
Some issues about
exascale computing

About this document

 This document is intended to show/describe some issues about
future exascale HPC system.

Many issues are really oversimplified, this document is done just to
give a view of the main issues about exascale computing

 There are many other issues under the carpet…

(trivial) Definitions

Exa 10^18 (i.e. 1’000’000’000’000’000’000)

Peta 10^15 (i.e. 1’000’000’000’000’000)

Tera 10^12 (i.e. 1’000’000’000’000)

Giga 10^9 (i.e. 1’000’000’000)

Mega 10^6 (i.e. 1’000’000)

Kilo 10^3 (i.e. 1’000)

floating point Unit (FPU) = units devoted to perform floating point
operations

1. What is EXASCALE computing?

2. Physical constraint for Exascaling

3. Performance & Coding issues: a simple example

4. Some issues for next EXASCALE system

5. Some issues for an EXASCALE-aware system

6. CFD4Exascale

What is EXASCALE
With EXASCALE we intend a system able to perform, at least as

theoretical peak, one or more EXAFlops.

 1 EXAFlops system is a system able to deliver 10^18 Floating point
operations for second.
It is supposed to be operative around 2020

Power consumption should be lower than 30 MW

The questions are:

How real world code (like OpenFoam) will perform on this kind of
systems?

Which modification has to be done to exploit performance?

How to compute floating point operations?

 To obtain the theoretical (peak) value of Flops obtained from a single
CPU we must multiply
Clock Frequency
Number of computational (physical) core in the CPU
Number of floating point operations that can be delivered for each clock cycle

from every core

 Example (Intel Phi KNL)
Clock Frequency= 1.4 GHz
Number of computational (physical) core in the CPU = 68
Number of floating point operation that can be delivered for each clock cycle

from every core = 64 (Single precision) or 32 (Double precision)
1’400’000’000*68*32 = 3 Tflops (Peak Perfromance for Double Precision)

CAVEAT about FLOPs?

 Peak Performance cannot be really achieved: in implicit way we mean
that:
All O.S interactions are removed

All data needed for operation are available with no latency

 Real world application can get only few percentage of peak
performance, as reference:
 Linpack (e.g. Matrix-Matrix multiplication) around 60-80% of peak

performance

 CFD core usually less than 10% of peak performance

More real performance model: roofline
 Performance ordered with respect to computational intensity:

CI =#flops/#byte

CI > 1 FLOPs limited

CI < 1 BW limited

CFD code Linpack

1. What is EXASCALE computing?

2. Physical constraint for Exascaling

3. Performance & Coding issues: a simple example

4. Some issues for next EXASCALE system

5. Some issues for an EXASCALE-aware system

6. CFD4Exascale

Moore Law: theory

 “Number of transistors for the same size doubles every 18 Month”

 Stated in mid-sixties, still valid now

 It means that the improvements in manufacturing technology allows
to increase the circuit density but
Take care of power consumption

Now CPU has more than billions (> 1’000’000’000) of transistors

Moore Low: Implementation
 Up to 2006

Dennard scaling: “as transistors get smaller their power density stays constant, so that the
power use stays in proportion with area: both voltage and current scale (downward) with
length”.

You can raise clock frequencies from one generation to the next without significantly
increasing overall circuit power consumption

 2005–2007 Dennard scaling appears to have broken down: power consumption explodes!

 From 2006 to now
Keep clock frequency stable (or with a slight decrease)
Increase # computational unit (i.e. CORE) Core level parallelism
Increase # floating point units per core Instruction level parallelism
Increase complexity of floating point units (i.e. vectorization) Instruction level parallelism
Side effect: to exploit performance huge data parallelism/concurrency is requested!!!!

Moore Low: Implementation/2

 Some figures about CPU evolution (Intel CPU@CINECA, period 2010/17)

CPU (codename) Clock Frequency Number of core Flops cycle (DP) Peak Perf.

