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Why Discontinuous Galerkin (DG)
methods for CFD?

Cons

High-order accuracy comes at an increased
computational cost with respect to “standard”
FD or FV

Pros

e Great geometrical flexibility without spoiling
at all the accuracy

e Straightforward implementation of
h/p-adaptive techniques

e Compact stencil, to fully exploit
massively parallel computer platforms

Geometry courtesy of
Airbus Defence and Space

}x Growing interest in their application to unsteady problems to address |
l complex and computationally demanding simulations of turbulent flows |




Purpose of this presentation

UNIVERSITA DEGLI STUDI

To give an overview of DG methods basics and opportunities — prsseao
with some practical hint on their implementation

r . Dlscontmuous GaIerkln (DG) method on hybrld grlds
1 e Physical frame orthonormal basis functions
2D/3D steady and unsteady compressible and
incompressible flows
Explicit and implicit time accurate integration
F|xed or rotating frame of reference

i

MIGALE CODE

| MPI parallelism
Fortran language

e Navier—Stokes
e RANS + k-w (EARSM)
* Hybrid RANS/LES (X-LES) {

I

Our goal is to deal with different flow models using a unified numerical
framework, e.g., time integrators, Riemann solvers 4



The DG method basic idea

the solution approximation

The numerical solution is approximated by
high-order polynomial functions

Functions are not required to be continuous
across the elements interfaces

For computing integrals any element 1" € 7;, can be mapped on a reference
element T,.¢, e.g. the unit quadrangle >



The basis functions



The basis functions
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Basis functions can be defined on

a reference space the “physical” space
basis is built on reference elements basis is built on the
(quad, tria, ...) and then mapped on the real (mesh) element of any shape

mesh element

w(x(€), )1, = Y Wi(t)¢i()




The basis functions

Basis functions on a reference frame UNIVERSITA DEGLI STUDI

DI BERGAMO

Pros

efficiency proper of nodal DG methods
with interpolation and integration
nodes coincident

Cons
e defined for elements of specific shape
e extension to polytopal elements not straightforward

e stability issues for Legendere-Gauss-Lobatto nodes
(aliasing — over-integration)

e polynomials on the reference element are no more polynomials on real
elements with curved edges 8



The basis functions
BGSiSfU”CtiO”S on the physica/frame UNIVERSITA DEGLI STUDI

DI BERGAMO

Pros

e defined for arbitrary shape possibly curved elements

e well-conditioned orthogonal and hierarchical shape functions
e polynomials are exactly represented and integrated

e provide the basic framework for appealing h-multigrid techniques

- ‘.S\."’\ " ~(tl Cons
» Q e cost of integration
) ‘g\ ‘ inefficiency due to modal representation




The basis functions - physical frame S
An orthonormal and hierarchical set UNIVERSITA DEGLI STUDI
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We define discrete polynomial spaces in physical coordinates

PE(Th) < {¢ € L2(Q) | 7 € PE(T), VT € Ty,)

A trivial choice as the monomial
basis leads to ill-conditioned linear
systems particularly when dealing

with highly stretched elements,

e.g. RANS

Starting from monomials an
orthonormal and hierarchical basis |

AR=4 10



The basis functions - physical frame

An orthonormal and hierarchical set UNIVERSITA DEGLI STUDI

DI BERGAMO

We define discrete polynomial spaces in physical coordinates

def
Pi(Tn) = {¢ € L*(Q) | ¢jr € PG(T), VT € Tp}
Bl '
$: -3.0-1.7-031.023 for I=1 to NdOfT do

forj=1toi-1do
ri’ « (bi',@;')r
biT « biT-rijT¢jT
end for
ri’ € [(bT,¢7)r]"?
bi" € bi'/ri’
o€ b
end for

11



The basis functions - physical frame i
An orthonormal and hierarchical set UNIVERSITA DEGLI STUDI
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We define discrete polynomial spaces in physical coordinates

PX(T7)

o e L2(Q)|pir € PE(T), VT € Ty, )

The only requirement to build such basis
is to be able to perform integration

We can deal with elements of any
shape, possibly curve

In the context of mesh elements built
via agglomeration on top of a finer grid
made of canonical elements we
perform integration on the
sub-elements

12



The basis functions - physical frame w
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The basis functions - physical frame w
An orthonormal and hierarchical set UNIVERSITA DEGLI STUDI

DI BERGAMO

We define discrete polynomial spaces in physical coordinates

PE(Th) < {¢ € L2(Q) | 7 € PE(T), VT € Ty,)

