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Aim of the workshop

e  The aim of this workshop is to present the (most) representative HPC numerical methods used in the fields of Computational
Fluid Dynamics (CFD) and Numerical Astrophysics.

e  The workshop aims to share the methodologies, numerical methods and their implementation used by the state-of-the-art codes
in the HPC environment.

e  Key-note lectures will present the challenges of numerically solving Partial Differential Equations (PDE) in problems related to
fluid/hydrodynamics, using massively parallel clusters.

e  The workshop will focus on state-of the art of the different HPC architecture and the related numerical methods

Disclaimer: It is NOT our intent to give a complete survey of the numerical methods used in HPC for the fields of CFD and Numerical Astrophysics.
The present workshop shows some of the most used research/community codes granted for access to Tier-0 HPC european (and national)
ecosystems in the recent years.
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HPC Usage by scientific Sector @ CINECA
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HPC Usage by scientific Sector @ CINECA
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HPC Usage by scientific Sector @ PRACE

From Call 1 to Call 13 (2011-now)
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Overview of Numerical Methods and Algorithms
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Services

Introduction to solvers and algorithms for CFD and Astrophysics
HPC CINECA Infrastructure: State of the art and towards the exascale

Visualizzation of astrophysical and CFD data
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Astrophysics
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HPC Astrophysical Codes
C. Gheller (CSCS): “The RAMSES codes for computational
astrophysics”

Name of the codes:RAMSES
Main Authors: Romain Teyssier (RAMSES)
Research Area: Cosmology, Galaxy formation,
Astrophysics
Governing Equations: HD, RHD, MHD
Numerical Method: Various (SPH, PIC,
Lagrangian, ....)
Implementation:

o  Written in F90 and C/C++

o Parallelization MPI

o HDF5

o AMR
Scalability: excellent weak and strong scaling up
to 20-40k

From http://www.ics.uzh.ch




HPC Astrophysical Codes
F.Vazza (UniBO): “Challenges and goals of Eulerian MHD in cosmology”

Name of the codes: ENZO
Main Authors: Greg Bryan + ENZO collaboration
Research Area: Cosmology, Galaxy formation, Star
formation, Galaxy Clusters
Governing Equations: HD, MHD, Chemistry,
Radiative processes...
Numerical Method: Various (PPM, PLM, Zeus..)
Implementation:

Written in F90 and C/C++

Parallelization MPI

HDF5

AMR

o CPU/GPU implementations of HD/MHD

Scalability: excellent weak and strong scaling up to
20-40k From http://enzo-project.org/




HPC Astrophysics Codes

A. Mignone (UniTO): “The PLUTO Code, an introduction” + “Tutorial on
PLUTO”

Name of the code: PLUTO

e Authors: Mignone, A.; Bodo, G.; Massaglia, S.; Matsakos, T.;
Tesileanu, O.; Zanni, C.; Ferrari, A.

e Research Area: Astrophysics/Plasma Physics

e Governing Equations: HD, MHD, RHD, RMHD

e Numerical Method: multi-physics, multi-algorithm modular
environment oriented towards the treatment of astrophysical flows in
presence of discontinuities

e Implementation:

o Writtenin C

o parallelization pure MPI
o /O by HDF5

o CHOMBO

e Scalability: excellent weak and strong scaling up to 200K cores

© A. Mignone 14



HPC Astrophysical Codes

M. Baldi (UniBO): “Numerical methods for standard and non-standard
cosmological simulations: The Gadget 3 code”

Name of the code: GADGET 3
Main Author: Volker Springel
Research Area: Astrophysics/Cosmology,
Governing Equations: multi-physics, RHD
Numerical Method: SPH, Tree-PM
Implementation:

o writteninC

o parallelization MPI + OpenMP

o DFTby FFTW

o 1/O by HDF5
Scalability: good weak and strong scaling up to 10K-30k cores

© Millenium XXL Project



HPC Astrophysical Codes

S. Bernuzzi (UniPR): “Numerical relativity in the gravitational-wave
astronomy era”

Name of the code: BAM
Main Author/Authors: Bruegmann, B and others
Research Area: numerical relativty and
compact binaries mergers
Governing Equations: GR + GRHD
Numerical Method: EULERIAN
Implementation:
o Writtenin C

o Parallelization: MPl and OpenMP
Scalability: 8k cores




HPC Astrophysical Codes
B. Giacomazzo: “The Einstein Toolkit: an open framework for
Numerical General Relativistic Astrophysics”

Name of the code: Einstein Toolkit
Authors: F. Loffler, J. Faber, E. Bentivegna, T.
Bode, P. Diener, R. Haas, |. Hinder, B. C. Mundim,
C. D. Ott, E. Schnetter, E. Allen, M. Campanelli,
and P. Laguna.
Research Area: Astrophysics, General relativity,
Plasma physics
Governing Equations: GRHD, GRMHD
Numerical Methods: Various (TVD, PPM, ENO,
ePPM, WENO5, MP5, ...)
Implementation:

o  Written in F90 and C

o parallelization MP

o /O by HDF5
Scalability: excellent weak and strong scaling up to
10-30k cores

From http://einsteintoolkit.org




HPC CFD code
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Useful definiton

In the context of HPC, there are two common notions of scalability:

The first is strong scaling, which is defined as how the solution time varies with the number of
processors for a fixed fotal problem size.

The second is weak scaling, which is defined as how the solution time varies with the number of
processors for a fixed problem size per processor.

