code, in principle just re-compile (with Intel compilers). Should lead to shorter development path in most cases.
- Doesn't mean though that code does need not porting to obtain peak performance some optimisation is needed.

Classical Molecular Dynamics and Intel Xeon PHI

- Development some way behind GPU-CUDA versions of classical MD programs (which started about 4 years ago).
- But given that there is no need to rewrite in new languages (e.g CUDA) development path should be shorter.
- Most current Xeon PHI versions seem to be based on the off-load model to exploit CUDA developments.
- Off-loaded calculations invariably involve non-bonded dispersion interactions may also include PME, energy calculation etc.
- Intel maintains a list of "recipes" for building Xeon PHI applications (not just MD):

https://software.intel.com/en-us/articles/namd-for-intelxeon-phi-coprocessor

Intel Xeon Phi:

Knights Landing

It's not a GPU. It's not an accelerator. It's very different from a KNC.