B
): 3017031023 The only requirement to build such basis

‘l \{:\ W is to be able to perform integration
vv‘ e

We can deal with elements of any
\43*3 % N shape, possibly curve
Y S
«-ép& &\l\, w In the context of mesh elements built
\ via agglomeration on top of a finer grid
T '\ made of canonical elements we

perform integration on the

X
' "~ sub-elements

~

14



The basis functions - physical frame
L2-Projection and DG solution tests: quadrilateral vs. polygonal elements

Test on the exact solution of a Poisson problem proposed in [Karniadakis and
Sherwin, 2005]
1y = e~ 2-5l(z—1)+(y—1)] Q=[-1,1]
mesh sequences
e 64,256, 1028, 4096 uniform quadrilaterals grids

e 64, 255,1028, 4122 polygonal elements grids built on top of a 200x200
quadrilaterals grid using MGridGen'

k=6

fra 64 polygons

64 polygons

1) http://www-users.cs.umn.edu/~moulitsa/software.html



error in L2 norm

The basis functions - physical frame
L2-Projection and DG solution tests: quadrilateral vs. polygonal elements

Projection test on u

0.01F
1103}
11074t
1100}
1108}
1107}
1108} N
| - ® - quads, k
1x10°9F - & - quads, k=2
[ -4 -quads, k=3
1x107 10} - #-quads, k=4
- -4-quads, k=5
1x10- 11~ = -quads, k=6
- —0— polygons, k=1

[ —0— polygons, k=2
i —— polygons, k=3

.13 —°— polygons, k=4
1x1073F —— polygons, k=5

1x10712

+ —— polygons, k=6
14 FEIIE T
1x10 10
sgrt(number of elements)

error in L2 norm

1x10710F - o~ quads,
1x10"11F-=- quads, k=6
1x10712 —0— polygons, k=2

1x10°13F —>— polygons, k=4

1x10714

Poisson problem DG solution

0.01f
11073}
1107 F
1105}
1106}
1107}

1108}

.9 ~ - quads,
X109 _o- guads,
- - - quads,

NAXNXN
I o

HWON— /
4

| -4- quads, k=5
| —0— polygons, k=1
| —~— polygons, k=3

- —— polygons, k=5

[——polygons, k=6 0=

10
sgrt(number of elements)

Test on the exact solution of a Poisson problem proposed in [Karniadakis and

Sherwin, 2005]

100



The basis functions - physical frame
A CFD tests: polygonal elements

NACA0012 M., = 0.8, Re = 73, = 10°, 178 agglomerated elements grid built
on a 1197 hybrid mesh with cubic edges

"‘g-ﬂ au,‘ﬂ’g‘" |
:a“’l".\‘!‘"r
RS AT

’3“ T L™
SRR

1 1 L |
¢ 02 04 06 0.8 1
x/c




Hints on an efficient implementation of
physical frame basis functions

To assembly the DG operators we will integrate over mesh elements 1’ € 7},

The evaluation of basis functions (and their derivatives) at each quadrature
point (QP) can strongly affect the solver performance

80
o

Py
(=)

n
o

SJuaIdIa02#
equations operators assembly

Number of evaluation for Euler

10
In particular when dealing with high-order discretizations

on curved meshes (g>1)!

10

g is the polynomial degree of the reference-to-physical-frame mapping X(€ )



Hints on an efficient implementation of
physical frame basis functions

To assembly the DG operators we will integrate over mesh elements 1" € T,

The evaluation of basis functions (and their derivatives) at each quadrature
point (QP) can strongly affect the solver performance

The number of
orthonormalization
coefficients is

&
(=)

n
o

SJuaIdIa02#
equations operators assembly

Number of evaluation for Euler

10
In particular when dealing with high-order discretizations

on curved meshes (g>1)!

g is the polynomial degree of the reference-to-physical-frame mapping X(€ )



Hints on an efficient implementation of
physical frame basis functions
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To assembly the DG operators we will integrate over mesh elements 1" € T,

The evaluation of basis functions (and their derivatives) at each quadrature
point (QP) can strongly affect the solver performance

for i=1 to Nyof" do
for j=1toi-1do
ri’ € (bi',@i')r
biT « biT'rl]T¢jT
end for
ri’ € [(bT,@7)7]*?
bi" € bi'/ri"
o e b
end for

P

| Monomial |

basis !i coefficients ri, rj

P

! Orthonormal
!‘ basis

Strate Coefficients Shapes CPU Memory
5V 1 evaluation  evaluation usage footprint
OTF During During High Low
assembly assembly
PreCoef During During Medium  Medium
pre-proc. assembly
PreShape During During Low High
pre-proc. pre-proc.

