
High Performance Molecular Dynamics

Parallelism and Parallel algorithms
Andrew Emerson (a.emerson@cineca.it)

Agenda

1. Molecular Dynamics milestones

2. Anatomy of a serial Molecular Dynamics
program

3. Concepts of Parallelism

4. Parallel algorithms and scaling limits

18/08/2017 High Performance Molecular Dynamics 2

Molecular Dynamics
milestones

• 1959: First MD simulation (Alder and Wainwright)

– Hard spheres at constant velocity. 500 particles on IBM-704. Simulation
time >2 weeks

• 1964: First MD of a continuous potential (A. Rahman)

– Lennard-Jones spheres (Argon), 864 particles on a CDC3600. 50,000
timesteps > 3 weeks

• 1977: First large biomolecule (McCammon, Gelin and Karplus).

– Bovine Pancreatic Trypsine inhibitor. 500 atoms, 9.2ps

• 1998: First μs simulation (Duan and Kollman)

– villin headpiece subdomain HP-36. Simulation time on Cray T3D/T3E ~
several months

• 2006. MD simulation of the complete satellite tobacco mosaic virus (STMV)

– 1 million atoms, 50ns using NAMD on 46 AMD and 128 Altix nodes

• 2006: Longest run. Folding@home (computers supplied by general public!)

– 500 μs of Villin Headpiece protein (34 residues).

3

folding@home
equivalent to peak ~40
Pflops (Wikipedia)

18/08/2017 High Performance Molecular Dynamics

Biomolecular MD Simulation
– system sizes

2006. Satellite tobacco
mosaic virus (STMV). 1M
atoms, 50ns

4

2008. Ribosome. 3.2M atoms, 230ns.

early 1990s. Lysozyme, 40k atoms

2011. Chromatophore,

100M atoms (SC 2011)

18/08/2017 High Performance Molecular Dynamics

Nobel Prize for Karplus, Levitt
and Warshel

18/08/2017 High Performance Molecular Dynamics 5

Taken from, “Scientific
background on the Nobel Prize
in Chemistry 2013”,
www.nobleprize.org

Anatomy of a program

18/08/2017 High Performance Molecular Dynamics 6

1. Read in parameters to control the simulation (e.g. run time,
temperature, etc).

2. Generate or read in atomic coordinates and connectivity
information. If starting from a previous run read in velocities,
forces and other system data.

3. Start Main loop at time t.
1. Compute forces between interacting atoms.
2. Integrate forces to obtain velocities and positions at new time step

t+Δt.
3. Calculate thermodynamic properties (e.g. Temp, Pressure,etc).
4. At intervals store configuration for trajectory and restart

information.
5. If t < required time loop back to step 1.

4. Output final configuration, thermodynamic and perhaps timing
data.

Simple Molecular Dynamics program for neutral
atoms

7

call init
T=0
do while (T.lt.Tmax)

call compute_forces()
call integrate_motion()
call save_crds()
call sample_averages()
T = T + DT

enddo
call save_state()
stop
end

subroutine compute_energy_forces

Utot=0.0
do i=1,N-1

F(i) = 0.0
do j=i+1,N
rij=r(i)-r(j)
Utot=Utot+Uij
F(i)=F(i)+force(i,j)

enddo
enddo

subroutine integrate_motion
do i=1,N

r(i)=r(i)+verlet(F(i))
v(i)=v(i)+verlet(F(i))

enddo

18/08/2017 High Performance Molecular Dynamics

































612

4)(
rr

rU oo
o




rc

High Performance Molecular
Dynamics

In a (serial) molecular dynamics program often 70-90% of the CPU time is
spent in the calculation of the non-bonded energies and forces -> this is the
first place to look when optimising or parallelising a program.

There are usually two types of long range non-bonded interactions:

1. Dispersion-type particle-particle interactions

2. Electrostatic interactions.

The dispersion interactions are normally solved with Lennard Jones (LJ) type
potentials which can be truncated at short inter-particle separations.