Xeon E5645 (Westmere) 2.4 GHz 2x6 4 115 GFlops

Xeon E5-2687W0 (Sandy Bridge) 3.1 GHz 2x8 8 396 GFlops

Xeon E5-2670v2 (Ivy Bridge) 2.5 GHz 2x10 8 400 GFlops

Xeon E5-2630v3 (Hashwell) 2.4 GHz 2x8 16 (AVX-256bit) 614 GFlops

Xeon E5-2697v4 (Broadwell) 2.3 GHz 2x18 16 (AVX-256bit) 1325 GFlops

Xeon Platinum (Skylake) 2.1 GHz 2x24 32 (AVX-512bit) 3225 GFlops

No increase Factor 4x Factor 8x Total:
Factor 32x

1. What is EXASCALE computing?

2. Physical constraint for Exascaling

3. Performance & Coding issues: a simple example

4. Some issues for next EXASCALE system

5. Some issues for an EXASCALE-aware system

6. CFD4Exascale

Single CPU performance: users side

 A single CPU is a parallel systems with many core (up to O(100))

 Serial/Single core performance is going to be meaningless

 Parallel programming is mandatory to exploit CPU performance

 Programming style can affect seriously performance

 Different way of writing a program, even if correct from numerical
point of view can seriously affect performance, of more than one
order of magnitude (e.g. loop cache friendly/unfriendly)

Single core performance: users side
 Time to perform simple matrix-matrix product, size = 4’096, Intel SKL, serial performance

 Theoretical peak performance: 67.2 GFlops

Compiler Options Loop cache friendly GFlops Peak (%)

-O0 yes 0.38 0.6%

-O1 No 0.06 0.1%

-O1 Yes 2.08 3.1%

-O2 (default option) Yes 2.87 4.3%

-O3 Yes 9.34 14%

-xCORE-AVX512 yes 3.14 4.7%

-O3 -mtune=skylake yes 9.22 14%

-O3 -xCORE-AVX512 yes 13.5 20%

Using intel MKL (i.e. BLAS) - 56.7 84%

O(1000)
improvement

Single node (2xCPU) performance: users side
 Time to perform simple matrix-matrix product, size = 16’384,Intel SKL, parallel performance

 Simple OpenMP (no blocking/unrolling…) could be not enough…

Parallelization Num threads GFLOPs Peak (%)

Hand made OpenMP 8 66 2.4 %

Intel MKL (i.e. BLAS) 8 443 14 %

Hand made OpenMP 16 123 3.8 %

Intel MKL (i.e. BLAS) 16 869 27 %

Hand made OpenMP 32 200 6.2 %

Intel MKL (i.e. BLAS) 32 1470 46 %

Hand made OpenMP 48 242 7.5 %

Intel MKL (i.e. BLAS) 48 1631 51 %

Single node performance: size matters!!
 Time to perform simple matrix-matrix product, Intel SKL, parallel

performance using intel MKL

 To exploit performance suitable problem size are needed to fulfill
Instruction level parallelism

Size Num threads GFLOPs Peak (%)

1024 48 91.6 2.8 %

4096 48 192 6.0 %

8192 48 1267 39 %

16384 48 1669 52 %

32768 48 1985 62 %

1. What is EXASCALE computing?

2. Physical constraint for Exascaling

3. Performance & Coding issues: a simple example

4. Some issues for next EXASCALE system

5. Some issues for an EXASCALE-aware system

6. CFD4Exascale

Way to build EXASCALE/1

One single CPU with EXA-Hz frequency is not feasible

 Power dissipation of all system MUST be below 30MW

 For power dissipation reason frequency should be around 1/2 GHz
with 1FLop/core we need 10^9 core too much
O(10-100) core level parallelism needed

 Today technology (e.g. intel Xeon Phi)
 Up to 68 core per CPU
 Up to 32 floating point operation per core

We need to integrate O(10^6) CPU

Way to build EXASCALE/2

 A simple table: for 1 Exascale system we have:
 M nodes each with N Peak TFlops

Single node performance (Tflop) Number of Nodes

1 1’000’000

4 250’000

8 125’000

25 40’000

50 20’000

100 10’000

200 5’000

NOW!!!

Way to build EXASCALE/3

No clear recipe so far

1. Many O(100’000) nodes: serious network issues

2. Using accelerators (e.g. GPGPU): needs to rewrite the code

3. Who knows?

All issues (programming, HW, algorithmic,….) has to be explored to
achieve the results

Unfortunatly the silver bullet doesn’t exist

Main EXASCALE feature

 MTTI=mean time to Interrupt

1. What is EXASCALE computing?

2. Physical constraint for Exascaling

3. Performance & Coding issues: a simple example

4. Some issues for next EXASCALE system

5. Some issues for an EXASCALE-aware system

6. CFD4Exascale

Writing an exascale-aware code

 Very hard target

 Different skill needed
Numerical Analysts
Computer Scientists
OS/Compiler/Networking specialist
HW experts
End Users

 Different HW/configurations to play with

 Different tool to use
 Profilers, Compilers, Debuggers, Simulators….

