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Molecular Dynamics 
milestones

• 1959: First MD simulation (Alder and Wainwright)

– Hard spheres at constant velocity. 500 particles on IBM-704. Simulation 
time >2 weeks

• 1964: First MD of a continuous potential (A. Rahman)

– Lennard-Jones spheres (Argon), 864 particles on a CDC3600. 50,000 
timesteps > 3 weeks

• 1977: First large biomolecule (McCammon, Gelin and Karplus).

– Bovine Pancreatic Trypsine inhibitor. 500 atoms, 9.2ps 

• 1998: First μs simulation (Duan and Kollman)

– villin headpiece subdomain HP-36. Simulation time on Cray T3D/T3E ~ 
several months

• 2006. MD simulation of the complete satellite tobacco mosaic virus (STMV)

– 1 million atoms, 50ns using NAMD on 46 AMD and 128 Altix nodes

• 2006:  Longest run. Folding@home (computers supplied by general public!)

– 500 μs of Villin Headpiece protein (34 residues).

3

folding@home
equivalent to peak ~40 
Pflops (Wikipedia)

18/08/2017 High Performance Molecular Dynamics



Biomolecular MD Simulation 
– system sizes

2006. Satellite tobacco 
mosaic virus (STMV). 1M 
atoms, 50ns

4

2008. Ribosome. 3.2M atoms, 230ns. 

early 1990s. Lysozyme, 40k atoms

2011. Chromatophore, 

100M atoms (SC 2011)
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Nobel Prize for Karplus, Levitt 
and Warshel
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Taken from, “Scientific 
background on the Nobel Prize 
in Chemistry 2013”, 
www.nobleprize.org



Anatomy of a program
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1. Read in parameters to control the simulation (e.g. run time, 
temperature, etc).

2. Generate or read in atomic coordinates and connectivity 
information. If starting from a previous run read in velocities, 
forces and other system data.

3. Start Main loop at time t.
1. Compute forces between interacting atoms.
2. Integrate forces to obtain velocities and positions at new time step 

t+Δt.
3. Calculate thermodynamic properties (e.g. Temp, Pressure,etc).
4. At intervals store configuration for trajectory and restart 

information.
5. If t < required time loop back to step 1.

4. Output final configuration, thermodynamic and perhaps timing 
data.



Simple Molecular Dynamics program for neutral 
atoms

7

call init 
T=0 
do while (T.lt.Tmax) 

call compute_forces() 
call integrate_motion()
call save_crds() 
call sample_averages() 
T = T + DT 

enddo
call save_state() 
stop 
end 

subroutine compute_energy_forces

Utot=0.0
do i=1,N-1

F(i) = 0.0
do j=i+1,N
rij=r(i)-r(j)
Utot=Utot+Uij
F(i)=F(i)+force(i,j)   

enddo
enddo

subroutine integrate_motion
do i=1,N

r(i)=r(i)+verlet(F(i))
v(i)=v(i)+verlet(F(i))

enddo
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High Performance Molecular
Dynamics

In a (serial) molecular dynamics program often 70-90% of the CPU time is 
spent in the calculation of the non-bonded energies and forces -> this is the 
first place to look when optimising or parallelising a program.

There are usually two types of long range non-bonded interactions:

1. Dispersion-type particle-particle interactions

2. Electrostatic interactions.

The dispersion interactions are normally solved with Lennard Jones (LJ) type 
potentials which can be truncated at short inter-particle separations.