Electrostatic interactions are commonly solved with the Particle Mesh Ewald
(PME) Method or similar. (electrostatic cutoffs are too approximate)

818/08/2017 High Performance Molecular Dynamics

GROMACS timings
Computing: M-Number M-Flops % Flops

LJ 66460.022385 2193180.739 2.8

Coul(T) 67295.126727 2826395.323 3.6

Coul(T) [W3] 1361.881485 170235.186 0.2

Coul(T) + LJ 113027.749257 6216526.209 7.9

Coul(T) + LJ [W3] 21305.487096 2940157.219 3.7

Coul(T) + LJ [W3-W3] 67057.921884 25616126.160 32.5

Outer nonbonded loop 16258.069653 162580.697 0.2

1,4 nonbonded interactions 1814.923008 163343.071 0.2

Calc Weights 11664.933552 419937.608 0.5

Spread Q Bspline 248851.915776 497703.832 0.6

Gather F Bspline 248851.915776 1493111.495 1.9

3D-FFT 4145210.365398 33161682.923 42.1

Solve PME 819.609600 52455.014 0.1

NS-Pairs 72105.130813 1514207.747 1.9

Reset In Box 264.244768 792.734 0.0

CG-CoM 650.966640 1952.900 0.0

Angles 1587.865536 266761.410 0.3

Propers 397.158480 90949.292 0.1

Impropers 88.972464 18506.273 0.0

.....

18/08/2017 9High Performance Molecular Dynamics

Optimising a serial program
• To increase the performance of the

program the number of interactions
O(N2) to be calculated needs to be
reduced.

• Common strategies include:
– Potential cutoffs + Neighbour lists
– United atoms (e.g. CH4) or coarse grain

approaches (e.g. Martini) to reduce
the number of interacting sites

– Holonomic constraints (e.g. SHAKE)
– Multiple time steps (e.g. electrostatic

time step in NAMD)
– Implicit solvents as opposed to explicit

solvents (but not recommended).

18/08/2017 High Performance Molecular Dynamics 10

united atoms

martini model

rc

rl

holonomic constraints (e.g.
SHAKE) Δt=1fs → Δt=2fs

implicit and
explicit
solvents

cut-off and neighbour list

Electrostatic Interactions

For complex molecules electrostatic interactions are usually
calculated by assigning each atom a partial charge:

ij

ji

ij
r

qq
V

04


11

The interaction energy between two isolated charges is known
(Coulomb):

Problem: This is a long range interaction,
varying with ~1/r. (c.f LJ, ~1/r6) and so decays
to zero slowly. The box cannot be made large
enough without making the simulation
impracticable. Electrostatic cutoffs on the
other hand can give rise to artefacts.

+0.8

-0.9

+0.4

+0.3

-0.19

The partial charges are defined by
the force-field, usually via QM
calculations.

Electrostatic Interactions –Ewald Sum
(1921)

Solution for periodic systems first suggested by Ewald and others from
their work on ionic crystals. Start with the interaction of a particle with
all the other particles, including their images:


 


N

j ij

ji
N

i

qq
V

11 ||2

1

nrn

12

n=(nxL, nyL, nzL)

For large n the cell distribution
is spherical

Electrostatic interactions – Ewald Sum

13

This pairwise summation converges slowly, but by assuming gaussian
charge distributions around each charge it can be converted into faster
converging real space (short range) and reciprocal space (long range)
sums:

V = real space sum + reciprocal space sum + constant
corrections

The real space term (which contains erfc(x)) can be calculated quite
easily with standard libraries and usually a cutoff is applied (e.g. 9 Å).

18/08/2017 High Performance Molecular Dynamics

Particle Mesh Ewald

)rcos(
4

exp
4

2

1
ij2

2

1
23

2

10









 



k


 k

kL

qq
V

N

j

ji
N

ik

This is an N2 problem but by replacing the
point charges by a grid-based charge
distribution one can use discrete FFT (Fast
Fourier Transform) which scales as N lnN (e.g.
Particle Mesh Ewald).

The second term converges quickly in reciprocal space but is computationally
expensive:

18/08/2017 14High Performance Molecular Dynamics

Parallelising a serial program

Do we need to parallelise MD ?

18/08/2017 High Performance Molecular Dynamics 15

Galileo
gromacs 4.6.7 1 node (16 cores)

Core t (s) Wall t (s)

(%)

Time: 8060.990 504.626

1597.4

(ns/day) (hour/ns)

Performance: 3.425 7.008

Finished mdrun on node 0 Fri Nov 6 15:26:07

2015

PC:
(ns/day) (hour/ns)

Performance: 0.075 319.699

Even using just one
node of a cluster we
can get speedups of
10X, 100X or more.