20



Hints on an efficient implementation of
physical frame basis functions

To assembly the DG operators we will integrate over mesh elements 1" € T,

The evaluation of basis functions (and their derivatives) at each quadrature
point (QP) can strongly affect the solver performance

500 | | | |
—e— PreShape 300 |1 —*— PreShape i

400 L OTF b ' OTF
o —o— PreCoef —o— PreCoef
— a 600
= 300 - =
2
Ly — 400
— 200 =
= z

100 200

0
A k

Performance test on the inviscid isentropic vortex transported by a uniform flow
100x100 straight-sided quadrilateral elements 21



Hints on an efficient implementation of
physical frame basis functions

To assembly the DG operators we will integrate over mesh elements 1" € T,

The evaluation of basis functions (and their derivatives) at each quadrature
point (QP) can strongly affect the solver performance

An overall best strategy for physical frame shapes evaluation
can not be defined a priori!

...our guidelines...
1) The best choice depends on the simulation at hand, e.g. RANS, DNS

2) As numerical methods are more and more related to the hardware
also basis evaluation has to deal with the available hardware

3) High-order meshes need a lot of QPs, the full storage of shapes and their
derivatives can become comparable with the size of the implicit operator!

4) To pre-compute orthonormalization coefficients and runtime compute the
basis at QPs is an appealing compromise for p-adpatation strategies -



UNIVERSITA DEGLI STUDI
DI BERGAMO




Take advantage from DG peculiarities

Being able to deal with agglomerated elements and relying on DI BERGAMO
nested polynomial spaces we can boost our solution with multigrid (MG)

Linear MG is an iterative solution strategy for linear (or linearized) systems

MG efficiently solves Au = f by exploiting the solution of several coarse
problems A Aui=rn

The coarse problems can be explicitly built on

a sequence of h-coarsened grids h-MG

agglomeration yields nested grids
of arbitrarily shaped elements

a sequence of k-coarsened problems p-MG

different levels are discretized with different
order of accuracy

' In both cases the use of orthonormal '
” and hierarchical basis in physical space ||
greatly simplify the implementation!




Take advantage from DG peculiarities ;

Being able to deal with agglomerated elements and relying on DI BERGAMO
nested polynomial spaces we can boost our solution with multigrid (MG)

Linear MG is an iterative solution strategy for linear (or linearized) systems

MG efficiently solves Au = f by exploiting the solution of several coarse
problems A Aui=rn
Key ideas:

1. lterative solvers can efficiently smooth
the high-frequency modes of the error

2. Low-frequency modes of the error appear
more oscillatory on coarser spaces

3. MG exploits smoothers acting on coarser
spaces to accelerate the convergence

4. The error on the finest level can be
reduced trough the coarser levels corrections




Multigrid as a preconditioner for GMRES
Boost your solution! A metter of ACCURACY...

y — e—2:5[(@—=1)+(y—1)] Q=[-1,1

GMRES(200) parameters: rfol=1e-14, nis=2000
x-MG
- 1 GMRES iteration on the intermediate levels (if any)
- coarse solver: GMRES(200) rtol=1e-3, nits = 400

SG p-MG
max(lerrl)=~7e-8 max(lerrl)=~1e-10

h-MG
max(lerrl)=~8e-12




Multigrid as a preconditioner for GMRES
Boost your solution! A metter of ACCURACY...

Test on the exact solution of a Poisson problem on a graded 2562 el. grid

. . 2 . 2 10*
u=e 2Pl g L1 g Foiy
. S0t l\\
Although both SG and x-MG reach the tight value Bl O\ 4
rtol=1e-14 according to the L2 residual norm convergence ¢, |\ AN
test, we observe very different results in terms of solution E‘vo’-
error due to the different smoothing properties of the 510"
iterative linear solvers yoil B SIUNE J I
10 0 KSP -tevmi:)?ts 10

SG
max(lerrl)=~7e-8

h-MG
max(lerrl)=~8e-12

p-MG
max(lerrl)=~1e-10

QIror

7 180e-US D000+ 00 250-11 5e-| ] .58 9 93e-




Multigrid as a preconditioner for GMRES

Boost your solution! A metter of ACCURACY...

Test on the exact solution of a Poisson problem on a graded 2562 el. grid

—2.5[(z—1)*+(y—1)?] QO =[-1, 1]2

u==ec
Multigrid strategies exhibit far better performances with
respect to the SG solver, especially on graded grids

For high-fidelity simulations, e.g. DNS, a convergence test
alternative to the L2 norm of the system residual
must be considered

10*
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KSP terations

p

SG
GMRES its. 983 9
L2 solution error 5.25e-8 5.5e-13
solution time S
(x — 4.6%
C‘-ﬁiﬂwym L 2059/
total time ( — 26%

20
8.8e-11
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101%
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Multigrid as a preconditioner for GMRES
Boost your solution! A metter of EFFICIENCY...