Electrostatic interactions are commonly solved with the Particle Mesh Ewald
(PME) Method or similar. (electrostatic cutoffs are too approximate)
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GROMACS timings
Computing:                               M-Number         M-Flops  % Flops

-----------------------------------------------------------------------------

LJ                                   66460.022385     2193180.739     2.8

Coul(T)                              67295.126727     2826395.323     3.6

Coul(T) [W3]                          1361.881485      170235.186     0.2

Coul(T) + LJ                        113027.749257     6216526.209     7.9

Coul(T) + LJ [W3]                    21305.487096     2940157.219     3.7

Coul(T) + LJ [W3-W3]                 67057.921884    25616126.160    32.5

Outer nonbonded loop                 16258.069653      162580.697     0.2

1,4 nonbonded interactions            1814.923008      163343.071     0.2

Calc Weights                         11664.933552      419937.608     0.5

Spread Q Bspline 248851.915776      497703.832     0.6

Gather F Bspline 248851.915776     1493111.495     1.9

3D-FFT                             4145210.365398    33161682.923    42.1

Solve PME                              819.609600       52455.014     0.1

NS-Pairs                             72105.130813     1514207.747     1.9

Reset In Box                           264.244768         792.734     0.0

CG-CoM 650.966640        1952.900     0.0

Angles                                1587.865536      266761.410     0.3

Propers 397.158480       90949.292     0.1

Impropers 88.972464       18506.273     0.0

.....
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Optimising a serial program
• To increase the performance of the 

program the number of interactions 
O(N2) to be calculated needs to be 
reduced. 

• Common strategies include:
– Potential cutoffs + Neighbour lists 
– United atoms (e.g. CH4) or coarse grain 

approaches (e.g. Martini)  to reduce 
the number of interacting sites

– Holonomic constraints (e.g. SHAKE)
– Multiple time steps (e.g. electrostatic 

time step in NAMD)
– Implicit solvents as opposed to explicit 

solvents (but not recommended).
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united atoms

martini model

rc

rl

holonomic constraints (e.g. 
SHAKE) Δt=1fs → Δt=2fs 

implicit and 
explicit 
solvents

cut-off and neighbour list



Electrostatic Interactions

For complex molecules electrostatic interactions are usually 
calculated by assigning each atom a partial charge:
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The interaction energy between two isolated charges is known 
(Coulomb): 

Problem: This is a long range interaction, 
varying with ~1/r. (c.f LJ, ~1/r6) and so decays 
to zero slowly. The box cannot be made large 
enough without making the simulation 
impracticable. Electrostatic cutoffs on the 
other hand can give rise to artefacts.

+0.8

-0.9

+0.4
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-0.19

The partial charges are defined by 
the force-field, usually via QM 
calculations.



Electrostatic Interactions –Ewald Sum 
(1921)

Solution for periodic systems first suggested by Ewald and others from 
their work on ionic crystals. Start with the interaction of a particle with 
all the other particles, including their images:
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n=(nxL, nyL, nzL)

For large n the cell distribution 
is spherical



Electrostatic interactions – Ewald Sum

13

This pairwise summation converges slowly, but by assuming gaussian 
charge distributions around each charge it can be converted into faster 
converging real space (short range) and reciprocal space (long range) 
sums: 

V = real space sum + reciprocal space sum + constant 
corrections

The real space term (which contains erfc(x)) can be calculated quite 
easily with standard libraries and usually a cutoff is applied (e.g. 9 Å).
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Particle Mesh Ewald
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This is an N2 problem but by replacing the 
point charges by a grid-based charge 
distribution one can use discrete FFT (Fast 
Fourier Transform) which scales as N lnN (e.g. 
Particle Mesh Ewald).

The second term converges quickly in reciprocal space but is computationally 
expensive:
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Parallelising a  serial program

Do we need to parallelise MD ?
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Galileo 
gromacs 4.6.7 1 node (16 cores)

Core t (s)   Wall t (s)        

(%)

Time:     8060.990      504.626     

1597.4

(ns/day)    (hour/ns)

Performance:        3.425        7.008

Finished mdrun on node 0 Fri Nov  6 15:26:07 

2015

PC: 
(ns/day)    (hour/ns)

Performance:        0.075      319.699

Even using just one 
node of a cluster we 
can get speedups of 
10X, 100X or more.



Concepts and practice of 
Parallelism 

• Even if you do not intend to write a parallel program, 
just use one already present, it is important to 
understand some of the concepts and techniques used 
in the preparation and execution of a parallel project.