Concepts and practice of
Parallelism

• Even if you do not intend to write a parallel program,
just use one already present, it is important to
understand some of the concepts and techniques used
in the preparation and execution of a parallel project.

• Hardware is moving quite quickly so it is a challenge to
understand everything but useful topics include:
– MPI and message passing

– OpenMP and threads

– Accelerators such as GPUs

– Measuring performance

18/08/2017 High Performance Molecular Dynamics 16

Message Passing Interface (MPI)

• MPI is a standard which
implements parallelism via
message passing, i.e. providing a
mechanism for communication
between parallel tasks.

• Usually SPMD (Single Program
Multiple Data) model where
multiple instances of the same
program are launched. When
necessary they communicate by
MPI calls.

• Each instance is called a task and is
identified by its rank (starting from
0). Normally all the tasks are
created at the beginning of the
parallel execution.

18/08/2017 17High Performance Molecular Dynamics

message

Task 0

Task 1

Task 2

MPI Communications
• MPI communications can be of various

types:
1. One-way communications.
2. Point-to-point between two tasks.
3. Collective calls between groups of tasks

or even all of them.

• They can also be synchronous or
asynchronous.

• Collective calls can be expensive,
particularly when many tasks are
involved.

• An efficient MPI program will minimise
the time spent in communications as
much as possible often by overlapping
communications with calculations (non-
blocking communications).

18/08/2017 High Performance Molecular Dynamics 18

Using MPI

• Advantages:
– Only standard model which allows cores over multiple nodes in a

cluster to be used in a parallel program.
– Highly optimised for current architectures

• Disadvantages:
– Complex programming model and may require high memory (program

instances + buffers)

18/08/2017 19High Performance Molecular Dynamics

module load intelmpi # Intel MPI

mpirun –np 64 ./myprog.exe

• MPI is implemented as a library which is used during
compilation/linking and often also at execution.

• Different implementations may exist on a particular
computer system (e.g. Intel MPI, OpenMPI, etc).

• Usually used within a launcher (e.g. mpirun, mpiexec, runjob,
etc) which launches the required number of tasks.

OpenMP and threads

• The OpenMP standard implements parallel
programming via threads.

• Threads are light-weight processes,
requiring fewer resources than MPI tasks.
Usually created and destroyed in a fork-
join process.

• Often used for “work sharing” within loops
but can be used to generate tasks.

• They communicate by reading and writing
program variables in shared memory.

• Advantages:
– Less memory and may be faster than MPI

within a shared memory node. Simpler
programming model than MPI.

• Disadvantages:
– Cannot be used between separate nodes

18/08/2017 20High Performance Molecular Dynamics

memory

Using OpenMP

• But since openmp cannot be used
between nodes common to use both –
so called hybrid MPI/OpenMP programs
(e.g. Gromacs)

• Typically use OpenMP thread within a
node but MPI between nodes. Useful for
minimising the number of MPI tasks.
(see later)

18/08/2017 21High Performance Molecular Dynamics

memory

memory

memory

memory

mpi task
openmp thread

gfortran –fopenmp

myprog.c –o myprog

export OMP_NUM_THREADS=8

./myprog.exe

Strong and weak scaling and
parallel efficiency

• For any parallel program important to measure the
performance as a function of the parallel resources used
(e.g. MPI tasks, threads, physical cores, etc).

• For MD usual to measure performance in terms of ns/day
and this value is reported by most MD programs. Since
computer grants are based on use of physical resources
(e.g. cores) makes sense to plot performance against
processor cores.

• This is called strong scaling and by comparison with the
ideal case indicates how well parallelised your set up is.
This can be emphasised by plotting the speedup with
respect to the smallest number of cores used (e.g. 1 core).