Test on the exact solution of a Poisson problem on a set of 22/ (i=s,...,9) el. unif.
grids varying the polynomial degree k of the DG solution (rtol = 1e-12)

u = sin(7x) sin(my) Q=[-1,1]"

A brief note on x-MG implementation in our DG framework...

'+ p-MG algorithm is much easier to implement than h-MG

|+ p-MG restriction and prolongation operators are trivial and their use is very
ill efficient in terms of number of operations

1 10 -9 10’
| ——a— $G — §G — G
—— N-MG (5 levs.) —— N-MG (5 levs.) > —— N-MG (5 levs.)
W'k T p-MG (1 lev.) o o pMG(llev) 7 el p-MIG (1 loV.) ”
= - ,/f S10°H o
‘E . /‘5” -‘210’ ™ - 4 E o
@ - / @ / @ g v
z‘oJ‘.‘ _/"'.’/ g L 4 /’I/ % A ~
i o A
¥ » i=7 4 » i=8 10 F e _ i=9
16384 quads. 65536 quads. I;/ 262144 quads.
A A 10" 1 A A 1 A A
2 3 4 5 6 2 3 4 5 6 2 3 4 5 6

k K
The cost of operators assembly is always in favor of p-MG



Multigrid as a preconditioner for GMRES
Boost your solution! A metter of EFFICIENCY...

Test on the exact solution of a Poisson problem on a set of 22/ (i=s,...,9) el. unif.
grids varying the polynomial degree k of the DG solution (rtol = 1e-12)

u = sin(7x) sin(my) Q=[-1,1]"

A brief note on x-MG implementation in our DG framework...
'+ p-MG algorithm is much easier to implement than h-MG
1' p-MG restriction and prolongation operators are trivial and their use is very

| efficient in terms of number of operations

solution time

10° 10°
—— 56 | —— 56 —— 56
—— N-MG (5 levs.) e [ ——&—— h-MG (5 levs.) —— N-MG (5 levs.)
el MG (1 Iev.‘)___-----"' 10°F ——ea— p-MG(1lev) 4 e MG (1 leV.)
- L 10+
- Q @ . _____—-
///.‘ - g e - - E -—-'*__——— B
10'F_- e =1 . -
! » o 4 ——1S ] - 3
- ol :: —— g - § ———
— o 3 - s
— _ 10'} eadll i -
[ _» 10 ) ~*
100" =7 ) =8 ._.-" v i=9
y 16384 quads. T 65536 quads. 262144 quads.
. 1 1 0 1 1 1 ) 1 A i
2 3 4 5 g 103 3 3 5 g 10% 3 4 5

k k K
The cost of solution is always in favor of h-MG



Multigrid as a preconditioner for GMRES
Boost your solution! A metter of EFFICIENCY...

Test on the exact solution of a Poisson problem on a set of 22/ (i=s,...,9) el. unif.
grids varying the polynomial degree k of the DG solution (rtol = 1e-12)

u = sin(7x) sin(my) Q=[-1,1]"

A brief note on x-MG implementation in our DG framework...

'+ p-MG algorithm is much easier to implement than h-MG

|+ p-MG restriction and prolongation operators are trivial and their use is very
lll efficient in terms of number of operations

107¢ — 10’ — 10°
——— 5G ——— 5G - —— 5G —
—@— N-MG (5 levs.) A~ —@—— N-MG (5 levs.) _‘, —— N-MG (5 levs.) __a—_—
e p-MG (1lev) o pMG(llev) e D-MG (1 Igy)---—-"'
e " ——
- - ___.‘"
// . g ) ,.-"- 10 -
g ,,./" g P -gloi '__,// I g F -— I
oL s R
S - - = .
@ | o -
- o 107k B
-~ .A_
i=7 10'F . i=8 ) i=9
{ 16384 quads. T 65536 quads. 262144 quads.
10" 1 1 A L A A T 1 A A
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Kk

k K
x-MG strategies are always more efficient than SG



Multigrid as a preconditioner for GMRES
Boost your solution! A metter of EFFICIENCY...

[ _— "
-f; — - T = - b — =W -—- als aVla s aVla - -
e —

ga aaON X-"G
- X-MG@G always pay off!