• Hardware is moving quite quickly so it is a challenge to 
understand everything but useful topics include:
– MPI and message passing

– OpenMP and threads

– Accelerators such as GPUs 

– Measuring performance
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Message Passing Interface (MPI)

• MPI is a standard which 
implements parallelism via 
message passing, i.e. providing a 
mechanism for communication 
between parallel tasks.

• Usually SPMD (Single Program 
Multiple Data) model where 
multiple instances of the same 
program are launched. When 
necessary they communicate by 
MPI calls.

• Each instance is called a task and is 
identified by its rank (starting from 
0). Normally all the tasks are 
created at the beginning of the 
parallel execution. 
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message

Task 0

Task 1
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MPI Communications
• MPI communications can be of various 

types:
1. One-way communications.
2. Point-to-point between two tasks.
3. Collective calls between groups of tasks 

or even all of them.

• They can also be synchronous or 
asynchronous. 

• Collective calls can be expensive, 
particularly when many tasks are 
involved.

• An efficient MPI program will minimise 
the time spent in communications as 
much as possible often by overlapping 
communications with calculations (non-
blocking communications).
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Using MPI

• Advantages:
– Only standard model which allows cores over multiple nodes in a 

cluster to be used in a parallel program.
– Highly optimised for current architectures

• Disadvantages:
– Complex programming model and may require high memory (program 

instances  + buffers)
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module load intelmpi # Intel MPI  

mpirun –np 64 ./myprog.exe 

• MPI is implemented as a library which is used during 
compilation/linking and often also at execution.

• Different implementations may exist on a particular 
computer system (e.g. Intel MPI, OpenMPI, etc).

• Usually used within a launcher (e.g. mpirun, mpiexec, runjob, 
etc) which launches the required number of tasks.



OpenMP and threads

• The OpenMP standard implements parallel 
programming via threads. 

• Threads are light-weight processes, 
requiring fewer resources than MPI tasks. 
Usually created and destroyed in a fork-
join process.

• Often used for “work sharing” within loops 
but can be used to generate tasks.

• They communicate by reading and writing 
program variables in shared memory.

• Advantages:
– Less memory and may be faster than MPI 

within a shared memory node. Simpler 
programming model than MPI.

• Disadvantages:
– Cannot be used between separate nodes
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memory



Using OpenMP

• But since openmp cannot be used 
between nodes common to use both –
so called hybrid MPI/OpenMP programs 
(e.g. Gromacs)

• Typically use OpenMP thread within a 
node but MPI between nodes. Useful for 
minimising the number of MPI tasks. 
(see later)
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memory

memory

memory

memory

mpi task
openmp thread

gfortran –fopenmp

myprog.c –o myprog

export OMP_NUM_THREADS=8

./myprog.exe



Strong and weak scaling and 
parallel efficiency

• For any parallel program important to measure the 
performance as a function of the parallel resources used 
(e.g. MPI tasks, threads, physical cores, etc). 

• For MD usual to measure performance in terms of ns/day 
and this value is reported by most MD programs. Since 
computer grants are based on use of physical resources 
(e.g. cores) makes sense to plot performance against 
processor cores.

• This is called strong scaling and by comparison with the 
ideal case indicates how well parallelised your set up is. 
This can be emphasised by plotting the speedup with 
respect to the smallest number of cores used (e.g. 1 core).
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Strong scaling examples
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Strong scaling and parallel
efficiency

• Computer scientists often 
prefer a metric called the 
parallel efficiency.

• Less interesting for MD 
researchers but worth quoting 
for grant applications (where 
the reviewers may be non MD 
users).

• Important to do strong scaling 
curves before embarking on 
production.
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Weak scaling

• This is formally as defined as “how 
the solution time varies with the 
number of processors for a fixed 
problem size per processor.”

• But usually used to know how the 
performance varies on increasing 
the input or problem size. Should 
be a horizontal line for perfect 
weak scaling.