18/08/2017 22High Performance Molecular Dynamics

Strong scaling examples

18/08/2017 High Performance Molecular Dynamics 23

100.0

300.0

500.0

700.0

900.0

1100.0

1300.0

1 4 16 64

p
s/

d
ay

cores

0

1

2

3

4

5

6

7

1 2 4 8 16 32 64

lo
g

 s
p

e
e
d

u
p

#procs

speedup

ideal

gromacs

1P

P
R N

Speedup R

where P =
performance (e.g.
ps/day)

Strong scaling and parallel
efficiency

• Computer scientists often
prefer a metric called the
parallel efficiency.

• Less interesting for MD
researchers but worth quoting
for grant applications (where
the reviewers may be non MD
users).

• Important to do strong scaling
curves before embarking on
production.

18/08/2017 24High Performance Molecular Dynamics

1

100
PN

P
S N




0

20

40

60

80

100

120

1 2 4 8 16 32 64

P
ar

al
le

l E
ff

ic
ie

n
cy

cores

Weak scaling

• This is formally as defined as “how
the solution time varies with the
number of processors for a fixed
problem size per processor.”

• But usually used to know how the
performance varies on increasing
the input or problem size. Should
be a horizontal line for perfect
weak scaling.

• For MD this indicates how the
performance varies with system
size, i.e. number of atoms.

• Not often used in MD since
researchers use one or only a few
systems, probably with similar
numbers of atoms.

18/08/2017 25High Performance Molecular Dynamics

0

10

20

30

40

50

0 200 400 600

n
s/

d
ay

#cores

Gromacs Strong Scaling on SP6

HDL 414K atoms

dppc 120K atoms

BLG 32K atoms

1000

10000

100000

10 40 160

p
e

rf
*a

to
m

s/
co

re
s

cores

Gromacs weak scaling

HDL 414K DPPC 120K BLG 32K

Other parallel concepts

• SIMD (Single Instruction Multiple Data) Vectorisation
– Special hardware in the CPU (SIMD or Vector Unit) for optimising loops. For

Intel known as SSE, AVX, etc (depending on processor version)
– Most users do not need to know about this unless compiling or writing their

own code.

• Load balancing
– If parallel tasks in the program finish their calculations more or less at the

same time, there is good “load balancing”. If some processes have to wait for
other processes then clearly the program will take longer.

• Parallel I/O
– Often one task (e.g. rank 0) is given the job of reading and writing files since

having many tasks accessing the same file is not safe. This task then sends the
data to the other tasks.

– For very large files and many processes may be more efficient to allow
multiple access. Normally achieved by MPI-IO or specialist formats (HDF5).

– In MD not normally used except for very large simulations (millions of atoms),
e.g. in NAMD 2.10 or DL_POLY4.

18/08/2017 High Performance Molecular Dynamics 26

Why do parallel programs stop
scaling?

18/08/2017 27High Performance Molecular Dynamics

Regardless of algorithm, as the number of parallel tasks increase the relative
time spent doing communications also increases, thus reducing the time for
calculations.

Very roughly, when

Time (communications) > Time (calculations)

increasing the number of processors will not lead to an increase in
performance (in fact it may start decreasing).

Of particular importance are global or collective communications involving
groups or even all the parallel tasks and programmers tend to minimise their
use.
Other factors affecting scaling may include increased I/O or memory usage.

Parallelising Molecular Dynamics

• Now we have the tools how can we parallelise an MD program?
• Need an algorithm to accelerate the most timing consuming parts

of the serial program, i.e the non-bonded long ranges forces
calculation.
– Dispersion forces
– electrostatic forces with PME

• But must minimise communications between tasks.

18/08/2017 28High Performance Molecular Dynamics

Atom (particle) decomposition

• One of the first algorithms
implemented for parallel MD.
Sometimes also called
“Replicated Data” since each
processor requires a copy of the
entire system.

• Nowadays rarely used because
of the high memory and global
communications required.

• The particle decomposition
option of Gromacs was removed
in the latest release.

18/08/2017 29High Performance Molecular Dynamics

0

1

2

3

4

5

6

7

N Fi Ri(t+t)

A
LL-TO

-A
LL

Force decomposition

• Improvement on
particle decomposition,
inspired by the parallel
algorithms for matrices.

• Reduced memory and
communication
overheads but still
relatively expensive at
high core counts.