-— =

1 - p-MG is easy to implement and can be considered as a valid
il alternative to h-MG for coarse meshes and high-order of

accuracy [Franciolini, M., Crivellini, A., Nigro, A. “An implicit discontinuous Galerkin method with

reduced memory footprint for the simulation of turbulent flows”, accepted at: DLES11 Proceedings,
ERCOFTAC series, Springer]

total time

| - h-MG becomes very attractive for very fine meshes !
' [L. Botti, A. Colombo, F. Bassi, “h-multigrid agglomeration based solution strategies for discontinuous |
Galerkin discretizations of incompressible flow problems”, Journal of Computational Physics,Volume \
| 347, 15 October 2017, Pages 382-415] ’ 'i |
(
i [F. Bassi, L. Botti, A. Colombo, “Agglomeration-based physical frame dG discretizations: An attempt to ’
l be mesh free”, Math. Models Methods Appl. Sci. 24, 1495 (2014)]
e _ - ., — R— -,
E— ] =7 10 T8 T N —— =9
16384 quads. -' 65536 quads. 262144 quads.
103 3 A 5 6 2 3 i 5 6 2 3 A 5 6
K Kk

x-MG strategies are always more efficient than SG
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. Locally adapt the accuracy of your
| discretization with DG!

—

Aside of locally refine/coarsen elements according to some errors estimator,
DG methods also allow in a natural way to locally vary the solution accuracy

by varying the polynomial degree of the solution in each cell (p-adaptation) 33



Adapt your discretization accuracy
within DG -a simple test

Solution adaptation is driven by error estimators
appllead to the runtlme computed tlme averaged solutlon o

To obtain an efficient estimator both for low- and
high- order approximations we combine:

1. based on pressure jumps at interfaces

ndMP (p) = max max w(wj,t) —w(x;,t)

sides  J |w (z4,t) +w(x;,t)7
2. based on the spectral decay of the soution (SDI)
—=\2
o 2
fT dx

Contribution of Gabriel Manzinali MSc@UNIBG “A p-adaptive Discontinuous Galerkm method for R——Y|
unsteady compressible flows” now @MINES_ParisTech, France




Adapt your discretization accuracy
within DG - a simple test

A simple test case but representative of the intended applications, i.e. separated flows
behind bodies, the problem of an inviscid flow past a triangular cylinder has been considered

mean pressure

polynomial degree estimator

Contribution of Gabriel Manzinali MSc@UNIBG “A p-adaptive Discontinuous Galerkin method for 35
unsteady compressible flows” now @MINES_ParisTech, France




Adapt your discretization accuracy i)
within DG - a simple test

1st ADAPTATION +20% DOFs

2"d ADAPTATION +21% DOFs

34 ADAPTATION +18% DOFs

VA A AT AT AN A AV AN AV AT N RN Y g BT AY A WAV AYAYA T AV AVAVAVAYAYA VL L ST Y
FATATAATATAVATATAVS " =>"A'A':‘ NAVATATAVATE Ny Sou v VAVIA':‘ : ATAYAVATAYAY :‘#u\\
OOREERD RO ATATAVAVAYA"S 4th ADAPTATION +17% DOF
ATATAY S B AAYAYAYAY A (s} S
FaVar SN 7
1> :A‘.'A"'A" AYAY.

\J
A
AA'A'A'A‘E =

5th ADAPTATION +14%DOFs

A

b VAVAYA
e k‘t‘f%‘#‘ﬁ.ﬂuﬂ A
"15“‘1"“"‘ A : vaYAY. v,
A AVAVAV. vAYAVAVAVAVAVAYANC Ly Ly
p"ﬁ ,v.vuAuuuvﬂA'A‘A'g': :‘ N N
'.VAV‘v.v;VA'A'A'A'A'A'A"“ A : NAVATATAS
v, [ Q‘VAV‘VAV‘VA'A‘L‘A'A'L'AVAV“‘ : "VA'A“ v
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Details of a DG method for the CFD

Modelled turbulent flows governing equations ""‘"",‘)T'.";".Q‘.J;’;;;‘i{;',"""“"
RANS+k-w (EARSM), X-LES
dp 0
0 0 (‘9p (%ji (‘ﬁn
—(pu;) + m—(puju;) = — + -+
875 (p ) (%:j (/0 J ) (‘hz (%zj aZCj
0 0 0 R
5 PE) + 5 —(puiH) = o — (wiTij—qj+uiTij—q;) —Fr + Di
J J