• For MD this indicates how the 
performance varies with system 
size, i.e. number of atoms.

• Not often used in MD since 
researchers use one or only a few 
systems, probably with similar 
numbers of atoms.
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Other parallel concepts

• SIMD (Single Instruction Multiple Data) Vectorisation
– Special hardware in the CPU (SIMD or Vector Unit) for optimising loops. For 

Intel known as SSE, AVX, etc (depending on processor version)
– Most users do not need to know  about this unless compiling or writing their 

own code.

• Load balancing
– If parallel tasks in the program finish their calculations more or less at the 

same time, there is good “load balancing”.   If some processes have to wait for 
other processes then clearly the program will take longer. 

• Parallel I/O
– Often one task (e.g. rank 0) is given the job of reading and writing files since 

having many tasks accessing the same file is not safe. This task then sends the 
data to the other tasks.

– For very large files and many processes may be more efficient to allow 
multiple access. Normally achieved by MPI-IO or specialist formats (HDF5).

– In MD not normally used except for very large simulations (millions of atoms), 
e.g. in NAMD 2.10 or DL_POLY4. 
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Why do parallel programs stop 
scaling?
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Regardless of algorithm, as  the number of parallel tasks increase the relative 
time spent doing communications also increases, thus reducing the time for 
calculations.

Very roughly, when

Time (communications) > Time (calculations)

increasing  the number of processors will not lead  to an increase in 
performance (in fact it may start decreasing).

Of particular importance are global or collective communications involving 
groups or even all the parallel tasks and programmers tend to minimise their 
use.
Other factors affecting scaling may include increased I/O or memory usage.



Parallelising Molecular Dynamics

• Now we have the tools how can we parallelise an MD program?
• Need an algorithm to accelerate the most timing consuming parts 

of the serial program, i.e the non-bonded long ranges forces 
calculation.
– Dispersion forces
– electrostatic forces with PME

• But must minimise communications between tasks.
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Atom (particle) decomposition

• One of the first algorithms 
implemented for parallel MD. 
Sometimes also called 
“Replicated Data” since each 
processor requires a copy of the 
entire system.

• Nowadays rarely used because 
of  the high memory and global 
communications required.

• The particle decomposition 
option of Gromacs was removed 
in the latest release. 
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Force decomposition

• Improvement on 
particle decomposition, 
inspired by the parallel 
algorithms for matrices.

• Reduced memory and 
communication 
overheads but still 
relatively expensive at 
high core counts.
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Spatial (or domain) decomposition
algorithm

Here each processor is assigned to a spatial region of the simulation box (with 
side rd > 2*rc) such that it stores only a portion of the whole system. This has 
two components:

• The atoms which lie in that region and the forces between them.

• Atom positions and forces from neighbouring regions owned by other 
processors.

In order to minimise the surface with respect to the volume, and hence the 
communications, it is important to use regions that are as cubic as possible. In 
any case the communications are reduced since it is not necessary to update 
the whole system in local memory.
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Domain decomposition
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rd >2 rc

Must choose 
domain sides 
to be greater 
than 2xcutoff



Domain Decomposition
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internal 
part of 
domain 

Atoms which 
need to be 
shared with 
neighbouring 
domains.

storage for 
neighbouring 
atoms



Simple Domain Decomposition 
- algorithm

1. Read in atomic coordinates  (and velocities)
2. Assign atoms to domains (processors) according to 

x,y,z position.
3. For each domain (processor):

1. identify interacting atoms in neighbouring domains 
and copy coords.

2. calculate forces.
3. copy partial forces of neighbour atoms back to their 

home domains
4. with the forces calculate new velocities and 

positions.

4. Calculate thermodynamic averages (T, P,E, etc)
5. Loop back to 2 if not finished.  
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MPI has many commands for 
transferring data efficiently in 
a cartesian topology (such as 
a simulation box.)



Domain decomposition

Advantages

– Exploits locality of atomic interactions, minimizing communications 
(no All-to-All) and memory required per processor

– scalable, for large systems. 