18/08/2017 30High Performance Molecular Dynamics

4

8

12

1

5

9

13

2

6

10

14

3

7

11

15

1...N

1
...N

Fij
Fij

Fij force matrix

Spatial (or domain) decomposition
algorithm

Here each processor is assigned to a spatial region of the simulation box (with
side rd > 2*rc) such that it stores only a portion of the whole system. This has
two components:

• The atoms which lie in that region and the forces between them.

• Atom positions and forces from neighbouring regions owned by other
processors.

In order to minimise the surface with respect to the volume, and hence the
communications, it is important to use regions that are as cubic as possible. In
any case the communications are reduced since it is not necessary to update
the whole system in local memory.

18/08/2017 31High Performance Molecular Dynamics

Domain decomposition

18/08/2017 32High Performance Molecular Dynamics

rd >2 rc

Must choose
domain sides
to be greater
than 2xcutoff

Domain Decomposition

18/08/2017 High Performance Molecular Dynamics 33

internal
part of
domain

Atoms which
need to be
shared with
neighbouring
domains.

storage for
neighbouring
atoms

Simple Domain Decomposition
- algorithm

1. Read in atomic coordinates (and velocities)
2. Assign atoms to domains (processors) according to

x,y,z position.
3. For each domain (processor):

1. identify interacting atoms in neighbouring domains
and copy coords.

2. calculate forces.
3. copy partial forces of neighbour atoms back to their

home domains
4. with the forces calculate new velocities and

positions.

4. Calculate thermodynamic averages (T, P,E, etc)
5. Loop back to 2 if not finished.

18/08/2017 High Performance Molecular Dynamics 34

MPI has many commands for
transferring data efficiently in
a cartesian topology (such as
a simulation box.)

Domain decomposition

Advantages

– Exploits locality of atomic interactions, minimizing communications
(no All-to-All) and memory required per processor

– scalable, for large systems.

– can exploit MPI cartesian topology

Disadvantages

– needs large system, otherwise domain size too small. As no. of
processors increases eventually stops scaling

– for inhomogeneous systems (liquid+vapour) load balancing problems
as some procs have too few atoms.

18/08/2017 35High Performance Molecular Dynamics

Novel domain-decomposition schemes

Problem with domain decomposition
occurs when density of particles is uneven
or fluctuates.

Can be mitigated by “zonal” (or “neutral
territory”) methods, where forces between
particles i and j are not necessarily
calculated on a processor where either of
particles i or j resides.

GROMACS uses a zonal method called the
“eighth-shell” method, with reduced
communication wrt standard dd. Other
methods incl “midpoint” (Desmond).

Like NAMD, Gromacs 4.x now has Dynamic
Load Balancing which adjusts
dynamically particle-processor
assignment.

36

Hess et al., J. Chem, Theory
Comput. C, 2007

18/08/2017 High Performance Molecular Dynamics

Parallelisation of Electrostatics with Domain
Decomposition and PME

37

PME can be parallelised with a DD scheme but 3D FFT is very
inefficient for many processors (or small N) because of all-to-all global
communications (e.g MPI_AlltoAll).

GROMACS and NAMD use instead a 2D decomposition of thin
columns or “pencils”

In this way the first 1D part of the
3D can be done within a single
processor (e.g. along z) to avoid
extra communication

z

18/08/2017 High Performance Molecular Dynamics

Does Domain Decomposition
Work?

Compare

• GROMACS v 3.x and earlier with force-decomposition schemes

• GROMACS v 4.x with domain decomposition

• NAMD with domain decomposition

Disclaimer: There are many other differences between programs which could affect
performance but parallel scaling is a good indicator of the parallelization scheme.

18/08/2017 38High Performance Molecular Dynamics

Does Domain Decomposition
Work?

Compare

• GROMACS v 3.x and earlier with force-decomposition schemes

• GROMACS v 4.x with domain decomposition

• NAMD with domain decomposition

Disclaimer: There are many other differences between programs which could affect
performance but parallel scaling is a good indicator of the parallelization scheme.

18/08/2017 39High Performance Molecular Dynamics

NAMD/Gromacs speedup

0

1

2

3

4

5

6

7

1 2 4 8 16 32 64

#procs

lo
g

 s
p

e
e
d

u
p

namd

ideal

gromacs

4018/08/2017 High Performance Molecular Dynamics

Does domain decomposition
work?