%) %, %, ok
< 9 (puk)=—2 )| 4 P — D
(%(Pk‘) + o, (pu;k) o, (p+o Mt)a ] + Py, k

i L j
L A 0 0 05
875 P &L'j P J _8903-

(u+0ut)8xj] Tt om) 55

+Pw_Dw+CD

Reynolds averaged Navier-Stokes equations closed with the Wilcox k-w model
Non standard implementation using w = log(w) 38



Details of a DG method for the CFD

Modelled turbulent flows governing equations ""‘"".iT'{;".Q‘JZ;'K‘{{;',""” DI
RANS+k-w (EARSM), X-LES

Heat flux and stress tensor

pn Oh Iy , Oh

U= pror, U7 Priog
Tij = 2/ [Sw — %%5@-] Tij = 20, [Sw %gz: 5Zj] %pkdm
source terms
P, =7 g;j P, =a [&*e% (sz.j - %g—;”;aij) = gpézj] %
Dy, = B*pkw D, = Bp%ea”“ Cp =0y GLO,T max (;:k SZ : O)

39



Why a hybrid RANS-LES model?

For those high Reynolds number flows where the RANS N —

DI BERGAMO

formulation suffers from prediction limitations, e.g. massively separated
flows, but LES seems (to date) too demanding

. 4
Rep=50000

Why the eXtra Large Eddy Simulation (X-LES)? xok et al., 2004]

e is a hybrid RANS-LES formulation relying on Boussinesq hypothesis

for both the prediction of SGS or Reynolds stresses [Yoshizawa, 1986]

LES mode uses a clearly defined dynamic SGS based on k-equation

e use of a k-w turbulence model integrated to the wall, no wall functions

e a formulation independent from the wall distance

e same high-order (subcell) representation for both LES and RANS zones 40



DG applied to CFD

Impact of X-LES on source terms and turbulent quantities l-\.\.‘;.m;.‘; {;:;(;.,l sTuD!
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" Tjaxj a[a ewr ( 7 30z ‘7) 37 ‘7] oz,

Dy, = B*pkw D, = Bpke®r

— P Ik %
ewr Oy Ox1’

k 5 Vk _
oy = o P W = max (e‘”’ ) k = max (0, k)
w

where

our implementation actually includes three models

RANS LES ILES

I _
o, o '0& o pVEC, A 0

k2
Cr1 A

Dy B*pke*r  B*p




DG applied to CFD

Impact of X-LES on source terms and turbulent quantities l-\.\.‘;.mfr;\{;:;u.l sTUDI
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DG applied to CFD

Impact of X-LES on source terms and turbulent quantities l-\.\.‘;.mfr;\{;:;u.l sTUDI
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DG applied to CFD

Impact of X-LES on source terms and turbulent quantities m\.‘;.f.:llf;rl;ﬂ,;;;,\({:Al STUDI
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where

our implementation actually includes three models
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DG applied to CFD

Impact of X-LES on source terms and turbulent quantities UNIVERSITA .;;;(;.‘. STUD!
Ou; o 1 Ouy, 2 ou;
P, =71,;,— P,=ala"—=— (S;; —=—=——06;; | — =pd;i| —
: O “ [ ewr ( Y3 0wy, ”) 3" w] Ox
- — ~ ok Ow
Dy, = B pkw D, = Bpke“r Cp = oy '? max ——w,O
ewr Oxy Oxy
where
k _
y =" pA ) k = max (0, k)
W
: ﬁ Flexible - acting on the filter width parameter /\ the amodnt of
ourim

RANS modeling can be minimized and reduced at the boundary

RANS LES ILES
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Models distribution: RANS, LES, ILES

A = 3.5%x103 A = 3.3x103

A = 3x10°

A = 2x10° A =1x10°




Different models may
coexist within the same cell




DG discretization of the fluid dynamics equations

The governing equations can be written in compact form as

P(W)%—VZ + V- -F.(w)+V -F,(w,Vw)+s(w,Vw) =0

for compressible flows a common choice for w is

w. = [p, pus, pE, pk, p]" — P (w) =1

Alternatives to w¢ have been investigated by several authors in order

to obtain a well defined behavior of variables in the incompressible limit of
compressible flows

to deal with low Mach number flows (p, u, T) [Bassi et al., 2009]
to design schemes suited for both compressible and incompressible flows
to simplify the implicit implementation of a method

to ensure the positivity of thermodynamic variables at discrete level



DG discretization of the fluid dynamics equations
The working variables
The governing equations can be written in compact form as

P(w)— +V -F.(w)+V -F,(w,Vw) +s(w,Vw) =0

ot

we adopt a set of variables based on p = log(p) and 7" = log(7") to ensure

the positivity of all thermodynamic variables at discrete level

oW,

ow

" T
— [ﬁauivTak7a}} P(W) —

e unlike W equation, we do not transform the equations, we substitute p, 1
with ep el and use a polynomial approximation for p and T

e this approach certainly improved the robustness of high-order simulations of
transonic flows