– can exploit MPI cartesian topology

Disadvantages

– needs large system, otherwise domain size too small. As no. of 
processors increases eventually stops scaling

– for inhomogeneous systems (liquid+vapour) load balancing problems 
as some procs have too few atoms. 
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Novel domain-decomposition schemes

Problem with domain decomposition 
occurs when density of particles is uneven 
or fluctuates.

Can be mitigated by “zonal” (or “neutral 
territory”) methods, where forces between 
particles i and j are not necessarily 
calculated on a processor where either of 
particles i or j resides.

GROMACS uses a zonal method called the 
“eighth-shell” method, with reduced 
communication wrt standard dd.  Other 
methods incl “midpoint” (Desmond).

Like NAMD, Gromacs 4.x now has Dynamic 
Load Balancing which adjusts 
dynamically particle-processor 
assignment.

36

Hess et al., J. Chem, Theory 
Comput. C, 2007
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Parallelisation of Electrostatics with Domain 
Decomposition and PME

37

PME can be parallelised with a DD scheme but 3D FFT is very 
inefficient for many processors (or small N) because of all-to-all global 
communications (e.g MPI_AlltoAll). 

GROMACS and NAMD use instead  a  2D decomposition of thin 
columns or “pencils”

In this way the first 1D part of the 
3D  can be done within a single 
processor (e.g. along z) to avoid 
extra communication

z
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Does Domain Decomposition 
Work?

Compare

• GROMACS v 3.x and earlier with force-decomposition schemes

• GROMACS v 4.x with domain decomposition

• NAMD with domain decomposition

Disclaimer: There are many other differences between programs which could affect 
performance but parallel scaling is a good indicator of the parallelization scheme.
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Does Domain Decomposition 
Work?

Compare

• GROMACS v 3.x and earlier with force-decomposition schemes
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performance but parallel scaling is a good indicator of the parallelization scheme.
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NAMD/Gromacs speedup
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Does domain decomposition 
work?

Simulation of 280K atoms of liquid argon with 
DL_POLY (Classic) and DL_POLY 4.03



Why do MD (programs stop scaling ?

For most parallel programs the scaling levels out when the time of 
communications > time needed for calculations.  

For modern molecular dynamics programs this can happen when the system is 
too small (i.e. number of atoms too low) compared  to the number of cores:

1. Limits of domain decomposition –with few particles/proc the domain size 
becomes too small.

2. The parallel PME calculation contains all-to-all communications (in the 3D 
FFT) and this cost varies as N2 .

As a rule-of-thumb many MD simulations reach a scaling limit when there are 
ca. 100-200 atoms/core.
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Why do MD programs stop 
scaling?
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For this benchmark we 
had to duplicate the std 
GROMACS benchmark 
d.kv12 ion channel 16 
times !
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At the scaling limit communication time 
presumably > calculations, but which algorithm 
features cause this?
Candidate features:

1. Non-bonded dispersion with DD or
2. PME for electrostatics.



Implicit and Explicit solvents

Life Sciences Molecular Dynamics Applications on the IBM System Blue Gene Solution: Performance Overview,
http://www-03.ibm.com/systems/resources/systems_deepcomputing_pdf_lsmdabg.pdf
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The influence of PME on parallel scaling can be tested by using implicit solvent 
models which model the solvent as a continuous medium instead of  interacting 
particles, but for many biological environments (interiors of proteins or 
membranes) it is considered too approximate.



Implicit and Explicit solvents
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NAMD 2.10
Beta-lactoglobulin
in explicit and 
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Why is parallel scaling 
important ?

The Bluegene and other  multi-thousand core architectures represent a challenge 
for  projects  based on molecular dynamics since often a minimum scaling is 
required.