Simulation of 280K atoms of liquid argon with
DL_POLY (Classic) and DL_POLY 4.03

Why do MD (programs stop scaling ?

For most parallel programs the scaling levels out when the time of
communications > time needed for calculations.

For modern molecular dynamics programs this can happen when the system is
too small (i.e. number of atoms too low) compared to the number of cores:

1. Limits of domain decomposition –with few particles/proc the domain size
becomes too small.

2. The parallel PME calculation contains all-to-all communications (in the 3D
FFT) and this cost varies as N2 .

As a rule-of-thumb many MD simulations reach a scaling limit when there are
ca. 100-200 atoms/core.

18/08/2017 41High Performance Molecular Dynamics

Why do MD programs stop
scaling?

0.00

0.50

1.00

1.50

2.00

2.50

3.00

0 2000 4000 6000 8000 10000

n
s
/d

a
y

#cores

GROMACS BG/P scaling for SPC
water (0.5M molecules)

1024

2048

4096

8192 16384

0

2

4

6

8

10

12

1000 10000

p
e
rf

o
rm

a
n

c
e
 n

s
/d

a
y

#cores

GROMACS BG/P scaling for d.kv12
membrane (1.8M atoms)

For this benchmark we
had to duplicate the std
GROMACS benchmark
d.kv12 ion channel 16
times !

18/08/2017 42High Performance Molecular Dynamics

At the scaling limit communication time
presumably > calculations, but which algorithm
features cause this?
Candidate features:

1. Non-bonded dispersion with DD or
2. PME for electrostatics.

Implicit and Explicit solvents

Life Sciences Molecular Dynamics Applications on the IBM System Blue Gene Solution: Performance Overview,
http://www-03.ibm.com/systems/resources/systems_deepcomputing_pdf_lsmdabg.pdf

18/08/2017 43High Performance Molecular Dynamics

The influence of PME on parallel scaling can be tested by using implicit solvent
models which model the solvent as a continuous medium instead of interacting
particles, but for many biological environments (interiors of proteins or
membranes) it is considered too approximate.

Implicit and Explicit solvents

18/08/2017 44High Performance Molecular Dynamics

NAMD 2.10
Beta-lactoglobulin
in explicit and
implicit solvents












N

ji GB

ji

s
f

qq
G

,0

11

8

1

 Generalized Born Equation

Why is parallel scaling
important ?

The Bluegene and other multi-thousand core architectures represent a challenge
for projects based on molecular dynamics since often a minimum scaling is
required.

PRACE Tier-0 parallel scaling requirements in 2013

18/08/2017 45High Performance Molecular Dynamics

Computer System Minimum Parallel Scaling Max
memory/core
(Gb)

Curie Fat Nodes 128
Thin Nodes 512
Hybrid 32

4
4
3

Fermi 2048 (but typically >=4096) 1

SuperMUC 512 (typically >=2048) *

Hornet 2048 *

Mare Nostrum 1024 2Gb

How can I increase the parallel
scaling ?

1. Reduce the communications in the PME calculations. (e.g. –npme option of
GROMACS)

2. Try exploiting threads with hybrid MPI/OpenMP .
– OpenMP allows a finer-grain parallelism. With fewer MPI processes we can have larger

domain sizes.

3. Increase the system size.

– But not always possible if your problem size is “fixed” (i.e. because you are
studying a particular molecule)

4. Design a project which uses multiple replicas of the same system.
– Examples include replica exchange (REMD), metadynamics, ensemble

simulations,..

Each system is different so important to benchmark your simulations to find
the best results.

18/08/2017 46High Performance Molecular Dynamics

It is generally accepted that the PME method has the most influence on parallel scaling
due to the global communications in the FFT but even without PME the simulations reach
a performance limit. How can we mitigate this ?

Reducing the PME cost - GROMACS

Particle-Particle (PP) and PME interactions can be decoupled so could be
beneficial to assign separate nodes to PME part to reduce the
communications for FFT.

GROMACS 4.x allows separate nodes to be assigned to PME calculations:

mpirun mdrun –npme 4 md.conf

Rule of thumb is PP:PME = 3:1 but g_pme utility allows this to be tested.