19



HPC CFD Codes: P. Orlandi, A minimal flow unit for turbulence, combustion and

astrophysics

e Authors: P. Orlandi, S. Pirozzoli, M. Bernardini
e Research Area: DNS of turbulent low-speed flows. Homogeneous isotropic turbulence, channel and pipe
flows (with rotation and roughness elements), passive scalars and inertial particles
e Governing Equations: Incompressible Navier Stokes (DNS)
e Numerical Method: Method-of-lines, two-stage discretization.
o Spatial discretization on Cartesian staggered grid, Immersed boundary method, second-order FD
o Time advancement, hybrid third-order Runge-Kutta/Crank-Nicholson scheme
o Fractional-step: explicit treatment of the convective terms, implicit treatment of the viscous ones
e Implemented in F90, parallelization pure MPI
o FFTs and tridag systems exploit available libraries (FFTW or IBM ESSL)
e Scalability: excellent weak and strong scaling for channel flow simulations on FERMI
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Figure 3: outcome of weak scalability tests Figure 4: outcome of strong scalability tests.



HPC CFD Codes: F. Bonelli, CFD and state-to-state of hypersonic flows using GPUs

Authors: Francesco Bonelli, Michele Tuttafesta, Gianpiero Colonna, Luigi Cutrone, Giuseppe Pascazio

Research Area: hypersonic flows in thermochemical non-equilibrium

Governing Equations: compressible Navier-Stokes or Euler equations

Numerical Method: Cell-centered Finite Volume Space discretization on a Multi-block structured mesh, Operator splitting approach,
Method-of-lines
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Space discretization:

Inviscid flux: Flux Vector Splitting of Steger and Warming or AUSM with MUSCL approach for higher order accuracy;

Viscous flux: gradients of the primitive variables are evaluated by applying Gauss theorem

Time integration: Runge-Kutta scheme up to third order

Implemented in CUDA C, parallelization with MPl and CUDA

Scalability: excellent strong scaling for mesh larger than 256x128 and excellent weak scalmg (computation performed on a GPU cluster

2 4 6 8 10 12
number of GPUs
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HPC CFD codes: P. Gualtieri, Particle-laden turbulent flows: small scale clustering

and two-way coupling effects

e n_s_trip (Navier Stokes Triperiodic)
e Authors: P. Gualtieri, F. Battista, J.P. Mollicone, C.M. Casciola in collaboration with Giorgio Amati (OpenMP code
developed @Caspur) and with Francesco Salvadore (MPI code developed @Cineca)
e Research Area: particle laden turbulent flows, (multi-scale) turbulent transport, two-way coupling effects
e Governing Equations: Incompressible Navier-Stokes equations
e  Numerical Method: Method-of-lines
o  Space discretization: Pseudo-spectral

o Time integration: Low Storage 4th order Runge-Kutta
o  Written in Fortran77 (OpenMP) ; Fortran 90 (MPI)
o  Parallelization: Both OpenMP & MPI
o Numerical librarires: NCAR and ESSL in the OpenMP version. P3dFFT and FFTW in the MPI version
o  Serial I/O (OpenMP) and MPI-I/O
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HPC Codes: G. Falcucci: Multi-scale Modeling of complex flows through the Lattice
Boltzmann Method

Authors: G. Falcucci and S. Succi

Research Area: multi-scale modeling of complex flows, multiphase pseudo-potential, multicomponent/reacting flows, FSI
Governing Equations: Kinetic Theory
Numerical Method: Lattice Boltzmann

o  Written in Fortran77 and Fortran90 (+ Python scripting for post-processing)

o Parallelization: OpenMP and MPI

Scalability: scalability on hundreds of computational cores (and even more)




HPC CFD Codes: A. Colombo, Discontinuous Galerkin Methods in HPC

Authors: F. Bassi, A. Colombo, L. Botti, A. Ghidoni, A. Nigro, A. Crivellini
Research Area: transonic flows, shock boundary layer interaction (SBLI)
Governing Equations: from Euler equations to the hybrid RANS-LES approaches, inc. and compressible

Numerical Method: Discontinuous Galerkin method, MIGALE code
o The equations of all the implemented flow models are discretized to the same high-order accuracy on hybrid (possibly curved) meshes

@) explicit and implicit high-order (up to order six) time integrators implemented to exploit the high-order discretization both in space and time.
©) based on the SPMD (single process, multiple data) paradigm, MPI paradigm

Numerical Libraries
©) PETSc library to achieve parallelism

The scalability of the code MIGALE has been investigated on three different TIER-O and one TIER-1
facilities: CURIE, HORNET and FERMI
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HPC CFD Codes: OpenFOAM, currente state, perspective and in-situ visualization

e OpenFOAM is become more and more popular in the CFD community

o OpenFOAM is (aiming to) becoming The open-source community code

m  Third most-used CFD community code by users (after Ansys-Fluent and CD-Adapco-Starccm+),
http://www.resolvedanalytics.com/theflux/comparing-popular-cfd-software-packages
n Fifth most-used CFD code in HPC environment

e Does OpenFOAM can seat in this “round table” of Tier-O0 CFD codes?
o Not yet
e Missing for a “full enabling” on massively parallel clusters (Tier-0 size)
o Pstream (MPI Library) actually scales reasonably well up to orders of thousands of cores
o Serial I/0, not MPI
o Actual sparse matrices storage system (LDU) does not enable any cache-blocking mechanism or
efficient vectorization
e Work “done/in progress/ to do” inside the community
o  Modified version of Pstream OpenFOAM available scaling up to order of thousands of cores (done
v1606)
o Implementation of Adios MPI I/0 library on-going
o In-situ visualization with Catalystic
o CFD4Exascale focuses on the technologies necessary to transition CFD from its current pe‘ta-scale25
performance point towards exascale deployment.
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