DG discretization of the fluid dynamics equations

The DG discretization consists in seeking, forj=1, ..., m, the elements of the
global vector W of unknown dof s.t.

aw, 96,
> /T¢1Pj,k (Wn) 1 dtk’ldx— > / %Fj,n (wp, Vwy, +r ([wy])) dx

TET Ter JT
+ Z / [[¢’L]]n ﬁjan (W}jia (vwh + nNrrr ([[Wh]]))i) do
Fer, 7t

# 3 [ dus (wn Ve r([wal)) dx =0 i=1L....N,
TeT, ” T

repeated indices imply summationk =1,...,m,l=1,...,Ng;, n=1,...,d

For compressible flows interface convective fluxes treated with the exact
Riemann solver of [Gottlieb and Groth, 1988] or the van Leer flux vector
splitting method as modified by [Hanel et al., 1987]

BR2 scheme for the viscous term [Bassi and Rebay, 1997, Arnold et al., 2002]
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DG discretization of the fluid dynamics equations

The DG discretization consists in seeking, forj=1, ..., m, the elements of the
global vector W of unknown dof s.t.

Zp,
aw, 96, _Zh
> [ o o Sgttix = 3 [ ZOUR L (wi, w +x ([wal) dx
r T Uln
TETn TET,
T Z / [[@]]nﬁj,n (W}%a(vwh-l-??FrF([[Wh]]))i) do
FerFy, F = 7 —
hr

+ ) /beaSj(Wh,VWthI‘([[Wh]]))dX:O i=1,...,Ngy
TGTh T e Zh —

repeated indices imply summationk =1,...,m,l=1,...,Ng;, n=1,...,d

For compressible flows interface convective fluxes treated with the exact
Riemann solver of [Gottlieb and Groth, 1988] or the van Leer flux vector
splitting method as modified by [Hanel et al., 1987]

BR2 scheme for the viscous term [Bassi and Rebay, 1997, Arnold et al., 2002]



DG discretization of the viscous term
The BR2 scheme in a nutshell [Bassi and Rebay, 1997]

Some definitions...

The jump The average
1
[¢n] = (¢nm)™ + (¢nn)? {on} =35 (o0 + o)
[#n] = (En-m)” + (dn - n)” {én} = % (¢ + &)

We introduce the local lifting operator

b1 7 (vp) dx = —/ {bn} - vn do
2 F

the local lifting operator is nonzero at the elements that share F' only and is
related to the global lifting operator as

r(vh) =) ry(vp)

FeF



DG discretization of the viscous term
The BR2 scheme in a nutshell [Bassi and Rebay, 1997]

We introduce the local lifting operator

b1 -7y (vp) dx = —/ (én} - v do
25 F

the local lifting operator is nonzero at the elements that share F' only and is
related to the global lifting operator as

r(vn) =) ry(vp)

gradients are “corrected” with the local and and

global lifting operators of the solution’s jump in the
volume and surface terms respectively

zp, = Vwy, + r([ug]) Zhe = VWp + npre([un])

where, according to [Arnold et al., 2002], the penalty factor 77 f must be
greater than the number of faces of the elements



Time integration - unsteady problems

DG space discretized equations can be written as a system DI BERGAMO

of ODEs\DAEs IW
Mp (W) i

R is the vector of residuals and Mp is the global block diagonal matrix

ifw=w.— Mp(W)=1; ifw=w, - Mp (W)=1-J!!

L R(W)=0

Implicit accurate time integration by means of linearly implicit Rosenbrock-
type Runge-Kutta schemes [Bassi et al., 2007, Bassi et al., 2014b]

W = W™ 4+ ) " bK;

j=1
I \n N i—1 il
j=1 J=1
where -
OR. ~ B ~  OR _ OMp ~
J=—— R=M3;'R J=—=M3'(J- R
W P OW P ( OW )

and b;, o, 7i; are real coefficients 33



Time integration - unsteady problems |
Rosenbrock schemes UNI |f.llt).l\‘ll';rlg\Rl();l':\(i:(‘l’.<'|’L DI
Equivalent formulation to avoid the matrix-vector product J” Z;;i v K

and more suited for implementation when dealing with change of variables

W = W™+ "m;Y;
j=1

1—1 1—1

MP aMva " ~ C;i
TP rI-TPR) V=M [R(WR Y ey | - Sy,
(7At+ oW ) ’ +j:1a3 =t

the coefficients of the transformed scheme are given by

(m1,...,ms) = (br,...,bs) T (ag) = (ag) T™1 (ciy) =7 'L =T

where T—1 & (75;)” " is the inverse of the matrix of coefficients (7Vij)

' — . e =mee——ea —— ‘
- Only a linear system need to be solved for each stage i.e. the Jacobian ’I
| J=0R/OW is assembled and factored only once per time step! ’

| , e




Why high-order Rosenbrock schemes?