Also possible to change how the PME and PP nodes are partitioned with the –
ddorder option of mdrun.

18/08/2017 47High Performance Molecular Dynamics

PME nodes
Average load imbalance: 21.3 %

Part of the total run time spent waiting due to load imbalance: 6.7 %

Average PME mesh/force load: 1.277

Part of the total run time spent waiting due to PP/PME imbalance: 15.4 %

NOTE: 6.7 % of the available CPU time was lost due to load imbalance

in the domain decomposition.

You might want to use dynamic load balancing (option -dlb.)

NOTE: 15.4 % performance was lost because the PME ranks

had more work to do than the PP ranks.

You might want to increase the number of PME ranks

or increase the cut-off and the grid spacing.

18/08/2017 High Performance Molecular Dynamics 48

PP nodes/ PME nodes Perfromance ns/day

40 / 8 9.142

36 / 12 10.798

DPPC benchmark on 1 node Marconi Skylake

Always checkout the
output of your
program for hints
on performance.

Very large Gromacs
simulations

18/08/2017 High Performance Molecular Dynamics 49

mpirun gmx_mpi mdrun -s topol.tpr -resethway -
noconfout -gcom 20 -nstlist 20

*Ligno cellulose model, using Reaction Field instead of PME (i.e.

no FFT),4M atoms.

0

10

20

30

40

50

60

70

80

90

100

1 2 4 8 16 32 64 128

P
er

fo
rm

an
ce

 (
n

s/
d

ay
)

#nodes

Gromacs LignoCellulose* on Marconi A1

std

optimised

-resethway Resets perf
counters

-noconfout Do not write out
final
configuration

-gcom Controls global
communications
freq.

-nstlist Neighbour list

For very large simulations with Gromacs use runtime options to improve performance.
In particular, -gcom to reduce the global communication (e.g. energy) frequency (at 128
nodes 48% time consumed in MPI_Bcast).

Hybrid MPI/OpenMP -
Gromacs

18/08/2017 High Performance Molecular Dynamics 50

0

1

2

3

4

5

6

7

8

9

10

0 20 40 60 80

P
e

rf
o

rm
an

ce
 (

n
s/

d
ay

)

nodes

Gromacs (5.0.4)+plumed
(1M atoms)

8 threads mpi only

• GROMACS v 4.6 and upwards can use OpenMP parallelization for the PME.
• OpenMP threads use less memory than MPI tasks, and by replacing MPI tasks, reduce
communications.
• For Gromacs ensure that no. of threads x no. mpi tasks = no. of. physical cores
• Because of the overheads may give improvements only at high core counts or with slow
networks.

0

5

10

15

20

25

30

0 2 4 6 8 10

P
e

rf
o

rm
an

ce
 [

n
s/

d
ay

]

OpenMP Threads

GMX performance with Open MP on a single
node (marconi)

1 Core

2 Cores

4 Cores

6 Cores

9 Cores

18 Cores

36 Cores

thanks to M. Alberghini

Hybrid MPI/OpenMP - NAMD

Small, but significant improvements obtained with threaded version of NAMD 2.9

18/08/2017 High Performance Molecular Dynamics 52

bg_size=128, ranks/node=4 (512 tasks)

http://www.hpc.cineca.it/content/namd-
benchmark

Replica Exchange Molecular Dynamics

Replica Exchange Molecular
Dynamics

– Used to prevent simulation from
getting “stuck” in local minima.

– Run multiple simulations
(“replicas”) at different
temperatures or with varying
potential parameters.

– At regular intervals the n replicas
exchange coordinates and then
re-continue their trajectories.

– For N cores the individual
replicas need only scale up to N/n
cores for efficient performance.

53

T=T0
T=T1

T=T2 T=T3

T=T6

T=T4 T=T5

T=T7

18/08/2017 High Performance Molecular Dynamics

Other examples include metadynamics with multiple
walkers (e.g. PLUMED), various other free energy
algorithms, etc..

Molecular Dynamics and
accelerators

• If we cannot increase the parallelism, how
can we increase performance assuming
Moore’s law no longer valid?

• Most of the common MD applications have
GPU/CUDA-enabled versions which
accelerate the calculations by off-loading
the expensive, non-bonded calculations to
the GPU.