PRACE Tier-0 parallel scaling requirements in 2013
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Computer System Minimum Parallel Scaling Max 
memory/core 
(Gb)

Curie Fat Nodes 128
Thin Nodes 512
Hybrid 32

4
4
3

Fermi 2048 (but typically >=4096) 1

SuperMUC 512 ( typically >=2048) *

Hornet 2048 *

Mare Nostrum 1024 2Gb



How can I increase the parallel 
scaling ?

1. Reduce the communications in the PME calculations. (e.g. –npme option of 
GROMACS)

2. Try exploiting threads with hybrid MPI/OpenMP .
– OpenMP allows a finer-grain parallelism. With fewer MPI processes we can have larger 

domain sizes.

3. Increase the system size.

– But not always possible if your problem size is “fixed” (i.e. because you are 
studying  a particular molecule)

4. Design a project which uses multiple replicas of the same system.
– Examples  include replica exchange (REMD), metadynamics, ensemble 

simulations,..

Each system is different so important to benchmark your simulations to find 
the best results.
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It is generally accepted that the PME method has the most influence on parallel scaling 
due to the global communications in the FFT but even without PME  the simulations reach 
a performance limit. How can we mitigate this ?  



Reducing the PME cost - GROMACS

Particle-Particle (PP) and PME interactions can be decoupled so could be 
beneficial to assign separate nodes to PME part to reduce the 
communications for FFT.

GROMACS 4.x allows separate nodes to be assigned to PME calculations:

mpirun mdrun –npme 4 md.conf

Rule of thumb is PP:PME = 3:1 but g_pme utility allows this to be tested.

Also possible to change how the PME and PP nodes are partitioned with the –
ddorder option of mdrun.
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PME nodes
Average load imbalance: 21.3 %

Part of the total run time spent waiting due to load imbalance: 6.7 %

Average PME mesh/force load: 1.277

Part of the total run time spent waiting due to PP/PME imbalance: 15.4 %

NOTE: 6.7 % of the available CPU time was lost due to load imbalance

in the domain decomposition.

You might want to use dynamic load balancing (option -dlb.)

NOTE: 15.4 % performance was lost because the PME ranks

had more work to do than the PP ranks.

You might want to increase the number of PME ranks

or increase the cut-off and the grid spacing.
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PP nodes/ PME nodes Perfromance ns/day

40 / 8 9.142

36 / 12 10.798

DPPC benchmark on 1 node Marconi Skylake

Always checkout the 
output of your 
program for hints 
on performance.



Very large Gromacs
simulations
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mpirun gmx_mpi mdrun -s topol.tpr -resethway -
noconfout -gcom 20 -nstlist 20

*Ligno cellulose model, using Reaction Field instead of PME (i.e. 

no FFT),4M atoms.
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-resethway Resets perf 
counters

-noconfout Do not write out 
final 
configuration

-gcom Controls global 
communications 
freq.

-nstlist Neighbour list

For very large simulations with Gromacs use runtime options to improve performance. 
In particular, -gcom to reduce the global communication (e.g. energy) frequency (at 128 
nodes 48% time consumed in MPI_Bcast).



Hybrid MPI/OpenMP -
Gromacs
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• GROMACS v 4.6 and upwards can use OpenMP parallelization for the PME.
• OpenMP threads use less memory than MPI tasks, and by replacing MPI tasks, reduce 
communications.
• For Gromacs ensure that no. of threads x no. mpi tasks = no. of. physical cores
• Because of the overheads may give improvements only at high core counts or with slow 
networks.
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Hybrid MPI/OpenMP - NAMD

Small, but significant improvements obtained with threaded version of NAMD 2.9
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bg_size=128, ranks/node=4 (512 tasks) 

http://www.hpc.cineca.it/content/namd-
benchmark



Replica Exchange Molecular Dynamics

Replica Exchange Molecular 
Dynamics

– Used to prevent simulation from 
getting “stuck” in local minima.

– Run multiple simulations 
(“replicas”) at different 
temperatures or with varying 
potential parameters.

– At regular intervals the n replicas  
exchange coordinates and then 
re-continue their trajectories.