UNIVERSITA DEGLI STUDI
DI BERGAMO

Several high-order temporal schemes are implemented
* Modified Extended BDF }

non-linear
systems solution

* Two Implicit Advanced Step-point (TIAS)
* Explicit Singly Diagonally Implicit R-K (ESDIRK) |
linear systems solution |/~ St

* linearly implicit Rosenbrock method (here via GMRES) <!

[

i) Hi-O schemes are more efficient than Lo-O ones for high required accuracy
ii) Rosenbrock-type schemes are appealing both for accuracy and efficiency

‘01 ‘01

10° 0Wemyw » eee-- BDF2
—a— MEBDF3
10° 10°k b MEBDF4 .
\ ESDIRK4 Convection Of
10 10° TIAS4 _ '
—+— Tuss an isentropic
=10° =10 ROS-8 vortex
MEBDF3 .
107 MEBDF 4 107 P® solution on
ESDIRK4
10° TIAS4 10" 50X50 el.
TIASS
10° gg:g 10°
-0 -0 1
10 00 %% 2000 4000 6000 8000 10000 57
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How the implicit operator looks like ?

UNIVERSITA DEGLI STUDI

DI BERGAMO
3 1
12 4 4
( 5 2
9 2

Q
4
L pk 22 s P¥ 2
3 3 7 £
- 7 2 4 S 7 3
(e
S 12 7 =
L ORI e
= g 2. ..your elemental block...
8
o]
X
H\l 2 3 4 > NDofNunk
-
NDofNunk

- The stencil is as compact as possible: |

" the elements and its neighbors only

Block sparsity is independent from

the polynomial degree
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How the implicit operator looks like ?
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. TILDA
Some I'ESUItS.‘ transonic compressor rotor

RANS+k-w (initialization and comparison)

* DG P? (98% of the chocked mass flow) Pﬂﬂ”l

* DG P23 Performance map

X-LES
* DG P? X-LES computation using the

3" order 3 stages Rosenbrok (ROS3P)
* DG P3(ROS3P) on going (~98%)
* Filter width A=1°-3

NS

Boundary conditions
* po; =101325Pa, Ty, = 288K, Tu; =3%
* w=1800rad/s

e a,=0°

160512 hexahedral
guadratic edges, y+ =
| ERNEEE |

‘orticity Magnitude: 0 250 500 750
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X-LES a.
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Some results: transonic compressor rotor

RANS+k-w (initialization and comparison)

* DG P? (98% of the chocked mass flow) P”””[

* DG P23 Performance map

X-LES
* DG P? X-LES computation using the

3" order 3 stages Rosenbrok (ROS3P)
* DG P3(ROS3P) on going (~98%)
* Filter width A=1°-3

S

Boundary conditions
* po; =101325Pa, Ty, = 288K, Tu; =3% :
* w=1800rad/s 160512 hexahedral

. + _
.« 0,=0° guadratic edges,y ' =

1 il (1]

M: 020.4070.91.11.3161.820

M: 0.20407091.113161.82.0

“
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RANS+k-w (initialization and comparison)
* DG P? (98% of the chocked mass flow)

* DG P3 Performance map 80

X-LES
* DG P? X-LES computation using the

3" order 3 stages Rosenbrok (ROS3P)
* DG P3(ROS3P) on going (~98%)
* Filter width A=1°-3

Q\O/ %0 - ° Exp.

c [—*—— DGP'-RANS+k-»

© [ ----m---- DG P?- RANS+k-o

UQ)- 4ol —*—- DGP’-X-LES-inst.
| — —v—- DG P?-X-LES - ave.

Boundary conditions 20 -
* po; =101325Pa, Ty, = 288K, Tu; =3% I
*  w=1800rad/s ] = Pl ZETTe?
. 1.4 1.6 1.8 2 2.2
* ;=0 Total Pressure Ratio
B F B m
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Some results: transonic compressor rotor

100 —

RANS+k-w (initialization and comparison) T W _\ 1
* DG P? (98% of the chocked mass flow) : X 7
* DG P2 Performance map 80 .\_| -
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Grazie dell’attenzione
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