• Particular effort with Amber with GPU-
enabled port giving large speedups (tens of
times in some cases) compared to non-
accelerated codes.

• But reasonable speed-ups of 2-3x also for
NAMD, GROMACS, etc.

• Sometimes maximum performance not
affected significantly – main advantage is to
obtain the same performance but using
fewer nodes.

18/08/2017 54High Performance Molecular Dynamics

Molecular Dynamics and
Acceleration - GROMACS

18/08/2017 High Performance Molecular Dynamics 55

Gromacs offloads non-bonded (non PME) calculation to GPU while the main
CPU does PME and bonded force calculations.
NAMD uses a similar strategy (I think)

“Accelerated” Molecular
Dynamics - results

1

2

4 6

0

5

10

15

20

25

1 10 100 1000

n
s
/d

a
y

#cores

amber 11 GPU performance

cpu

gpu

DNA+water (40K

atoms)

18/08/2017 56High Performance Molecular Dynamics

NAMD APOA1

GROMACS 4.6
DPPC

It is argued that
poorly optimised un-
accelerated codes
give best speed-ups.

Intel Knight’s Landing (KNL)

• The KNL version of the Intel Xeon PHI processor is not an
accelerator so for most MD programs should work similarly to
standard Intel CPUs.

• Although not essential, for performance recommended to
recompile for KNL.

• Installation
– GROMACS.

• Recompile with -DGMX_SIMD=AVX_512_KNL to exploit the KNL vector
processor.

– NAMD
• Recompile in SMP mode (Linux-KNL-multicore) according to the Intel website:

https://software.intel.com/en-us/articles/building-namd-on-intel-xeon-and-
intel-xeon-phi-processor.

• Running
– Generally identical to usual CPUs but OpenMP threads might be needed to get

reasonable performance (particularly NAMD).

18/08/2017 High Performance Molecular Dynamics 57

https://software.intel.com/en-us/articles/building-namd-on-intel-xeon-and-intel-xeon-phi-processor

KNL and GROMACS

Similar performance to
Intel Broadwell,
although the DPPC
benchmark performs
less well with higher
cores (don’t know why).

18/08/2017 High Performance Molecular Dynamics 58

0

20

40

60

80

100

120

140

160

1 2 4 8 16 32

P
er

fo
rm

an
ce

 (
n

s/
d

ay
)

BDW or KNL nodes

Gromacs DPPC performance on Marconi KNL and
BDW

KNL BDW

KNL and NAMD

• Important to use the MPI-SMP version of CHARM++/NAMD on KNL.
• Unfortunately this version has a complicated syntax. Best to follow

published recipes and see which works best (see Intel page).
• Small performance increase for very large systems, but otherwise use

standard Intel processors.

18/08/2017 High Performance Molecular Dynamics 59

17 MPI processes (for communication) * 7 threads/MPI (ppn) + 17 = 136

per node.

node=16

mpirun -perhost 17 -n $(($node*17)) $exe +ppn 7 +pemap 0-67,68-135:4.3

+commap 71-135:4 namd2 stmv.namd > stmv16.log

The following gives about 5ns/day for the STMV virus benchmark (1M atoms):

tasks/node

Total tasks Threads/task
Process
mapping

Communication
thread mapping

Final Conclusions
• There are many features which affect performance but project proposals for

computer time are judged mainly on the parallel scaling.

• All modern MD programs use domain decomposition for parallelisation.

• Parallel scaling strongly influenced by system size due to:

1. limits of domain decomposition for non-bonded interactions

2. all-to-all communication in PME/FFT for electrostatics

The FFT is the more serious limitation.

• Many “normal” systems do not scale up to thousands of cores. One workaround is
to use “ensemble methods” (e.g. replica exchange, metadynamics or free energy
calculations).

• Most MD codes offer GPU-versions which can get good performance for fewer
resources, but do not increase by orders of magnitude the maximum
performances.

• Memory and I/O not normally problems but become important for very large
systems (e.g. >1M atoms)

• No obvious candidate for beating the scalability barrier. Some interest in the use of
Fast Multipole Methods or Multi-Level Summation Method (MSM) instead of PME
but still very much in the research phase.

18/08/2017 61High Performance Molecular Dynamics