– For N cores the individual 
replicas need only scale up to N/n 
cores for efficient performance.
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Other examples include metadynamics with multiple 
walkers (e.g. PLUMED), various other free energy 
algorithms, etc..



Molecular Dynamics and 
accelerators

• If we cannot increase the parallelism, how 
can we increase performance assuming 
Moore’s law no longer valid?

• Most of the common MD applications have 
GPU/CUDA-enabled versions which 
accelerate the calculations by off-loading 
the expensive, non-bonded calculations to 
the GPU.

• Particular effort with Amber with GPU-
enabled port giving large speedups (tens of 
times in some cases) compared to non-
accelerated codes.

• But reasonable speed-ups of 2-3x also for 
NAMD, GROMACS, etc.

• Sometimes maximum performance not 
affected significantly – main advantage is to 
obtain the same performance but using 
fewer nodes.
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Molecular Dynamics and 
Acceleration - GROMACS
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Gromacs offloads non-bonded (non PME) calculation to GPU while the main 
CPU does PME and  bonded force calculations.
NAMD uses a similar strategy (I think)



“Accelerated” Molecular 
Dynamics - results
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NAMD APOA1 

GROMACS 4.6 
DPPC

It is argued that 
poorly optimised un-
accelerated codes 
give best speed-ups.



Intel Knight’s Landing (KNL)

• The KNL version of the Intel Xeon PHI processor is not an 
accelerator so for most MD programs should work similarly to 
standard Intel CPUs.

• Although not essential, for performance recommended to 
recompile for KNL.

• Installation
– GROMACS. 

• Recompile with -DGMX_SIMD=AVX_512_KNL to exploit the KNL vector 
processor.

– NAMD
• Recompile in SMP mode (Linux-KNL-multicore) according to the Intel website: 

https://software.intel.com/en-us/articles/building-namd-on-intel-xeon-and-
intel-xeon-phi-processor.

• Running
– Generally identical to usual CPUs but OpenMP threads might be needed to get 

reasonable performance (particularly NAMD).
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https://software.intel.com/en-us/articles/building-namd-on-intel-xeon-and-intel-xeon-phi-processor


KNL and GROMACS

Similar performance to 
Intel Broadwell, 
although the DPPC 
benchmark performs 
less well with higher 
cores (don’t know why).
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KNL and NAMD

• Important to use the MPI-SMP version of CHARM++/NAMD on KNL. 
• Unfortunately this version has a complicated syntax. Best to follow 

published recipes and see which works best (see Intel page).
• Small performance increase for very large systems, but otherwise use 

standard Intel processors.
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# 17 MPI processes (for communication) * 7 threads/MPI (ppn) + 17 = 136 

per node.

node=16

mpirun -perhost 17 -n $(($node*17)) $exe +ppn 7 +pemap 0-67,68-135:4.3 

+commap 71-135:4 namd2 stmv.namd > stmv16.log

The following gives about 5ns/day for the STMV virus benchmark (1M atoms):

tasks/node

Total tasks Threads/task
Process 
mapping

Communication 
thread mapping



Final Conclusions
• There are many features which affect performance but project proposals for 

computer time are judged mainly on the parallel scaling.

• All modern MD programs use domain decomposition for parallelisation. 

• Parallel scaling strongly influenced by system size due to:

1. limits of domain decomposition for non-bonded interactions

2. all-to-all communication in PME/FFT for electrostatics

The FFT is the more serious limitation. 

• Many “normal” systems do not scale up to thousands of cores. One workaround is 
to use “ensemble methods” (e.g. replica exchange, metadynamics or free energy 
calculations). 

• Most MD codes offer GPU-versions which can get good performance for fewer 
resources, but do not increase by orders of magnitude the maximum 
performances.

• Memory and I/O not normally problems but become important for very large 
systems (e.g. >1M atoms)

• No obvious candidate for beating the scalability barrier. Some interest in the use of 
Fast Multipole Methods or Multi-Level Summation Method (MSM) instead of PME 
but still very much in the research phase.
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