Writing an exascale-aware code/1

 Explore different parallel-paradigm
Fat node (O(100) core): hybrid parallelization must be exploited

External accelerator
 GPGPU (e.g. NVIDIA Pascal)

 FPGA

 Size matters
Define correct test case

Deep profiling to find hotspot

Introduce (light) profiling in the core order to guide optimization

Writing an exascale-aware code/2

 Exascale system will need high level parallelism:

 An order of 1’000’000 concurrent operations is the target
Are the HW system powerful to feed the single NODE?

Are the numerical algorithm suitable for this system?

Writing an exascale-aware code/3

 I/O, pre/post processing

 Exascale means problem O(10^9) or even more grid-points: it means
PB of data
It must be handled in correct way to be effective. Parallel I/O is mandatory

Pre/post processing must be parallel too, no enough memory on a single
node!!!

Domain decomposition could be time-consuming and error-prone. Inefficient
domain decomposition over O(100000) tasks could lead to very low
performance

 High flexibility for domain decomposition: the user can change the number
of task easily: the number of available nodes can vary significantly

Writing an exascale-aware code/3

Not only a single big simulation has to be performed but a complete
workflow

 Fine tuning will be different for different simulation: This means
Spread Knowledge about code/optimization

Spread Knowledge about HW feature & issues

Spread Knowledge about pre/post processing tools

 Deployment

 Dissemination

Writing an exascale-aware code/4

 To be successful all the player involved must share their knowledge &
expertise

…..

1. What is EXASCALE computing?

2. Physical constraint for Exascaling

3. Performance & Coding issues: a simple example

4. Some issues for next EXASCALE system

5. Some issues for an EXASCALE-aware system

6. CFD4Exascale

CFD4Exascale proposal
CFD4exascale focuses on the technologies necessary to transition CFD from its

current peta-scale performance point towards exascale deployment. CFD is widely
used in industry for design, analysis and research in engineering and safety. This
proposal supports the Strategic Research Agenda proposed by ETP4HPC, the
European Technology Platform for High-Performance Computing
The consortium gathers acknowledged experts in Europe from the widest CFD

spectrum. It receives worldwide active interest, placing European technology at
the heart of the drive for HPC deployment. We combine algorithm specialists, code
release authority, supercomputing centres, application specialists and major
industrial end-users with the need and means to exploit the technologies under
assessment.
The open-source and freely available common assessment CFD platform

OpenFOAM®, widely used by tens-of-thousands of engineers, will provide the basis
for CFD4exascale activities, ensuring open, free and public deployment and
exploitation during and after conclusion of the project.

CFD4Exascale: partners

 ESI-OCFD

 CINECA

HLRS

Wikki

University of Darmstadt (TuD)

 CFD-Berlin

 E4

University of Zagreb (FSB)

 Politecnico di Milano (PoliMI)

CFD4Exascale: Work Package (& Lead)

WP1: Management, ESI-OCFD

WP2: Demonstrate current peta-scale performance Lead, Cineca (+HLRS, TuD, OCFD)

WP3: Methods for extreme parallelism Lead, FBS (+CFDB, PoliMi, Wikki, OCFD)

WP4: Data management, comms/storage/retrieval Lead, HLRS (+E4, Cineca, Wikki, TuD)

WP5: Verification, Validation, Uncertainty Quantification Lead, CFDB (+OCFD, Wikki)

WP6: Software Stewardship, Test performance and scaling on many-core configurations Lead, TuD
(+Cineca, HLRS and E4)

WP7: Deployment; application test of run-ready software on many-core configurations Lead, Wikki (
+All)

WP8: Exploitation and Dissemination Lead, ESI-OCFD

links

 https://en.wikipedia.org/wiki/FLOPS

 http://www.dolbeau.name/dolbeau/publications/peak.pdf

 https://en.wikipedia.org/wiki/Roofline_model

 https://en.wikipedia.org/wiki/Moore%27s_law

 https://en.wikipedia.org/wiki/Dennard_scaling

https://en.wikipedia.org/wiki/Moore's_law
https://en.wikipedia.org/wiki/Moore's_law
https://en.wikipedia.org/wiki/Moore's_law
https://en.wikipedia.org/wiki/Moore's_law
https://en.wikipedia.org/wiki/Dennard_scaling

